AI-Genetic-Pro
view release on metacpan or search on metacpan
lib/AI/Genetic/Pro.pm view on Meta::CPAN
package AI::Genetic::Pro;
$AI::Genetic::Pro::VERSION = '1.009';
#---------------
use warnings;
use strict;
use base qw( Class::Accessor::Fast::XS );
#-----------------------------------------------------------------------
use Carp;
use Clone qw( clone );
use Struct::Compare;
use Digest::MD5 qw( md5_hex );
use List::Util qw( sum );
use List::MoreUtils qw( minmax first_index apply );
#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
use Tie::Array::Packed;
use UNIVERSAL::require;
#-----------------------------------------------------------------------
use AI::Genetic::Pro::Array::Type qw( get_package_by_element_size );
use AI::Genetic::Pro::Chromosome;
#-----------------------------------------------------------------------
__PACKAGE__->mk_accessors(qw(
mce
type
population
terminate
chromosomes
crossover
native
parents _parents
history _history
fitness _fitness _fitness_real
cache
mutation _mutator
strategy _strategist
selection _selector
_translations
generation
preserve
variable_length
_fix_range
_package
_length
strict _strict
workers
size
_init
));
#=======================================================================
# Additional modules
use constant STORABLE => 'Storable';
use constant GD => 'GD::Graph::linespoints';
#=======================================================================
my $_Cache = { };
my $_temp_chromosome;
#=======================================================================
sub new {
my ( $class, %args ) = ( shift, @_ );
#-------------------------------------------------------------------
my %opts = map { if(ref $_){$_}else{ /^-?(.*)$/o; $1 }} @_;
my $self = bless \%opts, $class;
#-------------------------------------------------------------------
$AI::Genetic::Pro::Array::Type::Native = 1 if $self->native;
#-------------------------------------------------------------------
croak(q/Type of chromosomes cannot be "combination" if "variable length" feature is active!/)
if $self->type eq q/combination/ and $self->variable_length;
croak(q/You must specify a crossover strategy with -strategy!/)
unless defined ($self->strategy);
croak(q/Type of chromosomes cannot be "combination" if strategy is not one of: OX, PMX!/)
if $self->type eq q/combination/ and ($self->strategy->[0] ne q/OX/ and $self->strategy->[0] ne q/PMX/);
croak(q/Strategy cannot be "/,$self->strategy->[0],q/" if "variable length" feature is active!/ )
if ($self->strategy->[0] eq 'PMX' or $self->strategy->[0] eq 'OX') and $self->variable_length;
#-------------------------------------------------------------------
$self->_set_strict if $self->strict;
#-------------------------------------------------------------------
return $self unless $self->mce;
#-------------------------------------------------------------------
delete $self->{ mce };
'AI::Genetic::Pro::MCE'->use or die q[Cannot raise multicore support: ] . $@;
return AI::Genetic::Pro::MCE->new( $self, \%args );
}
#=======================================================================
sub _Cache { $_Cache; }
#=======================================================================
# INIT #################################################################
#=======================================================================
sub _set_strict {
my ($self) = @_;
# fitness
my $fitness = $self->fitness();
my $replacement = sub {
my @tmp = @{$_[1]};
my $ret = $fitness->(@_);
my @cmp = @{$_[1]};
die qq/Chromosome was modified in a fitness function from "@tmp" to "@{$_[1]}"!\n/ unless compare(\@tmp, \@cmp);
return $ret;
};
$self->fitness($replacement);
}
#=======================================================================
sub _fitness_cached {
my ($self, $chromosome) = @_;
#my $key = md5_hex(${tied(@$chromosome)});
my $key = md5_hex( $self->_package ? md5_hex( ${ tied( @$chromosome ) } ) : join( q[:], @$chromosome ) );
return $_Cache->{$key} if exists $_Cache->{$key};
$_Cache->{$key} = $self->_fitness_real->($self, $chromosome);
return $_Cache->{$key};
}
#=======================================================================
