Result:
found more than 680 distributions - search limited to the first 2001 files matching your query ( run in 0.545 )


AI-Ollama-Client

 view release on metacpan or  search on metacpan

lib/AI/Ollama/Client.pm  view on Meta::CPAN

    # (but create a copy so we don't over write the input array)
    if (my $images = $options{images}) {

        # Allow { filename => '/etc/passwd' }
        $options{images} = [
            map {
                my $item = $_;
                if( ref($item) eq 'HASH' ) {
                    $item = Mojo::File->new($item->{filename})->slurp();
                };
                encode_base64($item)

 view all matches for this distribution


AI-PBDD

 view release on metacpan or  search on metacpan

lib/AI/PBDD.pm  view on Meta::CPAN


=over 4

=item B<$pair = createPair($vars_old,$vars_new)>

Create a function C<$pair: BDD variable -E<gt> BDD variable> that maps C<$vars_old-E<gt>[i]> to C<$vars_new-E<gt>[i]>.

=item B<deletePair($pair)>

Free the memory occupied by C<$pair>.

 view all matches for this distribution


AI-PSO

 view release on metacpan or  search on metacpan

lib/AI/PSO.pm  view on Meta::CPAN

  this.  Also, you may want to take a look at either t/PSO.t for the 
  simple test or examples/NeuralNetwork/pso_ann.pl for an example on 
  how to train a simple 3-layer feed forward neural network.  (Note 
  that a real training application would have a real dataset with many 
  input-output pairs...pso_ann.pl is a _very_ simple example.  Also note 
  that the neural network exmaple requires g++.  Type 'make run' in the 
  examples/NeuralNetwork directory to run the example.  Lastly, the 
  neural network c++ code is in a very different coding style.  I did 
  indeed write this, but it was many years ago when I was striving to 
  make my code nicely formatted and good looking :)).

 view all matches for this distribution


AI-ParticleSwarmOptimization-MCE

 view release on metacpan or  search on metacpan

example/PSOTest-MultiCore.pl  view on Meta::CPAN

use warnings;
use lib '../lib/'; 
#-----------------------------------------------------------------------
#use AI::ParticleSwarmOptimization;
use AI::ParticleSwarmOptimization::MCE;
#use AI::ParticleSwarmOptimization::Pmap;
use Data::Dumper; $::Data::Dumper::Sortkeys = 1;
#=======================================================================
sub calcFit {
    my @values = @_;
    my $offset = int (-@values / 2);

example/PSOTest-MultiCore.pl  view on Meta::CPAN

    return $sum;
}
#=======================================================================
++$|;
#-----------------------------------------------------------------------
#my $pso = AI::ParticleSwarmOptimization::Pmap->new(		# Multi-core	
my $pso = AI::ParticleSwarmOptimization::MCE->new(		# Multi-core	
#my $pso = AI::ParticleSwarmOptimization->new(			# Single-core
    -fitFunc    	=> \&calcFit,
    -dimensions 	=> 10,
    -iterations 	=> 10,

example/PSOTest-MultiCore.pl  view on Meta::CPAN

my $fitValue         = $pso->optimize ();
my ( $best )         = $pso->getBestParticles (1);
my ( $fit, @values ) = $pso->getParticleBestPos ($best);
my $iters            = $pso->getIterationCount();

printf "Fit %.4f at (%s) after %d iterations\n", $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;
warn "\nTime: ", time - $beg, "\n\n";
#=======================================================================
exit 0;

 view all matches for this distribution


AI-ParticleSwarmOptimization-Pmap

 view release on metacpan or  search on metacpan

example/PSOTest-MultiCore.pl  view on Meta::CPAN

use warnings;
use lib '../lib/'; 
#-----------------------------------------------------------------------
#use AI::ParticleSwarmOptimization;
#use AI::ParticleSwarmOptimization::MCE;
use AI::ParticleSwarmOptimization::Pmap;
use Data::Dumper; $::Data::Dumper::Sortkeys = 1;
#=======================================================================
sub calcFit {
    my @values = @_;
    my $offset = int (-@values / 2);

example/PSOTest-MultiCore.pl  view on Meta::CPAN

#=======================================================================
++$|;
#-----------------------------------------------------------------------
#my $pso = AI::ParticleSwarmOptimization->new(			# Single-core
#my $pso = AI::ParticleSwarmOptimization::MCE->new(		# Multi-core	
my $pso = AI::ParticleSwarmOptimization::Pmap->new(		# Multi-core	
    -fitFunc    	=> \&calcFit,
    -dimensions 	=> 10,
    -iterations 	=> 10,
    -numParticles	=> 1000,
    

