Result:
found more than 317 distributions - search limited to the first 2001 files matching your query ( run in 1.987 )


AI-ParticleSwarmOptimization-MCE

 view release on metacpan or  search on metacpan

example/PSOTest-MultiCore.pl  view on Meta::CPAN

my $fitValue         = $pso->optimize ();
my ( $best )         = $pso->getBestParticles (1);
my ( $fit, @values ) = $pso->getParticleBestPos ($best);
my $iters            = $pso->getIterationCount();

printf "Fit %.4f at (%s) after %d iterations\n", $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;
warn "\nTime: ", time - $beg, "\n\n";
#=======================================================================
exit 0;

 view all matches for this distribution


AI-ParticleSwarmOptimization-Pmap

 view release on metacpan or  search on metacpan

example/PSOTest-MultiCore.pl  view on Meta::CPAN

my $fitValue         = $pso->optimize ();
my ( $best )         = $pso->getBestParticles (1);
my ( $fit, @values ) = $pso->getParticleBestPos ($best);
my $iters            = $pso->getIterationCount();

printf "Fit %.4f at (%s) after %d iterations\n", $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;
warn "\nTime: ", time - $beg, "\n\n";
#=======================================================================
exit 0;

 view all matches for this distribution


AI-ParticleSwarmOptimization

 view release on metacpan or  search on metacpan

Samples/PSOPlatTest.pl  view on Meta::CPAN


my $fitValue = $pso->optimize ();
my ($best) = $pso->getBestParticles (1);
my ($fit, @values) = $pso->getParticleBestPos ($best);
my $iters = $pso->getIterationCount ();
print $pso->getSeed();

printf ",# Fit %.5f at (%s) after %d iterations\n",
    $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;


sub calcFit {
    my @values = @_;
    my $offset = int (-@values / 2);

 view all matches for this distribution


AI-Pathfinding-AStar-Rectangle

 view release on metacpan or  search on metacpan

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

die;
for (0..99) {
    $path = &astar( $x_start, $y_start, $x_end, $y_end );
}

print "Elapsed: ".tv_interval ( $t0 )."\n";
print "Path length: ".length($path)."\n";
# start end points
$map[ $x_start ][ $y_start ] = 3;
$map[ $x_end   ][ $y_end   ] = 4;
# draw path
my %vect = (

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

    $x += $vect{$_}->[0];
    $y += $vect{$_}->[1];
    $map[$x][$y] = '|o';
}

printf "%02d", $_ for 0 .. WIDTH_X - 1;
print "\n";
for my $y ( 0 .. WIDTH_Y - 1 )
{
    for my $x ( 0 .. WIDTH_X - 1 )
    {
        print $map[$x][$y] eq 
        '1' ? "|_" : ( 
        $map[$x][$y] eq '0' ? "|#" : ( 
        $map[$x][$y] eq '3' ? "|S" : ( 
        $map[$x][$y] eq '4' ? "|E" : $map[$x][$y] ) ) );
    }
    print "$y\n";
}


sub astar
{

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

        }
        @open_idx = sort { ${$a->[2]} + ${$a->[3]} <=> ${$b->[2]} + ${$b->[3]} } @open_idx;
        ( $x, $y ) = @{ shift @open_idx };
        $it++;
    }
#   print "Iterations: $it: $oindx\n";
    my $path = "";
    my %idx2path =
    (
        "0.-1"  =>  8, #|.
        "1.-1"  =>  9, #/.

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

        "-1.-1" =>  7
    );

    while ( $x != $xs || $y != $ys )
    {
#       print "$x:$y\n";
        my ($xp, $yp) = @{$r[$x][$y]};
        $path = $idx2path{($x-$xp).".".($y-$yp)}.$path;
        ( $x, $y ) = ( $xp, $yp);
    }
#   print  "Path: $path\n";
    return $path;
}

sub calc_obstacle
{

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

    {
        for my $i ( 0 .. WIDTH_X - 1 )
        {
            if ( !$map[$i][$j] )
            {
                print " ##"
            }
            else 
            {
                if ( $x == $i && $y == $j)
                {
                    print "c";
                }
                elsif ( $xn == $i && $yn == $j )
                {
                    print "n";
                }
                else
                {
                    print " ";
                }
                printf "%02d", $g->[$i]->[$j]
            }
        }
        print "\n";
    }
    <>;
}


 view all matches for this distribution


AI-Pathfinding-AStar

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

  package main;
  use My::Map::Package;

  my $map = My::Map::Package->new or die "No map for you!";
  my $path = $map->findPath($start, $target);
  print join(', ', @$path), "\n";
  
  #Or you can do it incrementally, say 3 nodes at a time
  my $state = $map->findPathIncr($start, $target, undef, 3);
  while ($state->{path}->[-1] ne $target) {
	  print join(', ', @{$state->{path}}), "\n";
	  $state = $map->findPathIncr($start, $target, $state, 3);
  }
  print "Completed Path: ", join(', ', @{$state->{path}}), "\n";
  
=head1 DESCRIPTION

This module implements the A* pathfinding algorithm.  It acts as a base class from which a custom map object can be derived.  It requires from the map object a subroutine named C<getSurrounding> (described below) and provides to the object two routin...

 view all matches for this distribution


AI-Pathfinding-OptimizeMultiple

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN

                PDL::MatrixOps::identity( $self->_get_num_scans() ) *
                    $iters_quota
            )
        );

        # print "\$next_num_iters = $next_num_iters\n";

        my $iters = $self->_scans_data()->slice(":,:,0");

        my $iters_repeat =
            $iters->dummy( 0, $self->_get_num_scans() )->xchg( 1, 2 )
            ->clump( 2 .. 3 );

        # print "\$iters_repeat =", join(",",$iters_repeat->dims()), "\n";

        my $next_num_iters_repeat =
            $next_num_iters->dummy( 0, $self->_num_boards() )->xchg( 0, 2 );

# print "\$next_num_iters_repeat =", join(",",$next_num_iters_repeat->dims()), "\n";

        # A boolean tensor of which boards were solved:
        # Dimension 0 - Which scan is it. - size - _get_num_scans()
        # Dimension 1 - Which scan we added the quota to
        #   - size - _get_num_scans()
        # Dimension 2 - Which board. - size - _num_boards()
        my $solved =
            ( $iters_repeat >= 0 ) * ( $iters_repeat < $next_num_iters_repeat );

      # print "\$num_moves_repeat =", join(",",$num_moves_repeat->dims()), "\n";

        my $num_moves_solved =
            ( $solved * $num_moves_repeat ) +
            ( $solved->not() * $UNSOLVED_NUM_MOVES_CONSTANT );

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN


        my $solved_moves_sums   = _my_xchg_sum_over($minimal_with_zeroes);
        my $solved_moves_counts = _my_xchg_sum_over($which_minima_are_solved);
        my $solved_moves_avgs   = $solved_moves_sums / $solved_moves_counts;

        # print join(",", $solved_moves_avgs->minmaximum()), "\n";

        my $min_avg;

        ( $min_avg, undef, $selected_scan_idx, undef ) =
            $solved_moves_avgs->minmaximum();

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN

                $solved_with_which_iter->not()->andover() *
                    $flares_num_iters->sum()
            )->sum()
        );

        print "Finished ", $loop_iter_num++,
" ; #Solved = $num_solved ; Iters = $total_num_iters ; Avg = $min_avg\n";
        STDOUT->flush();
    }
}

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN


    $obj->calc_meta_scan();

    foreach my $scan_alloc (@{$self->chosen_scans()})
    {
        printf "Run %s for %d iterations.\n",
            $scans[$scan_alloc->scan_idx], $scan_alloc->iters;
    }