sub _init_cache {
my ($self) = @_;
$self->_fitness_real($self->fitness);
$self->fitness(\&_fitness_cached);
return;
}
#=======================================================================
sub _check_data_ref {
my ($self, $data_org) = @_;
my $data = clone($data_org);
my $ars;
for(0..$#$data){
next if $ars->{$data->[$_]};
$ars->{$data->[$_]} = 1;
unshift @{$data->[$_]}, undef;
}
return $data;
}
#=======================================================================
# we have to find C to (in some cases) incrase value of range
# due to design model
sub _find_fix_range {
my ($self, $data) = @_;
for my $idx (0..$#$data){
if($data->[$idx]->[1] < 1){
my $const = 1 - $data->[$idx]->[1];
push @{$self->_fix_range}, $const;
$data->[$idx]->[1] += $const;
$data->[$idx]->[2] += $const;
}else{ push @{$self->_fix_range}, 0; }
}
return $data;
}
#=======================================================================
sub init {
my ( $self, $data ) = @_;
croak q/You have to pass some data to "init"!/ unless $data;
#-------------------------------------------------------------------
$self->generation(0);
$self->_init( $data );
$self->_fitness( { } );
$self->_fix_range( [ ] );
$self->_history( [ [ ], [ ], [ ] ] );
$self->_init_cache if $self->cache;
#-------------------------------------------------------------------
if($self->type eq q/listvector/){
croak(q/You have to pass array reference if "type" is set to "listvector"/) unless ref $data eq 'ARRAY';
$self->_translations( $self->_check_data_ref($data) );
}elsif($self->type eq q/bitvector/){
croak(q/You have to pass integer if "type" is set to "bitvector"/) if $data !~ /^\d+$/o;
$self->_translations( [ [ 0, 1 ] ] );
$self->_translations->[$_] = $self->_translations->[0] for 1..$data-1;
}elsif($self->type eq q/combination/){
croak(q/You have to pass array reference if "type" is set to "combination"/) unless ref $data eq 'ARRAY';
$self->_translations( [ clone($data) ] );
$self->_translations->[$_] = $self->_translations->[0] for 1..$#$data;
}elsif($self->type eq q/rangevector/){
croak(q/You have to pass array reference if "type" is set to "rangevector"/) unless ref $data eq 'ARRAY';
$self->_translations( $self->_find_fix_range( $self->_check_data_ref($data) ));
}else{
croak(q/You have to specify first "type" of vector!/);
}
my $size = 0;
if($self->type ne q/rangevector/){ for(@{$self->_translations}){ $size = $#$_ if $#$_ > $size; } }
# else{ for(@{$self->_translations}){ $size = $_->[1] if $_->[1] > $size; } }
else{ for(@{$self->_translations}){ $size = $_->[2] if $_->[2] > $size; } } # Provisional patch for rangevector values truncated to signed 8-bit quantities. Thx to Tod Hagan
my $package = get_package_by_element_size($size);
$self->_package($package);
my $length = ref $data ? sub { $#$data; } : sub { $data - 1 };
if($self->variable_length){
$length = ref $data ? sub { 1 + int( rand( $#{ $self->_init } ) ); } : sub { 1 + int( rand( $self->_init - 1) ); };
}
$self->_length( $length );
$self->chromosomes( [ ] );
push @{$self->chromosomes},
AI::Genetic::Pro::Chromosome->new($self->_translations, $self->type, $package, $length->())
for 1..$self->population;
$self->_calculate_fitness_all();
}
#=======================================================================
# SAVE / LOAD ##########################################################
#=======================================================================
sub spew {
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
STORABLE->use( qw( store retrieve freeze thaw ) ) or croak(q/You need "/.STORABLE.q/" module to save a state of "/.__PACKAGE__.q/"!/);
$Storable::Deparse = 1;
$Storable::Eval = 1;
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
my ( $self ) = @_;
my $clone = {
_selector => undef,
_strategist => undef,
_mutator => undef,
};
$clone->{ chromosomes } = [ map { ${ tied( @$_ ) } } @{ $self->chromosomes } ]
if $self->_package;
foreach my $key(keys %$self){
next if exists $clone->{$key};
$clone->{$key} = $self->{$key};
}
return $clone;
}
#=======================================================================
sub slurp {
my ( $self, $dump ) = @_;