example/PSOTest-MultiCore.pl  view on Meta::CPAN

my $fitValue         = $pso->optimize ();
my ( $best )         = $pso->getBestParticles (1);
my ( $fit, @values ) = $pso->getParticleBestPos ($best);
my $iters            = $pso->getIterationCount();

printf "Fit %.4f at (%s) after %d iterations\n", $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;
warn "\nTime: ", time - $beg, "\n\n";
#=======================================================================
exit 0;

 view all matches for this distribution


AI-ParticleSwarmOptimization

 view release on metacpan or  search on metacpan

Samples/PSOPlatTest.pl  view on Meta::CPAN

my ($fit, @values) = $pso->getParticleBestPos ($best);
my $iters = $pso->getIterationCount ();
print $pso->getSeed();

printf ",# Fit %.5f at (%s) after %d iterations\n",
    $fit, join (', ', map {sprintf '%.4f', $_} @values), $iters;


sub calcFit {
    my @values = @_;
    my $offset = int (-@values / 2);

 view all matches for this distribution


AI-Pathfinding-AStar-Rectangle

 view release on metacpan or  search on metacpan

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

use Benchmark qw( timethese cmpthese );

use constant WIDTH_X => 64;
use constant WIDTH_Y => 64;

my @map; 
use AI::Pathfinding::AStar::Rectangle;
my $m = AI::Pathfinding::AStar::Rectangle->new({ width => WIDTH_X, heigth => WIDTH_Y });

for my $x (0 .. WIDTH_X - 1 )
{
    for my $y (0 .. WIDTH_Y - 1 )
    {
        $map[$x][$y] = 1;
    }
}

$map[5][$_] = 0 for 5 .. WIDTH_Y - 5;
$map[WIDTH_X - 5][$_] = 0 for 5 .. WIDTH_Y - 5;
$map[$_][5] = 0 for 5 .. WIDTH_X - 5;
$map[$_][WIDTH_Y - 5] = 0 for 5 .. WIDTH_X - 10;
$map[$_][10] = 0 for 10 .. WIDTH_X - 10;
$map[WIDTH_X - 10][$_] = 0 for 10 .. WIDTH_Y - 5;
$map[10][$_] = 0 for 10 .. WIDTH_Y - 10;
$map[$_][WIDTH_Y - 10] = 0 for 10 .. WIDTH_X - 15;
$map[WIDTH_X - 15][$_] = 0 for 15 .. WIDTH_Y - 10;
$map[$_][15] = 0 for 15 .. WIDTH_X - 15;

for my $x (0 .. WIDTH_X - 1 )
{
    for my $y (0 .. WIDTH_Y - 1 )
    {
        $m->set_passability($x, $y, $map[$x][$y]) ;
    }
}
my ( $x_start, $y_start ) = ( WIDTH_X >> 1, WIDTH_Y >> 1 );
my ( $x_end, $y_end ) = ( 0, 0 );

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

}

print "Elapsed: ".tv_interval ( $t0 )."\n";
print "Path length: ".length($path)."\n";
# start end points
$map[ $x_start ][ $y_start ] = 3;
$map[ $x_end   ][ $y_end   ] = 4;
# draw path
my %vect = (
    #      x  y
    1 => [-1, 1, '|/'], 
    2 => [ 0, 1, '.|'],

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

);

my ( $x, $y ) = ( $x_start, $y_start );
for ( split //, $path )
{
    $map[$x][$y] = '|o';
    $x += $vect{$_}->[0];
    $y += $vect{$_}->[1];
    $map[$x][$y] = '|o';
}

printf "%02d", $_ for 0 .. WIDTH_X - 1;
print "\n";
for my $y ( 0 .. WIDTH_Y - 1 )
{
    for my $x ( 0 .. WIDTH_X - 1 )
    {
        print $map[$x][$y] eq 
        '1' ? "|_" : ( 
        $map[$x][$y] eq '0' ? "|#" : ( 
        $map[$x][$y] eq '3' ? "|S" : ( 
        $map[$x][$y] eq '4' ? "|E" : $map[$x][$y] ) ) );
    }
    print "$y\n";
}