=head1 DESCRIPTION

 view all matches for this distribution


AI-Pathfinding-SMAstar

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/SMAstar.pm  view on Meta::CPAN

		my $str = $log_function->($best);		 
		$show_prog_func->($iteration, $num_states_in_queue, $str);		    
	    }
	    else{	
		my $str = $log_function->($best);
		print "best is: " . $str_function->($best) . ", cost: " . $best->{_f_cost}  . "\n";
	    }
	    #------------------------------------------------------


	    if($best->$goal_p()) {			

lib/AI/Pathfinding/SMAstar.pm  view on Meta::CPAN

	}
	continue {
	    $iteration++;
	}

	print "\n\nreturning unsuccessfully.   iteration: $iteration\n";	
	return;
    }
}    


lib/AI/Pathfinding/SMAstar.pm  view on Meta::CPAN

}


sub fp_compare {
    my ($a, $b, $dp) = @_;
    my $a_seq = sprintf("%.${dp}g", $a);
    my $b_seq = sprintf("%.${dp}g", $b);
    
    

    if($a_seq eq $b_seq){
	return 0;

 view all matches for this distribution


AI-Perceptron-Simple

 view release on metacpan or  search on metacpan

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN


    # accessing the confusion matrix
    my @keys = qw( true_positive true_negative false_positive false_negative 
                   total_entries accuracy sensitivity );
    for ( @keys ) {
        print $_, " => ", $c_matrix{ $_ }, "\n";
    }

    # output to console
    $nerve->display_confusion_matrix( \%c_matrix, { 
        zero_as => "bad apples", # cat  milk   green  etc.

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

        @aoa = shuffle( @$aoa ); # this can only process actual array
        unshift @aoa, $attrib_array_ref; # put back the headers before saving file

        csv( in => \@aoa, out => $_, encoding => ":encoding(utf-8)" ) 
        and
        print "Saved shuffled data into ", basename($_), "!\n";

    }
}

=head1 CREATION RELATED SUBROUTINES/METHODS

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

    my $attrib = $csv->getline($data_fh);
    $csv->column_names( $attrib );

    # individual row
    ROW: while ( my $row = $csv->getline_hr($data_fh) ) {
        # print $row->{book_name}, " -> ";
        # print $row->{$expected_output_header} ? "意林\n" : "魅丽优品\n";

        # calculate the output and fine tune parameters if necessary
        while (1) {
            my $output = _calculate_output( $self, $row );
            
            #print "Sum = ", $output, "\n";
            
            # $expected_output_header to be checked together over here
            # if output >= threshold
            #    then category/result aka output is considered 1
            # else output considered 0

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

            #    1       1             -
            if ( ($output >= $self->threshold) and ( $row->{$expected_output_header} eq 0 ) ) {
                _tune( $self, $row, TUNE_DOWN );

                if ( $display_stats ) {
                    print $row->{$identifier}, "\n";
                    print "   -> TUNED DOWN";
                    print "   Old sum = ", $output;
                    print "   Threshold = ", $self->threshold;
                    print "   New Sum = ", _calculate_output( $self, $row ), "\n";                
                }
                
            } elsif ( ($output < $self->threshold) and ( $row->{$expected_output_header} eq 1 ) ) {
                _tune( $self, $row, TUNE_UP );
                
                if ( $display_stats ) {
                    print $row->{$identifier}, "\n";
                    print "   -> TUNED UP";
                    print "   Old sum = ", $output;
                    print "   Threshold = ", $self->threshold;
                    print "   New Sum = ", _calculate_output( $self, $row ), "\n";
                }

            } elsif ( ($output < $self->threshold) and ( $row->{$expected_output_header} eq 0 ) ) {
            
                if ( $display_stats ) {
                    print $row->{$identifier}, "\n";
                    print "   -> NO TUNING NEEDED";
                    print "   Sum = ", _calculate_output( $self, $row );
                    print "   Threshold = ", $self->threshold, "\n";
                }
                
                next ROW;
                
            } elsif ( ($output >= $self->threshold) and ( $row->{$expected_output_header} eq 1 ) ) {
            
                if ( $display_stats ) {
                    print $row->{$identifier}, "\n";
                    print "   -> NO TUNING NEEDED";
                    print "   Sum = ", _calculate_output( $self, $row );
                    print "   Threshold = ", $self->threshold, "\n";
                }
                
                next ROW;
            } #else { print "Something's not right\n'" }
        }
    }

    close $data_fh;
    

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

        if ( $tuning_status == TUNE_DOWN ) {
            
            if ( $stimuli_hash_ref->{ $_ } ) { # must check this one, it must be 1 before we can alter the actual dendrite size in the nerve :)
                $self->{ attributes_hash_ref }{ $_ } -= $self->learning_rate;
            }
            #print $_, ": ", $self->{ attributes_hash_ref }{ $_ }, "\n";
            
        } elsif ( $tuning_status == TUNE_UP ) {
            
            if ( $stimuli_hash_ref->{ $_ } ) {
                $self->{ attributes_hash_ref }{ $_ } += $self->learning_rate;
            }
            #print $_, ": ", $self->{ attributes_hash_ref }{ $_ }, "\n";
            
        }
    }

}

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

    $aoa = _fill_predicted_values( $self, $stimuli_validate, $predicted_index, $aoa );

    # put back the array of headers before saving file
    unshift @$aoa, $attrib_array_ref;

    print "Saving data to $output_file\n";
    csv( in => $aoa, out => $output_file, encoding => ":encoding(utf-8)" );
    print "Done saving!\n";

}

=head2 &_fill_predicted_values ( $self, $stimuli_validate, $predicted_index, $aoa )

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

    }
    
    croak "Missing keys: @missing_keys" if @missing_keys;
    #####
    
    _print_extended_matrix ( _build_matrix( $c_matrix, $labels ) );

}

=head2 &_build_matrix ( $c_matrix, $labels )

Builds the matrix using C<Text::Matrix> module.

C<$c_matrix> and C<$labels> are the same as the ones passed to C<display_exam_results> and C<>display_confusion_matrix.

Returns a list C<( $matrix, $c_matrix )> which can directly be passed to C<_print_extended_matrix>.

=cut

sub _build_matrix {

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

    );
    
    $matrix, $c_matrix;
}

=head2 &_print_extended_matrix ( $matrix, $c_matrix )

Extends and outputs the matrix on the screen.

C<$matrix> and C<$c_matrix> are the same as returned by C<&_build_matrix>.

=cut

sub _print_extended_matrix {

    my ( $matrix, $c_matrix ) = @_;
    
    print "~~" x24, "\n";
    print "CONFUSION MATRIX (A:actual  P:predicted)\n";
    print "~~" x24, "\n";

    print $matrix->matrix();

    print "~~" x24, "\n";
    print "Total of ", $c_matrix->{ total_entries } , " entries\n";
    print "  Accuracy: $c_matrix->{ accuracy } %\n";
    print "  Sensitivity: $c_matrix->{ sensitivity } %\n";
    # more stats
    print "  Precision: $c_matrix->{ precision } %\n" if exists $c_matrix->{ precision };
    print "  Specificity: $c_matrix->{ specificity } %\n" if exists $c_matrix->{ specificity };
    print "  F1 Score: $c_matrix->{ F1_Score } %\n" if exists $c_matrix->{ F1_Score };
    print "  Negative Predicted Value: $c_matrix->{ negative_predicted_value } %\n" if exists $c_matrix->{ negative_predicted_value };
    print "  False Negative Rate: $c_matrix->{ false_negative_rate } %\n" if exists $c_matrix->{ false_negative_rate };
    print "  False Positive Rate: $c_matrix->{ false_positive_rate } %\n" if exists $c_matrix->{ false_positive_rate };
    print "  False Discovery Rate: $c_matrix->{ false_discovery_rate } %\n" if exists $c_matrix->{ false_discovery_rate };
    print "  False Omission Rate: $c_matrix->{ false_omission_rate } %\n" if exists $c_matrix->{ false_omission_rate };
    print "  Balanced Accuracy: $c_matrix->{ balanced_accuracy } %\n" if exists $c_matrix->{ balanced_accuracy };
    print "~~" x24, "\n";
}