if( my $typ = $self->_package ){
@{ $dump->{ chromosomes } } = map {
my $arr = $typ->make_with_packed( $_ );
bless $arr, q[AI::Genetic::Pro::Chromosome];
} @{ $dump->{ chromosomes } };
}
%$self = %$dump;
return 1;
}
#=======================================================================
sub save {
my ( $self, $file ) = @_;
croak(q/You have to specify file!/) unless defined $file;
store( $self->spew, $file );
}
#=======================================================================
sub load {
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
STORABLE->use( qw( store retrieve freeze thaw ) ) or croak(q/You need "/.STORABLE.q/" module to load a state of "/.__PACKAGE__.q/"!/);
$Storable::Deparse = 1;
$Storable::Eval = 1;
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
my ($self, $file) = @_;
croak(q/You have to specify file!/) unless defined $file;
my $clone = retrieve($file);
return carp('Incorrect file!') unless $clone;
return $self->slurp( $clone );
}
#=======================================================================
# CHARTS ###############################################################
#=======================================================================
sub chart {
GD->require or croak(q/You need "/.GD.q/" module to draw chart of evolution!/);
my ($self, %params) = (shift, @_);
my $graph = GD()->new(($params{-width} || 640), ($params{-height} || 480));
my $data = $self->getHistory;
if(defined $params{-font}){
$graph->set_title_font ($params{-font}, 12);
$graph->set_x_label_font($params{-font}, 10);
$graph->set_y_label_font($params{-font}, 10);
$graph->set_legend_font ($params{-font}, 8);
}
$graph->set_legend(
$params{legend1} || q/Max value/,
$params{legend2} || q/Mean value/,
$params{legend3} || q/Min value/,
);
$graph->set(
x_label_skip => int(($data->[0]->[-1]*4)/100),
x_labels_vertical => 1,
x_label_position => .5,
y_label_position => .5,
y_long_ticks => 1, # poziome linie
x_ticks => 1, # poziome linie
l_margin => 10,
b_margin => 10,
r_margin => 10,
t_margin => 10,
show_values => (defined $params{-show_values} ? 1 : 0),
values_vertical => 1,
values_format => ($params{-format} || '%.2f'),
zero_axis => 1,
#interlaced => 1,
logo_position => 'BR',
legend_placement => 'RT',
bgclr => 'white',
boxclr => '#FFFFAA',
transparent => 0,
title => ($params{'-title'} || q/Evolution/ ),
x_label => ($params{'-x_label'} || q/Generation/),
y_label => ($params{'-y_label'} || q/Value/ ),
( $params{-logo} && -f $params{-logo} ? ( logo => $params{-logo} ) : ( ) )
);
my $gd = $graph->plot( [ [ 0..$#{$data->[0]} ], @$data ] ) or croak($@);
open(my $fh, '>', $params{-filename}) or croak($@);
binmode $fh;
print $fh $gd->png;
close $fh;
return 1;
}
#=======================================================================
# TRANSLATIONS #########################################################
#=======================================================================
sub as_array_def_only {
my ($self, $chromosome) = @_;
return $self->as_array($chromosome)
if not $self->variable_length or $self->variable_length < 2;
if( $self->type eq q/bitvector/ ){
return $self->as_array($chromosome);
}else{
my $ar = $self->as_array($chromosome);
my $idx = first_index { $_ } @$ar;
my @array = @$ar[$idx..$#$chromosome];
return @array if wantarray;
return \@array;
}
}
#=======================================================================
sub as_array {
my ($self, $chromosome) = @_;
if($self->type eq q/bitvector/){
# This could lead to internal error, bacause of underlaying Tie::Array::Packed
#return @$chromosome if wantarray;
#return $chromosome;
my @chr = @$chromosome;
return @chr if wantarray;
return \@chr;
}elsif($self->type eq q/rangevector/){
my $fix_range = $self->_fix_range;
my $c = -1;
#my @array = map { $c++; warn "WARN: $c | ",scalar @$chromosome,"\n" if not defined $fix_range->[$c]; $_ ? $_ - $fix_range->[$c] : undef } @$chromosome;
my @array = map { $c++; $_ ? $_ - $fix_range->[$c] : undef } @$chromosome;
return @array if wantarray;
return \@array;
}else{
my $cnt = 0;
my @array = map { $self->_translations->[$cnt++]->[$_] } @$chromosome;
return @array if wantarray;