Benchmark/perl-vs-xs.pl  view on Meta::CPAN

            next if $xn == WIDTH_X ||
                $xn < 0 ||
                $yn == WIDTH_Y ||
                $yn < 0 || 
                $close{$xn}{$yn} || 
                $map[$xn][$yn] == 0;

            my $ng =  $g[$x][$y] + $cost{$_};
            if ( $open{$xn}{$yn} )
            {
                if ( $ng < $g[$xn][$yn] )

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

    {
            $x = $x1;
            $y = $y1;
            $Xend = $x2;
        };
    $obstacle+=!$map[$x][$y];
    $pixel+=5;
    while ( $x < $Xend )
        {
            $x++;
            if ($d < 0) {$d += $inc1}
            else
        {
            $y++;
            $d += $inc2;
        };
        $obstacle+=!$map[$x][$y];
        $pixel += 5;
        };

    return ( $obstacle << 3 ) + $pixel;
}

Benchmark/perl-vs-xs.pl  view on Meta::CPAN

    my ( $x, $y, $xn, $yn, $g) = @_;
    for my $j ( 0 .. WIDTH_Y - 1 )
    {
        for my $i ( 0 .. WIDTH_X - 1 )
        {
            if ( !$map[$i][$j] )
            {
                print " ##"
            }
            else 
            {

 view all matches for this distribution


AI-Pathfinding-AStar

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

    return $self->SUPER::_init(@_);
}

sub doAStar
{
	my ($map, $target, $open, $nodes, $max) = @_;

	my $n = 0;
	FLOOP:	while ( (defined $open->top()) && ($open->top()->{id} ne $target) ) {

		#allow incremental calculation

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

		my $curr_node = $open->extract_top();
		$curr_node->{inopen} = 0;
		my $G = $curr_node->{g};

		#get surrounding squares
		my $surr_nodes = $map->getSurrounding($curr_node->{id}, $target);
		foreach my $node (@$surr_nodes) {
			my ($surr_id, $surr_cost, $surr_h) = @$node;

			#skip the node if it's in the CLOSED list
			next if ( (exists $nodes->{$surr_id}) && (! $nodes->{$surr_id}->{inopen}) );

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

	}
}

sub fillPath
{
	my ($map,$open,$nodes,$target) = @_;
	my $path = [];

        my $curr_node = (exists $nodes->{$target}) ? $nodes->{$target} : $open->top();
	while (defined $curr_node) {
		unshift @$path, $curr_node->{id};

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

	return $path;
}


sub findPath {
	my ($map, $start, $target) = @_;

	my $nodes = {};
	my $curr_node = undef;

	my $open = Heap::Binomial->new;

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

	$curr_node->{h}      = 0;
	$curr_node->{inopen} = 1;
	$nodes->{$start}     = $curr_node;
	$open->add($curr_node);

	$map->doAStar($target,$open,$nodes,undef);

	my $path = $map->fillPath($open,$nodes,$target);

	return wantarray ? @{$path} : $path;
}

sub findPathIncr {
	my ($map, $start, $target, $state, $max) = @_;

	my $open = undef;
	my $curr_node = undef;;
	my $nodes = {};
        if (defined($state)) {

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

		$curr_node->{inopen} = 1;
       		$nodes->{$start} = $curr_node;
		$open->add($curr_node);
	}

	$map->doAStar($target,$open,$nodes,$max);

	my $path = $map->fillPath($open,$nodes,$target);
	$state = {
		'path'    => $path,
		'open'    => $open,
		'visited' => $nodes,
		'done'    => defined($nodes->{$target}),

lib/AI/Pathfinding/AStar.pm  view on Meta::CPAN

  sub getSurrounding { ... }

  package main;
  use My::Map::Package;

  my $map = My::Map::Package->new or die "No map for you!";
  my $path = $map->findPath($start, $target);
  print join(', ', @$path), "\n";
  
  #Or you can do it incrementally, say 3 nodes at a time
  my $state = $map->findPathIncr($start, $target, undef, 3);
  while ($state->{path}->[-1] ne $target) {
	  print join(', ', @{$state->{path}}), "\n";
	  $state = $map->findPathIncr($start, $target, $state, 3);
  }
  print "Completed Path: ", join(', ', @{$state->{path}}), "\n";
  
=head1 DESCRIPTION

This module implements the A* pathfinding algorithm.  It acts as a base class from which a custom map object can be derived.  It requires from the map object a subroutine named C<getSurrounding> (described below) and provides to the object two routin...