=head1 NERVE DATA RELATED SUBROUTINES

This part is about saving the data of the nerve. These subroutines can be imported using the C<:local_data> tag.

 view all matches for this distribution


AI-Perceptron

 view release on metacpan or  search on metacpan

examples/and.pl  view on Meta::CPAN



use Data::Dumper;
use AI::Perceptron;

print( "Example: training a perceptron to recognize an 'AND' function.\n",
       "usage: $0 [<threshold> <weight1> <weight2>]\n" );

my $p = AI::Perceptron->new
                      ->num_inputs( 2 )
                      ->learning_rate( 0.1 );

examples/and.pl  view on Meta::CPAN

		    [-1 =>  1, -1],
		    [-1 => -1,  1],
		    [ 1 =>  1,  1],
		   );

print "\nBefore Training\n";
dump_perceptron( $p );

print "\nTraining...\n";
$p->train( @training_exs );

print "\nAfter Training\n";
dump_perceptron( $p );

sub dump_perceptron {
    my $p = shift;
    print "\tThreshold: ", $p->threshold, " Weights: ", join(', ', @{ $p->weights }), "\n";
    foreach my $inputs (@training_exs) {
	my $target = $inputs->[0];
	print "\tInputs = {", join(',', @$inputs[1..2]), "}, target=$target, output=", $p->compute_output( @$inputs[1..2] ), "\n";
    }
}

 view all matches for this distribution


AI-PredictionClient-Alien-TensorFlowServingProtos

 view release on metacpan or  search on metacpan

LICENSE  view on Meta::CPAN

    that you may choose to grant warranty protection to some or all
    third parties, at your option).

    c) If the modified program normally reads commands interactively when
    run, you must cause it, when started running for such interactive use
    in the simplest and most usual way, to print or display an
    announcement including an appropriate copyright notice and a notice
    that there is no warranty (or else, saying that you provide a
    warranty) and that users may redistribute the program under these
    conditions, and telling the user how to view a copy of this General
    Public License.

 view all matches for this distribution


AI-PredictionClient

 view release on metacpan or  search on metacpan

bin/Inception.pl  view on Meta::CPAN

  $client->model_signature($self->model_signature);
  $client->debug_verbose($self->debug_verbose);
  $client->loopback($self->debug_loopback_interface);
  $client->camel($self->debug_camel);

  printf("Sending image %s to server at host:%s  port:%s\n",
    $self->image_file, $self->host, $self->port);

  if ($client->call_inception($image_ref)) {

    my $results_ref         = $client->inception_results;

bin/Inception.pl  view on Meta::CPAN

      '|===========================================================================|',
      '| {[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[}                   |',
      $comments,
      "'==========================================================================='";

    print $results_text;

  } else {
    printf("Failed. Status: %s, Status Code: %s, Status Message: %s \n",
      $client->status, $client->status_code, $client->status_message);
    return 1;
  }
  return 0;
}

 view all matches for this distribution


AI-Prolog

 view release on metacpan or  search on metacpan

examples/append.pl  view on Meta::CPAN

my $prolog = AI::Prolog->new(<<"END_PROLOG");
append([], X, X).
append([W|X], Y, [W|Z]) :- append(X, Y, Z).
END_PROLOG

print "Appending two lists 'append([a],[b,c,d],Z).'\n";
$prolog->query('append([a],[b,c,d],Z).');
while (my $result = $prolog->results) {
    print Dumper($result),"\n";
}

print "\nWhich lists appends to a known list to form another known list?\n'append(X,[b,c,d],[a,b,c,d]).'\n";
$prolog->query('append(X,[b,c,d],[a,b,c,d]).');
while (my $result = $prolog->results) {
    print Dumper($result),"\n";
}

print "\nWhich lists can be appended to form a given list?\n'append(X, Y, [foo, bar, 7, baz]).'\n";
my $list = $prolog->list(qw/foo bar 7 baz/);
$prolog->query("append(X,Y,[$list]).");
while (my $result = $prolog->results) {
    print Dumper($result),"\n";
}

 view all matches for this distribution


AI-SimulatedAnnealing

 view release on metacpan or  search on metacpan

t/annealing_tests.t  view on Meta::CPAN

    die "ERROR:  The input file does not contain the expected number of "
      . "records.\n";
} # end unless

# Perform simulated annealing to optimize the coefficients for each of the
# four probabilities, and then print the results to the console:
for my $p (2..5) {
    my $cost_function = cost_function_factory($mapped_distances[$p]);
    my $optimized_coefficients;
    my @number_specs;

t/annealing_tests.t  view on Meta::CPAN

    $optimized_coefficients = anneal(
      \@number_specs, $cost_function, $CYCLES_PER_TEMPERATURE);

    # Print the results for this probability to the console:
    say "\nProbability:  1/$p";
    printf("Coefficients:  a = %1.3f; b = %1.3f; c= %1.3f\n",
      $optimized_coefficients->[0],
      $optimized_coefficients->[1],
      $optimized_coefficients->[2]);
    say "Cost:  " . $cost_function->($optimized_coefficients);
} # next $p

 view all matches for this distribution


AI-TensorFlow-Libtensorflow

 view release on metacpan or  search on metacpan

lib/AI/TensorFlow/Libtensorflow/Operation.pm  view on Meta::CPAN

	my $consumers = AI::TensorFlow::Libtensorflow::Input->_adef->create( $max_consumers );
	my $count = $xs->($output, $consumers, $max_consumers);
	return AI::TensorFlow::Libtensorflow::Input->_from_array( $consumers );
});

sub _data_printer {
	my ($self, $ddp) = @_;

	my %data = (
		Name       => $self->Name,
		OpType     => $self->OpType,
		NumInputs  => $self->NumInputs,
		NumOutputs => $self->NumOutputs,
	);

	return sprintf('%s %s',
		$ddp->maybe_colorize(ref $self, 'class' ),
		$ddp->parse(\%data) );
}

1;

 view all matches for this distribution


AI-Termites

 view release on metacpan or  search on metacpan

lib/AI/Termites.pm  view on Meta::CPAN

    my ($self, $termite, $wood_ix) = @_;
    my $wood = $self->{wood}[$wood_ix];
    return if $wood->{taken};
    $wood->{taken} = 1;
    $self->{taken}++;
    # print "taken: $self->{taken}\n";
    defined $termite->{wood_ix} and die "termite is already carrying some wood";
    $termite->{wood_ix} = $wood_ix;
}

sub termite_leave_wood {

 view all matches for this distribution


AI-XGBoost

 view release on metacpan or  search on metacpan

lib/AI/XGBoost/CAPI.pm  view on Meta::CPAN


the name of the file

=item silent 

whether print messages during loading

=back

Returns a loaded data matrix

 view all matches for this distribution


AIIA-GMT

 view release on metacpan or  search on metacpan

lib/AIIA/GMT.pm  view on Meta::CPAN


 use YAML;
 use AIIA::GMT;

 $result = &text2entity('less than 3000 words');
 print Dump $result;


=head1 DESCRIPTION

AIIA::GMT is a XML-RPC client of a web-service server, AIIA gene mention tagger, which provides the service to recognize named entities in the biomedical articles. 

 view all matches for this distribution


AIS-client

 view release on metacpan or  search on metacpan

client.pm  view on Meta::CPAN

		# but this is trumped by an Apache error message invoking RFC2068 sections 9 and 14.23
		"Host: $HostName",
		"User-Agent: $agent",
		"Connection: close",
		'','') ;
	print SOCK $Query  or croak "could not print to miniget socket";

	 join('',<SOCK>);