return \@array;
}
}
#=======================================================================
sub as_string_def_only {
my ($self, $chromosome) = @_;
return $self->as_string($chromosome)
if not $self->variable_length or $self->variable_length < 2;
my $array = $self->as_array_def_only($chromosome);
return join(q//, @$array) if $self->type eq q/bitvector/;
return join(q/___/, @$array);
}
#=======================================================================
sub as_string {
return join(q//, @{$_[1]}) if $_[0]->type eq q/bitvector/;
return join(q/___/, map { defined $_ ? $_ : q/ / } $_[0]->as_array($_[1]));
}
#=======================================================================
sub as_value {
my ($self, $chromosome) = @_;
croak(q/You MUST call 'as_value' as method of 'AI::Genetic::Pro' object./)
unless defined $_[0] and ref $_[0] and ( ref $_[0] eq 'AI::Genetic::Pro' or ref $_[0] eq 'AI::Genetic::Pro::MCE');
croak(q/You MUST pass 'AI::Genetic::Pro::Chromosome' object to 'as_value' method./)
unless defined $_[1] and ref $_[1] and ref $_[1] eq 'AI::Genetic::Pro::Chromosome';
return $self->fitness->($self, $chromosome);
}
#=======================================================================
# ALGORITHM ############################################################
#=======================================================================
sub _calculate_fitness_all {
my ($self) = @_;
$self->_fitness( { } );
$self->_fitness->{$_} = $self->fitness()->($self, $self->chromosomes->[$_])
for 0..$#{$self->chromosomes};
# sorting the population is not necessary
# my (@chromosomes, %fitness);
# for my $idx (sort { $self->_fitness->{$a} <=> $self->_fitness->{$b} } keys %{$self->_fitness}){
# push @chromosomes, $self->chromosomes->[$idx];
# $fitness{$#chromosomes} = $self->_fitness->{$idx};
# delete $self->_fitness->{$idx};
# delete $self->chromosomes->[$idx];
# }
#
# $self->_fitness(\%fitness);
# $self->chromosomes(\@chromosomes);
return;
}
#=======================================================================
sub _select_parents {
my ($self) = @_;
unless($self->_selector){
croak "You must specify a selection strategy!"
unless defined $self->selection;
my @tmp = @{$self->selection};
my $selector = q/AI::Genetic::Pro::Selection::/ . shift @tmp;
$selector->require or die $!;
$self->_selector($selector->new(@tmp));
}
$self->_parents($self->_selector->run($self));
return;
}
#=======================================================================
sub _crossover {
my ($self) = @_;
unless($self->_strategist){
my @tmp = @{$self->strategy};
my $strategist = q/AI::Genetic::Pro::Crossover::/ . shift @tmp;
$strategist->require or die $!;
$self->_strategist($strategist->new(@tmp));
}
my $a = $self->_strategist->run($self);
$self->chromosomes( $a );
return;
}
#=======================================================================
sub _mutation {
my ($self) = @_;
unless($self->_mutator){
my $mutator = q/AI::Genetic::Pro::Mutation::/ . ucfirst(lc($self->type));
unless($mutator->require){
$mutator = q/AI::Genetic::Pro::Mutation::Listvector/;
$mutator->require;
}
$self->_mutator($mutator->new);
}
return $self->_mutator->run($self);
}
#=======================================================================
sub _save_history {
my @tmp;
if($_[0]->history){ @tmp = $_[0]->getAvgFitness; }
else { @tmp = (undef, undef, undef); }
push @{$_[0]->_history->[0]}, $tmp[0];
push @{$_[0]->_history->[1]}, $tmp[1];
push @{$_[0]->_history->[2]}, $tmp[2];
return 1;
}
#=======================================================================
sub inject {
my ($self, $candidates) = @_;
for(@$candidates){
push @{$self->chromosomes},
AI::Genetic::Pro::Chromosome->new_from_data($self->_translations, $self->type, $self->_package, $_, $self->_fix_range);
$self->_fitness->{$#{$self->chromosomes}} = $self->fitness()->($self, $self->chromosomes->[-1]);
}
$self->_strict( [ ] );
$self->population( $self->population + scalar( @$candidates ) );
return 1;
}
#=======================================================================
sub _state {
my ( $self ) = @_;
my @res;
if( $self->_package ){
@res = map {
[