ENDMINIGET

client.pm  view on Meta::CPAN


	@Sessions{@deletia} = ();
};

sub redirect($){
	print <<EOF;
Location: $_[0]
Content-Type: text/html

<HTML><HEAD><TITLE>Relocate </TITLE>
<META HTTP-EQUIV="REFRESH" CONTENT="1;URL=$_[0]">

client.pm  view on Meta::CPAN


eval{
tie  %Sessions => DirDB => "${SessionPrefix}_sessions";
};
if($@){
	print <<EOF;
Content-Type: text/plain

AIS::client module was not able to open DirDB [${SessionPrefix}_sessions]

eval result:

client.pm  view on Meta::CPAN

	if ($ENV{QUERY_STRING} eq 'LOGOUT'){
#	eval <<'LOGOUT';
		($Coo) = ($ENV{HTTP_COOKIE} =~ /${SessionPrefix}_session=(\w+)/)
			and 	delete $Sessions{$Coo};

		print <<EOF;
Set-Cookie:/${SessionPrefix}_session=
Content-Type: text/html

<html><head><title> LOGGED OUT </title></head>
<body bgcolor=ffffff>

client.pm  view on Meta::CPAN



	# check for cookies
	($Coo) = ($ENV{HTTP_COOKIE} =~ /${SessionPrefix}_session=(\w+)/);
	if($Coo){
		# print "Content-Type: text/plain\n\n";
		# print "We have a cookie: $Coo\n";
		# print( %{$Sessions{$Coo}});
		# exit;
		# Do we have an identity?
		if (exists($Sessions{$Coo}->{identity}) and $Sessions{$Coo}->{identity} ne 'ERROR'){
			# most of the time, this is what we are expecting
			goto HAVE_ID ; # unless $Sessions{$Coo}->{identity} eq 'ERROR';

client.pm  view on Meta::CPAN

			       		}
					# ,@{$Param{XML}}
				){
					$AISXML =~ m#<$_>(.+)</$_>#si or next;
					$aisvar{$_} = $1;
					# print STDERR "ais var $_ is $1\n";
				};

				if ($aisvar{identity} eq 'NULL'){
redirect(
"$aisvar{aissri}add?RU=http$ssl_ext://$ENV{SERVER_NAME}$ENV{SCRIPT_NAME}$ENV{PATH_INFO}");

client.pm  view on Meta::CPAN

					}else{
						# in child -- write POSTdata to pipe and exit
						close STDOUT;
						close STDIN;
						close POSTREAD;
						print POSTWRITE delete $Sessions{$Coo}->{PostData};
						close POSTWRITE or die "$$: Error closing POSTWRITE\n";
						# exit;
						#POSIX:_exit(0); # perldoc -f exit
						exec '/usr/bin/true';
					};

client.pm  view on Meta::CPAN

		$ENV{QUERY_STRING}eq'AIS_INITIAL2'and goto NOCOO;
		($Coo = localtime) =~ s/\W//g;
		my @chars = 'A'..'Z' ;
		substr($Coo, rand(length $Coo), 1) = $chars[rand @chars]
		foreach 1..8;
		print "X-Ais-Received-Request-Method: $ENV{REQUEST_METHOD}\n";
		print "X-Ais-Received-Query-String: $ENV{QUERY_STRING}\n";
		$Sessions{$Coo}->{QueryString} = $ENV{QUERY_STRING};
		$ENV{REQUEST_METHOD} =~ /POST/i and
		$Sessions{$Coo}->{PostData} = <>;

		print "Set-Cookie:/${SessionPrefix}_session=$Coo\n";
		redirect "http$ssl_ext://$ENV{SERVER_NAME}$ENV{SCRIPT_NAME}$ENV{PATH_INFO}?AIS_INITIAL$suffix";
		exit;
	};

	print <<EOF;
Content-Type: text/plain

internal AIS module logic error

EOF

client.pm  view on Meta::CPAN





	NOCOO:
		print <<EOF;
Content-Type: text/plain

Cookies appear to be disabled in your web browser.

Cookie string: $ENV{HTTP_COOKIE}

client.pm  view on Meta::CPAN


	HAVE_ID:
	$Sessions{$Coo}->{last_access} = time;
	$Identity = $Sessions{$Coo}->{identity};
	if($Identity eq 'ERROR'){
		print <<EOF;
Content-type: text/plain

There was an error with the authentication layer
of this web service: $Sessions{$Coo}->{error}

client.pm  view on Meta::CPAN


     		exit;
	};


# print STDERR "setting ",caller().'::AIS_IDENTITY', " to $Sessions{$Coo}->{identity}\n";
# $ENV{AIS_IDENTITY} = $Sessions{$Coo}->{identity};
$ENV{AIS_IDENTITY} =
${caller().'::AIS_IDENTITY'} = $Sessions{$Coo}->{identity};
tie %{caller().'::AIS_STASH'}, DirDB => ${tied(%{$Sessions{$Coo}})};

client.pm  view on Meta::CPAN


=head1 SYNOPSIS

  BEGIN{umask(0077 & umask())}; # if your web server gives you a 0177 umask
  use AIS::client;
  print "Content-type: text/plain\n\nWelcome $AIS_IDENTITY\n";
  print "this is page view number ", ++$AIS_STASH{accesses};
  __END__

=head1 DESCRIPTION

The goal of AIS::client is to provide a very easy way to require an

 view all matches for this distribution


AIX-LPP

 view release on metacpan or  search on metacpan

LPP/lpp_name.pm  view on Meta::CPAN


sub write {
    my $self = shift;
    my $fh = shift;

    print $fh join ' ', $self->{FORMAT}, $self->{PLATFORM}, $self->{TYPE},
	$self->{NAME}, "{\n";
    foreach my $fileset (keys %{$self->{FILESET}} ) {
        print $fh join ' ', $self->{FILESET}{$fileset}{NAME},
		$self->{FILESET}{$fileset}{VRMF},
		$self->{FILESET}{$fileset}{DISK},
		$self->{FILESET}{$fileset}{BOSBOOT},
		$self->{FILESET}{$fileset}{CONTENT},
		$self->{FILESET}{$fileset}{LANG},
		$self->{FILESET}{$fileset}{DESCRIPTION}, "\n[\n";

	for my $i ( 0 .. $#{$self->{FILESET}{$fileset}{REQ}} ) {
	    print $fh join ' ',@{${$self->{FILESET}{$fileset}{REQ}}[$i]},"\n";
        }

	print $fh "%\n";
	foreach my $key (sort keys %{$self->{FILESET}{$fileset}{SIZEINFO}}) {
	    print $fh join ' ', $key,
		$self->{FILESET}{$fileset}{SIZEINFO}{$key}, "\n";
        }

	print $fh "%\n%\n%\n%\n]\n";
    }

    print $fh "}";
}

1;
__END__
=head1 NAME

 view all matches for this distribution


AIX-LVM

 view release on metacpan or  search on metacpan

Changes  view on Meta::CPAN

Revision history for Perl extension AIX::LVM.

1.1 Fixed print commands and some comments

1.0  Fri Dec 31 23:21:40 2010
	- original version; 

 view all matches for this distribution


AIX-ODM

 view release on metacpan or  search on metacpan

ODM.pm  view on Meta::CPAN

  use AIX::ODM;
  
  my %odm = odm_dump('C|P');
  while ( ($ndx1, $lev2) = each %odm ) {
    while ( ($ndx2, $val) = each %$lev2 ) {
        print "odm{${ndx1}}{${ndx2}} = ${odm{${ndx1}}{${ndx2}}}\n";
    }
  }

  my %dev = odm_classes('C|P');
  foreach ${devname} ( keys %dev ) {
    print "dev{${devname}} = ${dev{${devname}}}\n";
  }

  my %attribs = odm_attributes(${dev{'devname'}};
  foreach ${attrname} ( keys %attribs ) {
    print "attribs{${attrname}} = ${attribs{${attrname}}}\n";
  }

  my ${devclass} = odm_class('C|P',${dev{'devname'});
  my ${devsubcl} = odm_subclass('C|P',${dev{'devname'});

 view all matches for this distribution


AIX-Perfstat

 view release on metacpan or  search on metacpan

example1.pl  view on Meta::CPAN


use Data::Dumper;
use AIX::Perfstat;

my $cput = AIX::Perfstat::cpu_total();
print "cpu_total() ", Dumper($cput);

my $diskt = AIX::Perfstat::disk_total();
print "disk_total() ", Dumper($diskt);

my $netift = AIX::Perfstat::netinterface_total();
print "netinterface_total() ", Dumper($netift);

my $memoryt = AIX::Perfstat::memory_total();
print "memory_total() ", Dumper($memoryt);

my $num_cpus = AIX::Perfstat::cpu_count();
print "cpu_count() $num_cpus\n";

my $num_disks = AIX::Perfstat::disk_count();
print "disk_count() $num_disks\n";

my $num_netifs = AIX::Perfstat::netinterface_count();
print "netinterface_count() $num_netifs\n";

my $cpu_data = AIX::Perfstat::cpu($num_cpus);
print "cpu($num_cpus) ", Dumper($cpu_data);

my $disk_data = AIX::Perfstat::disk($num_disks);
print "disk($num_disks) ", Dumper($disk_data);

my $netif_data = AIX::Perfstat::netinterface($num_netifs);
print "netinterface($num_netifs) ", Dumper($netif_data);

 view all matches for this distribution


AIX-SysInfo

 view release on metacpan or  search on metacpan

t/get_sysinfo.t  view on Meta::CPAN

		kernel_type
			/;

ok( defined $hash{"$_"}, "$_" ) foreach @items;

print "=================================================\n";
print "$_ = $hash{$_}\n" foreach @items;

 view all matches for this distribution


ALBD

 view release on metacpan or  search on metacpan

lib/ALBD.pm  view on Meta::CPAN

    }
    if (exists $lbdOptions{'precisionAndRecall_implicit'}) {
	$self->timeSlicing_generatePrecisionAndRecall_implicit();
	return;
    }
    print "Open Discovery\n";
    print $self->_parametersToString();

#Get inputs
    my $startCuisRef = $self->_getStartCuis();
    my $linkingAcceptTypesRef = $self->_getAcceptTypes('linking');
    my $targetAcceptTypesRef = $self->_getAcceptTypes('target');
    print "startCuis = ".(join(',', @{$startCuisRef}))."\n";
    print "linkingAcceptTypes = ".(join(',', keys %{$linkingAcceptTypesRef}))."\n";
    print "targetAcceptTypes = ".(join(',', keys %{$targetAcceptTypesRef}))."\n";

#Get the Explicit Matrix
    $start = time;
    my $explicitMatrixRef;
    if(!defined $lbdOptions{'explicitInputFile'}) {
	die ("ERROR: explicitInputFile must be defined in LBD config file\n");
    }
    $explicitMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'explicitInputFile'});
    print "Got Explicit Matrix in ".(time() - $start)."\n";
    
#Get the Starting Matrix
    $start = time();
    my $startingMatrixRef = 
	Discovery::getRows($startCuisRef, $explicitMatrixRef);
    print "Got Starting Matrix in ".(time() - $start)."\n";

    #if using average minimum weight, grab the a->b scores
    my %abPairsWithScores = ();
    if ($lbdOptions{'rankingProcedure'} eq 'averageMinimumWeight' 
	|| $lbdOptions{'rankingProcedure'} eq 'ltc_amw') {

lib/ALBD.pm  view on Meta::CPAN

    #Apply Semantic Type Filter to the explicit matrix
    if ((scalar keys %{$linkingAcceptTypesRef}) > 0) {
	$start = time();
	Filters::semanticTypeFilter_rowsAndColumns(
	    $explicitMatrixRef, $linkingAcceptTypesRef, $umls_interface);
	print "Semantic Type Filter in ".(time() - $start)."\n";
    }
    
#Get Implicit Connections
    $start = time();
    my $implicitMatrixRef;
    if (defined $lbdOptions{'implicitInputFile'}) {
	$implicitMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'implicitInputFile'});
    } else {
	$implicitMatrixRef = Discovery::findImplicit($explicitMatrixRef, $startingMatrixRef);
    }
    print "Got Implicit Matrix in ".(time() - $start)."\n";

#Remove Known Connections 
     $start = time();
     $implicitMatrixRef = Discovery::removeExplicit($startingMatrixRef, $implicitMatrixRef);
     print "Removed Known Connections in ".(time() - $start)."\n";
 
#Apply Semantic Type Filter
    if ((scalar keys %{$targetAcceptTypesRef}) > 0) {
	$start = time();
	Filters::semanticTypeFilter_columns(
	    $implicitMatrixRef, $targetAcceptTypesRef, $umls_interface);
	print "Semantic Type Filter in ".(time() - $start)."\n";
    }

#Score Implicit Connections
    $start = time();	
    my $scoresRef;

lib/ALBD.pm  view on Meta::CPAN

    } elsif ($lbdOptions{'rankingProcedure'} eq 'ltc_amw') {
	$scoresRef = Rank::scoreImplicit_LTC_AMW($startingMatrixRef, $explicitMatrixRef, $implicitMatrixRef, $lbdOptions{'rankingMeasure'}, $umls_association, \%abPairsWithScores);
    } else {
	die ("Error: Invalid Ranking Procedure\n");
    }    
    print "Scored in: ".(time()-$start)."\n";
  
#Rank Implicit Connections
    $start = time();
    my $ranksRef = Rank::rankDescending($scoresRef);
    print "Ranked in: ".(time()-$start)."\n";

#Output The Results
    open OUT, ">$lbdOptions{implicitOutputFile}" 
	or die "unable to open implicit ouput file: "
	."$lbdOptions{implicitOutputFile}\n";
    my $outputString = $self->_rankedTermsToString($scoresRef, $ranksRef);
    my $paramsString = $self->_parametersToString();
    print OUT $paramsString;
    print OUT $outputString;
    close OUT;

#Done
    print "DONE!\n\n";
}

#----------------------------------------------------------------------------

# performs LBD, closed discovery

lib/ALBD.pm  view on Meta::CPAN

# ouptut: none, but a results file is written to disk
sub performLBD_closedDiscovery {
    my $self = shift;
    my $start; #used to record run times

    print "Closed Discovery\n";
    print $self->_parametersToString();

#Get inputs
    my $startCuisRef = $self->_getStartCuis();
    my $targetCuisRef = $self->_getTargetCuis();
    my $linkingAcceptTypesRef = $self->_getAcceptTypes('linking');

lib/ALBD.pm  view on Meta::CPAN

    my $explicitMatrixRef;
    if(!defined $lbdOptions{'explicitInputFile'}) {
	die ("ERROR: explicitInputFile must be defined in LBD config file\n");
    }
    $explicitMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'explicitInputFile'});
    print "Got Explicit Matrix in ".(time() - $start)."\n";
    
#Get the Starting Matrix
    $start = time();
    my $startingMatrixRef = 
	Discovery::getRows($startCuisRef, $explicitMatrixRef);
    print "Got Starting Matrix in ".(time() - $start)."\n";
    print "   numRows in startMatrix = ".(scalar keys %{$startingMatrixRef})."\n";

    #Apply Semantic Type Filter to the explicit matrix
    if ((scalar keys %{$linkingAcceptTypesRef}) > 0) {
	$start = time();
	Filters::semanticTypeFilter_rowsAndColumns(
	    $explicitMatrixRef, $linkingAcceptTypesRef, $umls_interface);
	print "Semantic Type Filter in ".(time() - $start)."\n";
    }

#Get the Target Matrix
    $start = time();
    my $targetMatrixRef = 
	Discovery::getRows($targetCuisRef, $explicitMatrixRef);
    print "Got Target Matrix in ".(time() - $start)."\n";
    print "   numRows in targetMatrix = ".(scalar keys %{$targetMatrixRef})."\n";