${ tied( @{ $self->chromosomes->[ $_ ] } ) },
$self->_fitness->{ $_ },
]
} 0 .. $self->population - 1
}else{
@res = map {
[
$self->chromosomes->[ $_ ],
$self->_fitness->{ $_ },
]
} 0 .. $self->population - 1
}
return \@res;
}
#=======================================================================
sub evolve {
my ($self, $generations) = @_;
# generations must be defined
$generations ||= -1;
if($self->strict and $self->_strict){
for my $idx (0..$#{$self->chromosomes}){
croak(q/Chromosomes was modified outside the 'evolve' function!/) unless $self->chromosomes->[$idx] and $self->_strict->[$idx];
my @tmp0 = @{$self->chromosomes->[$idx]};
my @tmp1 = @{$self->_strict->[$idx]};
croak(qq/Chromosome was modified outside the 'evolve' function from "@tmp0" to "@tmp1"!/) unless compare(\@tmp0, \@tmp1);
}
}
# split into two loops just for speed
unless($self->preserve){
for(my $i = 0; $i != $generations; $i++){
# terminate ----------------------------------------------------
last if $self->terminate and $self->terminate->($self);
# update generation --------------------------------------------
$self->generation($self->generation + 1);
# update history -----------------------------------------------
$self->_save_history;
# selection ----------------------------------------------------
$self->_select_parents();
# crossover ----------------------------------------------------
$self->_crossover();
# mutation -----------------------------------------------------
$self->_mutation();
}
}else{
croak('You cannot preserve more chromosomes than is in population!') if $self->preserve > $self->population;
my @preserved;
for(my $i = 0; $i != $generations; $i++){
# terminate ----------------------------------------------------
last if $self->terminate and $self->terminate->($self);
# update generation --------------------------------------------
$self->generation($self->generation + 1);
# update history -----------------------------------------------
$self->_save_history;
#---------------------------------------------------------------
# preservation of N unique chromosomes
@preserved = map { clone($_) } @{ $self->getFittest_as_arrayref($self->preserve - 1, 1) };
# selection ----------------------------------------------------
$self->_select_parents();
# crossover ----------------------------------------------------
$self->_crossover();
# mutation -----------------------------------------------------
$self->_mutation();
#---------------------------------------------------------------
for(@preserved){
my $idx = int rand @{$self->chromosomes};
$self->chromosomes->[$idx] = $_;
$self->_fitness->{$idx} = $self->fitness()->($self, $_);
}
}
}
if($self->strict){
$self->_strict( [ ] );
push @{$self->_strict}, $_->clone for @{$self->chromosomes};
}
}
#=======================================================================
# ALIASES ##############################################################
#=======================================================================
sub people { $_[0]->chromosomes() }
#=======================================================================
sub getHistory { $_[0]->_history() }
#=======================================================================
sub mutProb { shift->mutation(@_) }
#=======================================================================
sub crossProb { shift->crossover(@_) }
#=======================================================================
sub intType { shift->type() }
#=======================================================================
# STATS ################################################################
#=======================================================================
sub getFittest_as_arrayref {
my ($self, $n, $uniq) = @_;
$n ||= 1;
$self->_calculate_fitness_all() unless scalar %{ $self->_fitness };
my @keys = sort { $self->_fitness->{$a} <=> $self->_fitness->{$b} } 0..$#{$self->chromosomes};
if($uniq){
my %grep;
my $chromosomes = $self->chromosomes;
if( my $pkg = $self->_package ){
my %tmp;
@keys = grep {
my $key = ${ tied( @{ $chromosomes->[ $_ ] } ) };
#my $key = md5_hex( ${ tied( @{ $chromosomes->[ $_ ] } ) } ); # ?