#find the linking terms in common for starting and target matrices
    print "Finding terms in common\n";
    #get starting linking terms
    my %startLinks = ();
    foreach my $row (keys %{$startingMatrixRef}) {
	foreach my $col (keys %{${$startingMatrixRef}{$row}}) {
	    $startLinks{$col} = ${${$startingMatrixRef}{$row}}{$col};
	}
    }
    print "   num start links = ".(scalar keys %startLinks)."\n";
    #get target linking terms
    my %targetLinks = ();
    foreach my $row (keys %{$targetMatrixRef}) {
	foreach my $col (keys %{${$targetMatrixRef}{$row}}) {
	    $targetLinks{$col} = ${${$targetMatrixRef}{$row}}{$col};
	}
    }
    print "   num target links = ".(scalar keys %targetLinks)."\n";
    #find linking terms in common
    my %inCommon = ();
    foreach my $startLink (keys %startLinks) {
	if (exists $targetLinks{$startLink}) {
	    $inCommon{$startLink} = $startLinks{$startLink} + $targetLinks{$startLink};
	}
    }
     print "   num in common = ".(scalar keys %inCommon)."\n";

#Score and Rank
    #Score the linking terms in common
    my $scoresRef = \%inCommon;
    #TODO score is just summed frequency right now

    #Rank Implicit Connections
    $start = time();
    my $ranksRef = Rank::rankDescending($scoresRef);
    print "Ranked in: ".(time()-$start)."\n";

#Output The Results
    open OUT, ">$lbdOptions{implicitOutputFile}" 
	or die "unable to open implicit ouput file: "
	."$lbdOptions{implicitOutputFile}\n";
    my $outputString = $self->_rankedTermsToString($scoresRef, $ranksRef);
    my $paramsString = $self->_parametersToString();
    print OUT $paramsString;
    print OUT $outputString;

    print OUT "\n\n---------------------------------------\n\n";
    print OUT "starting linking terms:\n";
    print OUT join("\n", keys %startLinks);

    print OUT "\n\n---------------------------------------\n\n";
    print OUT "target linking terms:\n";
    print OUT join("\n", keys %targetLinks, );

    close OUT;

#Done
    print "DONE!\n\n";
}

#NOTE, this is experimental code for using the implicit matrix as input
# to association measures and then rank. This provides a nice method of 
# association for implicit terms, but there are implementation problems

lib/ALBD.pm  view on Meta::CPAN

# input:  none
# output: none, but a results file is written to disk
sub performLBD_implicitMatrixRanking {
    my $self = shift;
    my $start; #used to record run times
    print  $self->_parametersToString();
    print "In Implicit Ranking\n";
    
#Get inputs
    my $startCuisRef = $self->_getStartCuis();
    my $linkingAcceptTypesRef = $self->_getAcceptTypes('linking');
    my $targetAcceptTypesRef = $self->_getAcceptTypes('target');
    print "startCuis = ".(join(',', @{$startCuisRef}))."\n";
    print "linkingAcceptTypes = ".(join(',', keys %{$linkingAcceptTypesRef}))."\n";
    print "targetAcceptTypes = ".(join(',', keys %{$targetAcceptTypesRef}))."\n";

#Score Implicit Connections
    $start = time();	
    my $scoresRef;
    $scoresRef = Rank::scoreImplicit_fromImplicitMatrix($startCuisRef,  $lbdOptions{'implicitInputFile'}, $lbdOptions{rankingMeasue}, $umls_association);
    print "Scored in: ".(time()-$start)."\n";
  
#Rank Implicit Connections
    $start = time();
    my $ranksRef = Rank::rankDescending($scoresRef);
    print "Ranked in: ".(time()-$start)."\n";

#Output The Results
    open OUT, ">$lbdOptions{implicitOutputFile}" 
	or die "unable to open implicit ouput file: "
	."$lbdOptions{implicitOutputFile}\n";
    my $outputString = $self->_rankedTermsToString($scoresRef, $ranksRef);
    my $paramsString = $self->_parametersToString();
    print OUT $paramsString;
    print OUT $outputString;
    close OUT;

#Done
    print "DONE!\n\n";
}
=cut


##################################################

lib/ALBD.pm  view on Meta::CPAN


#NOTE: This function isn't really tested, and is really slow right now
# Generates precision and recall values by varying the threshold
# of the A->B ranking measure.
# input:  none
# output: none, but precision and recall values are printed to STDOUT
sub timeSlicing_generatePrecisionAndRecall_explicit {
    my $NUM_SAMPLES = 100; #TODO, read fomr file number of samples to average over for timeslicing
    my $self = shift;
    print "In timeSlicing_generatePrecisionAndRecall\n";

    my $numIntervals = 10;

#Get inputs
    my $startAcceptTypesRef = $self->_getAcceptTypes('start');

lib/ALBD.pm  view on Meta::CPAN

    my $allPairsCount = scalar keys %{$assocScoresRef};
    for (my $i = $numIntervals; $i >= 0; $i--) {

	#determine the number of samples to threshold
	my $numSamples = $i*($allPairsCount/$numIntervals);
	print "i, numSamples/allPairsCount = $i, $numSamples/$allPairsCount\n";
	#grab samples at just 10 to estimate the final point (this is what 
	# makes it an 11 point curve)
	if ($numSamples == 0) {
	    $numSamples = 10;
	}

lib/ALBD.pm  view on Meta::CPAN

	}

	#calculate precision and recall
	my ($precision, $recall) = TimeSlicing::calculatePrecisionRecall(
	    $implicitMatrixRef, $postCutoffMatrixRef);
	print "precision = $precision, recall = $recall\n";

	#calculate averages/min/max only for $i= $numIntervals, which is all terms
	if ($i == $numIntervals) {
	    #average over all terms
	    foreach my $rowKey(keys %{$implicitMatrixRef}) {

lib/ALBD.pm  view on Meta::CPAN

	    $trueAverage /= (scalar keys %{$implicitMatrixRef});
	}
    } 

    #output stats
    print "predicted - total, min, max, average = $predictedTotal, $predictedMin, $predictedMax, $predictedAverage\n";
    print "true - total, min, max, average = $trueTotal, $trueMin, $trueMax, $trueAverage\n";
}


# generates precision and recall values by varying the threshold
# of the A->C ranking measure. Also generates precision at k, and

lib/ALBD.pm  view on Meta::CPAN

#         output to STDOUT
sub timeSlicing_generatePrecisionAndRecall_implicit {
    my $NUM_SAMPLES = 200; #TODO, read fomr file number of samples to average over for timeslicing
    my $self = shift;
    my $start; #used to record run times
    print "In timeSlicing_generatePrecisionAndRecall_implicit\n";

    #Get inputs
    my $startAcceptTypesRef = $self->_getAcceptTypes('start');
    my $linkingAcceptTypesRef = $self->_getAcceptTypes('linking');
    my $targetAcceptTypesRef = $self->_getAcceptTypes('target');

#-----------
# Starting Matrix Creation
#-----------
    #Get the Explicit Matrix
    print "loading explicit\n";
    my $explicitMatrixRef;
    if(!defined $lbdOptions{'explicitInputFile'}) {
	die ("ERROR: explicitInputFile must be defined in LBD config file\n");
    }
    $explicitMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'explicitInputFile'});

    #create the starting matrix
    print "generating starting\n";
    my $startingMatrixRef 
	= TimeSlicing::generateStartingMatrix($explicitMatrixRef, \%lbdOptions, $startAcceptTypesRef, $NUM_SAMPLES, $umls_interface);
#----------
    

lib/ALBD.pm  view on Meta::CPAN

# Gold Loading/Creation
#--------
    #load or create the gold matrix
    my $goldMatrixRef;
    if (exists $lbdOptions{'goldInputFile'}) {
	print "inputting gold\n";
	$goldMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'goldInputFile'});
    }
    else {
	print "loading post cutoff\n";
	$goldMatrixRef = TimeSlicing::loadPostCutOffMatrix($startingMatrixRef, $explicitMatrixRef, $lbdOptions{'postCutoffFileName'});

	#remove explicit knowledge from the post cutoff matrix
	$goldMatrixRef = Discovery::removeExplicit($startingMatrixRef, $goldMatrixRef);

	#apply a semantic type filter to the post cutoff matrix
	print "applying semantic filter to post-cutoff matrix\n";
	if ((scalar keys %{$targetAcceptTypesRef}) > 0) {
	    Filters::semanticTypeFilter_columns(
		$goldMatrixRef, $targetAcceptTypesRef, $umls_interface);
	}

	#TODO why is the gold matrix outputting with an extra line between samples?
	#output the gold matrix
	if (exists $lbdOptions{'goldOutputFile'}) {
	    print "outputting gold\n";
	    Discovery::outputMatrixToFile($lbdOptions{'goldOutputFile'}, $goldMatrixRef); 
	}
    }
#-------
  

lib/ALBD.pm  view on Meta::CPAN

#-------
    #if using average minimum weight, grab the a->b scores, #TODO this is sloppy here, but it has to be here...how to make it fit better?
    my %abPairsWithScores = ();
    if ($lbdOptions{'rankingProcedure'} eq 'averageMinimumWeight'
		|| $lbdOptions{'rankingProcedure'} eq 'ltc_amw') {
	print "getting AB scores\n";

	#apply semantic type filter to columns only
	if ((scalar keys %{$linkingAcceptTypesRef}) > 0) {
	    Filters::semanticTypeFilter_columns(
		$explicitMatrixRef, $linkingAcceptTypesRef, $umls_interface);

lib/ALBD.pm  view on Meta::CPAN

#------------
# Matrix Filtering/Thresholding
#------------
    #load or threshold the matrix
    if (exists $lbdOptions{'thresholdedMatrix'}) {
	print "loading thresholded matrix\n";
	$explicitMatrixRef = (); #clear (for memory)
	$explicitMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'thresholdedMatrix'});
    }
    #else {#TODO apply a threshold}
    #NOTE, we must threshold the entire matrix because that is how we are calculating association scores

    #Apply Semantic Type Filter to the explicit matrix
    print "applying semantic filter to explicit matrix\n";
    if ((scalar keys %{$linkingAcceptTypesRef}) > 0) {
	Filters::semanticTypeFilter_rowsAndColumns(
	    $explicitMatrixRef, $linkingAcceptTypesRef, $umls_interface);
    }

lib/ALBD.pm  view on Meta::CPAN

# Prediction Generation
#------------
    #load or create the predictions matrix
    my $predictionsMatrixRef;
    if (exists $lbdOptions{'predictionsInFile'}) {
	print "loading predictions\n";
	$predictionsMatrixRef = Discovery::fileToSparseMatrix($lbdOptions{'predictionsInFile'});
    }
    else {
	print "generating predictions\n";

	#generate implicit knowledge
	print "Squaring Matrix\n";
	$predictionsMatrixRef = Discovery::findImplicit(
	    $explicitMatrixRef, $startingMatrixRef);

	#Remove Known Connections
	print "Removing Known from Predictions\n";
	$predictionsMatrixRef 
	    = Discovery::removeExplicit($startingMatrixRef, $predictionsMatrixRef);

	#apply a semantic type filter to the predictions matrix
	print "Applying Semantic Filter to Predictions\n";
	if ((scalar keys %{$targetAcceptTypesRef}) > 0) {
	    Filters::semanticTypeFilter_columns(
		$predictionsMatrixRef, $targetAcceptTypesRef, $umls_interface);
	}

	#save the implicit knowledge matrix to file
	if (exists ($lbdOptions{'predictionsOutFile'})) {
	    print "outputting predictions\n";
	    Discovery::outputMatrixToFile($lbdOptions{'predictionsOutFile'}, $predictionsMatrixRef);
	}
    }

#-------------------------------------------

lib/ALBD.pm  view on Meta::CPAN

    #get the scores and ranks seperately for each row
    # thereby generating scores and ranks for each starting
    # term individually
    my %rowRanks = ();
    my ($n1pRef, $np1Ref, $npp);
    print "getting row ranks\n";
    foreach my $rowKey (keys %{$predictionsMatrixRef}) { 
	#grab rows from start and implicit matrices
	my %startingRow = ();
	$startingRow{$rowKey} = ${$startingMatrixRef}{$rowKey};
	my %implicitRow = ();

lib/ALBD.pm  view on Meta::CPAN

	    #line contains data, grab the key and value
	    $line =~ /<([^>]+)>([^\n]*)/;	  

	    #make sure the data was read in correctly
	    if (!$1) {
		print STDERR 
		    "Warning: Invalid line in $configFileName: $line\n";
	    }
	    else {
		#data was grabbed from the line, add to hash
		if ($2) {

lib/ALBD.pm  view on Meta::CPAN

#        function to produce output
##############################################################################
# outputs the implicit terms to string
# input:  $scoresRef <- a reference to a hash of scores (hash{CUI}=score)
#         $ranksRef <- a reference to an array of CUIs ranked by their score
#         $printTo <- optional, outputs the $printTo top ranked terms. If not
#                     specified, all terms are output
# output: a line seperated string containing ranked terms, scores, and thier
#         preferred terms
sub _rankedTermsToString {
    my $self = shift;
    my $scoresRef = shift;
    my $ranksRef = shift;
    my $printTo = shift;

    #set printTo
    if (!$printTo) {
	$printTo = scalar @{$ranksRef};
    }
    
    #construct the output string
    my $string = '';
    my $index;
    for (my $i = 0; $i < $printTo; $i++) {
	#add the rank
	$index = $i+1;
	$string .= "$index\t";
	#add the score
	$string .= sprintf "%.5f\t", "${$scoresRef}{${$ranksRef}[$i]}\t";
	#add the CUI
	$string .= "${$ranksRef}[$i]\t";
	#add the name
	my $name = $umls_interface->getPreferredTerm(${$ranksRef}[$i]);
	#if no preferred name, get anything

lib/ALBD.pm  view on Meta::CPAN

=comment
sub debugLBD {
    my $self = shift;
    my $startingCuisRef = shift;

    print "Starting CUIs = ".(join(',', @{$startingCuisRef}))."\n";

#Get the Explicit Matrix
    my ($explicitMatrixRef, $cuiToIndexRef, $indexToCuiRef, $matrixSize) = 
	Discovery::tableToSparseMatrix('N_11', $cuiFinder);
    print "Explicit Matrix:\n";
    _printMatrix($explicitMatrixRef, $matrixSize, $indexToCuiRef);
    print "-----------------------\n";

#Get the Starting Matrix
    my $startingMatrixRef = 
	Discovery::getRows($startingCuisRef, $explicitMatrixRef);
    print "Starting Matrix:\n";
    _printMatrix($startingMatrixRef, $matrixSize, $indexToCuiRef);
    print "-----------------------\n";
    
#Get Implicit Connections
    my $implicitMatrixRef 
	= Discovery::findImplicit($explicitMatrixRef, $startingMatrixRef, 
				  $indexToCuiRef, $matrixSize);
    print "Implicit Matrix:\n";
    _printMatrix($implicitMatrixRef, $matrixSize, $indexToCuiRef);
    print "-----------------------\n";

#Remove Known Connections
    $implicitMatrixRef = Discovery::removeExplicit($explicitMatrixRef, 
						   $implicitMatrixRef);
    print "Implicit Matrix with Explicit Removed\n";
    _printMatrix($implicitMatrixRef, $matrixSize, $indexToCuiRef);
    print "-----------------------\n";
    print "\n\n";