$tmp{ $key } && 0 or $tmp{ $key } = 1;
} @keys;
#@keys = grep {
# my $add_to_list = 0;
# my $key = md5_hex(${tied(@{$chromosomes->[$_]})});
# unless($grep{$key}) {
# $grep{$key} = 1;
# $add_to_list = 1;
# }
# $add_to_list;
# } @keys;
}else{
my %tmp;
@keys = grep {
my $key = md5_hex( join( q[:], @{ $chromosomes->[ $_ ] } ) );
$tmp{ $key } && 0 or $tmp{ $key } = 1;
} @keys;
}
}
$n = scalar @keys if $n > scalar @keys;
return [ reverse @{$self->chromosomes}[ splice @keys, $#keys - $n + 1, $n ] ];
}
#=======================================================================
sub getFittest { return wantarray ? @{ shift->getFittest_as_arrayref(@_) } : shift @{ shift->getFittest_as_arrayref(@_) }; }
#=======================================================================
sub getAvgFitness {
my ($self) = @_;
my @minmax = minmax values %{$self->_fitness};
my $mean = sum(values %{$self->_fitness}) / scalar values %{$self->_fitness};
return $minmax[1], int($mean), $minmax[0];
}
#=======================================================================
1;
__END__
=head1 NAME
AI::Genetic::Pro - Efficient genetic algorithms for professional purpose with support for multiprocessing.
=head1 SYNOPSIS
use AI::Genetic::Pro;
sub fitness {
my ($ga, $chromosome) = @_;
return oct('0b' . $ga->as_string($chromosome));
}
sub terminate {
my ($ga) = @_;
my $result = oct('0b' . $ga->as_string($ga->getFittest));
return $result == 4294967295 ? 1 : 0;
}
my $ga = AI::Genetic::Pro->new(
-fitness => \&fitness, # fitness function
-terminate => \&terminate, # terminate function
-type => 'bitvector', # type of chromosomes
-population => 1000, # population
-crossover => 0.9, # probab. of crossover
-mutation => 0.01, # probab. of mutation
-parents => 2, # number of parents
-selection => [ 'Roulette' ], # selection strategy
-strategy => [ 'Points', 2 ], # crossover strategy
-cache => 0, # cache results
-history => 1, # remember best results
-preserve => 3, # remember the bests
-variable_length => 1, # turn variable length ON
-mce => 1, # optional MCE support
-workers => 3, # number of workers (MCE)
);
# init population of 32-bit vectors
$ga->init(32);
# evolve 10 generations
$ga->evolve(10);
# best score
print "SCORE: ", $ga->as_value($ga->getFittest), ".\n";
# save evolution path as a chart
$ga->chart(-filename => 'evolution.png');
# save state of GA
$ga->save('genetic.sga');
# load state of GA
$ga->load('genetic.sga');
=head1 DESCRIPTION
This module provides efficient implementation of a genetic algorithm for
professional purpose with support for multiprocessing. It was designed to operate as fast as possible
even on very large populations and big individuals/chromosomes. C<AI::Genetic::Pro>
was inspired by C<AI::Genetic>, so it is in most cases compatible
(there are some changes). Additionally C<AI::Genetic::Pro> isn't a pure Perl solution, so it
doesn't have limitations of its ancestor (such as slow-down in the
case of big populations ( >10000 ) or vectors with more than 33 fields).
If You are looking for a pure Perl solution, consider L<AI::Genetic>.
=over 4
=item Speed
To increase speed XS code is used, however with portability in
mind. This distribution was tested on Windows and Linux platforms
(and should work on any other).
( run in 0.648 second using v1.01-cache-2.11-cpan-496ff517765 )