#Test N11, N1P, etc...
    #NOTE...always do n11 first, if n11 = -1, no need to compute the others...there is no co-occurrence between them
    my $n11 = Rank::getN11('C0','C2',$explicitMatrixRef);
    my $npp = Rank::getNPP($explicitMatrixRef);
    my $n1p = Rank::getN1P('C0', $explicitMatrixRef);
    my $np1 = Rank::getNP1('C2', $explicitMatrixRef); 
    print "Contingency Table Values from Explicit Matrix\n";
    print "n11 = $n11\n";
    print "npp = $npp\n";
    print "n1p = $n1p\n";
    print "np1 = $np1\n";

#Test other rank methods
    my $scoresRef = Rank::scoreImplicit_fromAllPairs($startingMatrixRef, $explicitMatrixRef, $implicitMatrixRef, $lbdOptions{rankingMethod}, $umls_association);
    my $ranksRef = Rank::rankDescending($scoresRef);
    print "Scores: \n";
    foreach my $cui (keys %{$scoresRef}) {
	print "   scores{$cui} = ${$scoresRef}{$cui}\n";
    }
    print "Ranks = ".join(',', @{$ranksRef})."\n";
}

sub _printMatrix {
    my $matrixRef = shift;
    my $matrixSize = shift;
    my $indexToCuiRef = shift;
    
    for (my $i = 0; $i < $matrixSize; $i++) {
	my $index1 = ${$indexToCuiRef}{$i};
	for (my $j = 0; $j < $matrixSize; $j++) {
	    my $printed = 0;
	    my $index2 = ${$indexToCuiRef}{$j};
	    my $hash1Ref =  ${$matrixRef}{$index1};

	    if (defined $hash1Ref) {
		my $val = ${$hash1Ref}{$index2};
		if (defined $val) {
		    print $val."\t";
		    $printed = 1;
		}
	    }
	    if (!$printed) {
		print "0\t";
	    }
	}
	print "\n";
    }
}
=cut


 view all matches for this distribution


ALPM

 view release on metacpan or  search on metacpan

lib/ALPM/Conf.pm  view on Meta::CPAN

	_parse($self->{'path'}, \%hooks);
	return _applyopts(\%opts, \@dbs);
}

## Import magic used for quick scripting.
# e.g: perl -MALPM::Conf=/etc/pacman.conf -le 'print $alpm->root'

sub import
{
	my($pkg, $path) = @_;
	my($dest) = caller;

 view all matches for this distribution


AMF-Connection

 view release on metacpan or  search on metacpan

examples/amfclient.pl  view on Meta::CPAN

$json->allow_blessed(1);
$json->convert_blessed(1);
my $json_data = $json->encode( $response->getData );

if ( $response->is_success ) {
        print $json_data;
} else {
        die "Can not send remote request for $service.$method method with params on $endpoint using AMF".$client->getEncoding()." encoding:\n".$json_data."\n";
        };

 view all matches for this distribution


AMF-Perl

 view release on metacpan or  search on metacpan

lib/AMF/Perl.pm  view on Meta::CPAN


=head2 Sun Jun 20 13:32:31 EDT 2004

=over 4

=item Made printing output a separate function, requested by Scott Penrose.

=item Wrote exportable amf_throw() for exception handling.

=back

lib/AMF/Perl.pm  view on Meta::CPAN


=head2 Wed Apr 23 19:22:56 EDT 2003

=over 4

=item Added "binmode STDOUT" before printing headers to prevent conversion of 0a to 0d0a on Windows.

=item Added modperl 1 support and (so far commented out) hypothetical modperl 2 support.

=back

lib/AMF/Perl.pm  view on Meta::CPAN

		#$r->header_out("Content-Length", $resLength);
        #$r->send_http_header("application/x-amf");
        $r->content_type("application/x-amf");
        $r->headers_out->{'Content-Length'} = $resLength;
        $r->send_http_header unless $MP2;
        $r->print($response);

    }
	else
	{
		print <<EOF;
Content-Type: application/x-amf
Content-Length: $resLength

$response
EOF

lib/AMF/Perl.pm  view on Meta::CPAN

    {
        $self->{exec}->setBaseClassPath($path);
    }
    else
    {
        print STDERR "Directory $path does not exist and could not be registered.\n";
        die;
    }
}

sub registerService

lib/AMF/Perl.pm  view on Meta::CPAN



sub setSafeExecution
{
    my ($self, $safe) = @_;
    print STDERR "There is no need to call setSafeExecution anymore!\n";
}

sub encoding
{
	my $self = shift;

lib/AMF/Perl.pm  view on Meta::CPAN

    if (!open(HANDLE, "> $filepath"))
    {
        die "Could not open file $filepath: $!\n";
    }
    # write to the file
    if (!print HANDLE $data)
    {
        die "Could not print to file $filepath: $!\n";
    }
    # close the file resource
    close HANDLE;
}

lib/AMF/Perl.pm  view on Meta::CPAN

    if (!open (HANDLE, ">>$filepath"))
    {
        die "Could not open file $filepath: $!\n";
    }
    # write to the file
    if (!print HANDLE $data)
    {
        die "Could not print to file $filepath: $!\n";
    }
    # close the file resource
    close HANDLE;
}

 view all matches for this distribution


AMPR-Rip44

 view release on metacpan or  search on metacpan

bin/rip44d  view on Meta::CPAN


sub HELP_MESSAGE()
{
	my($fh) = @_;
	
	print $fh "Usage:\n"
		. "  $me [-v] [-d] [-i <tunnelif>] [-a <localaddrs>] [-p <password>]\n"
		. "Options:\n"
		. "  -v   increase verbosity slightly to print error messages on stderr\n"
		. "  -d   increase verbosity greatly (debug mode)\n"
		. "  -i <tunnelinterface>\n"
		. "       use the specified tunnel interface, defaults to tunl0\n"
		. "  -a <comma-separated-ip-list>\n"
		. "       ignore routes pointing to these (local) gateways\n"

bin/rip44d  view on Meta::CPAN


sub VERSION_MESSAGE()
{
	my($fh) = @_;
	
	print $fh "$me version $VERSION\n";
}

# Figure out local interface IP addresses so that routes to them can be ignored

sub fill_local_ifs()

bin/rip44d  view on Meta::CPAN

		return (0, 'prefix length too short');
	}
	
	# the network-netmask pair makes sense: network & netmask == network
	if (($e_net_i & $e_netmask) != $e_net_i) {
		#print "e_net '$e_net_i' e_netmask '$e_netmask' ANDs to " . ($e_net_i & $e_netmask) . "\n";
		warn "$e_net_s/$e_netmask_s => $e_nexthop_s blocked, subnet-netmask pair does not make sense\n" if ($verbose);
		return (0, 'invalid subnet-netmask pair');
	}
	
	# network is in 44/8

 view all matches for this distribution


AMQP

 view release on metacpan or  search on metacpan

LICENSE  view on Meta::CPAN

    that you may choose to grant warranty protection to some or all
    third parties, at your option).

    c) If the modified program normally reads commands interactively when
    run, you must cause it, when started running for such interactive use
    in the simplest and most usual way, to print or display an
    announcement including an appropriate copyright notice and a notice
    that there is no warranty (or else, saying that you provide a
    warranty) and that users may redistribute the program under these
    conditions, and telling the user how to view a copy of this General
    Public License.

 view all matches for this distribution


ANSI-Heatmap

 view release on metacpan or  search on metacpan

examples/boxes.pl  view on Meta::CPAN

            (map { [$_, 1], [$_, $y] } (1..$x)),
        );
        for my $c (@white) {
            $map->set(@$c, 100);
        }
        print "$x x $y\n";
        print $map, "\n";
    }
}

 view all matches for this distribution


( run in 1.987 second using v1.01-cache-2.11-cpan-de7293f3b23 )