AI::Pathfinding::AStar requires that the map object define a routine named C<getSurrounding> which accepts the starting and target node ids for which you are calculating the path.  In return it should provide an array reference containing the followi...

=over

=item * Node ID

 view all matches for this distribution


AI-Pathfinding-OptimizeMultiple

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN

    my $self = shift;

    my $args = shift;

    my $scans_data = PDL::cat(
        map {
            my $id     = $_->id();
            my $pdl    = $self->_scans_iters_pdls()->{$id};
            my $factor = $self->_stats_factors->{$id};
            (
                defined($factor)

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN

    $self->_status("iterating");

    my $iters_quota      = 0;
    my $flares_num_iters = PDL::Core::pdl( [ (0) x $self->_get_num_scans() ] );
    my $ones_constant =
        PDL::Core::pdl( [ map { [1] } ( 1 .. $self->_get_num_scans() ) ] );

    my $next_num_iters_for_each_scan_x_scan =
        ( ( $ones_constant x $flares_num_iters ) );

    my $num_moves = $self->_scans_data->slice(":,:,1");

 view all matches for this distribution


AI-PredictionClient

 view release on metacpan or  search on metacpan

lib/AI/PredictionClient/CPP/PredictionGrpcCpp.pm  view on Meta::CPAN

use Inline
  CPP => 'DATA',
  with => ['Alien::Google::GRPC', 'AI::PredictionClient::Alien::TensorFlowServingProtos'],
  version => '0.05',
  name => 'AI::PredictionClient::CPP::PredictionGrpcCpp',
  TYPEMAPS => getcwd . '/blib/lib/AI/PredictionClient/CPP/Typemaps/more_typemaps_STL_String.txt',
  LIBS => '-ldl',
  ccflags => '-std=c++11 -pthread';

use 5.010;
use strict;

 view all matches for this distribution


AI-Prolog

 view release on metacpan or  search on metacpan

lib/AI/Prolog.pm  view on Meta::CPAN

}

sub list {
    my $proto = shift;
    return
        join ", " => map { /^$RE{num}{real}$/ ? $_ : $proto->quote($_) } @_;
}

sub continue {
    my $self = shift;
    return 1 unless $self->{_engine};    # we haven't started yet!

 view all matches for this distribution


AI-SimulatedAnnealing

 view release on metacpan or  search on metacpan

t/annealing_tests.t  view on Meta::CPAN

} # end if

# Generate a list of distances for each probability from the data in the
# BSV file:
my $field_names = $bsv_file_reader->get_field_names();
my @mapped_distances; # indexes 2-5 = Probability constants;
                      # values = references to number arrays

for my $p (2..5) {
    $mapped_distances[$p] = [];
} # next $p

unless ($field_names->[0] eq "Time"
  && $field_names->[1] =~ /$Probability::ONE_FIFTH\z/s
  && $field_names->[2] =~ /$Probability::ONE_FOURTH\z/s

t/annealing_tests.t  view on Meta::CPAN

    } # end if

    $dex = $record->{"Time"} - 3;

    unless ($dex >= 0
      && $dex <= scalar($mapped_distances[$Probability::ONE_FIFTH])) {
        die "ERROR:  The input file does not contain market-distance data "
          . "in the expected format.\n";
    } # end unless

    for my $p (2..5) {
        push @{ $mapped_distances[$p] }, $record->{$field_names->[6 - $p]};
    } # next $p
} # end while

unless (scalar @{ $mapped_distances[$Probability::ONE_FIFTH] } == 61) {
    die "ERROR:  The input file does not contain the expected number of "
      . "records.\n";
} # end unless

# Perform simulated annealing to optimize the coefficients for each of the
# four probabilities, and then print the results to the console:
for my $p (2..5) {
    my $cost_function = cost_function_factory($mapped_distances[$p]);
    my $optimized_coefficients;
    my @number_specs;

    push @number_specs,
      {"LowerBound" =>  0.0, "UpperBound" => 3.0, "Precision" => 3};

 view all matches for this distribution


AI-TensorFlow-Libtensorflow

 view release on metacpan or  search on metacpan

lib/AI/TensorFlow/Libtensorflow/ApiDefMap.pm  view on Meta::CPAN

	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
});

$ffi->attach( ['DeleteApiDefMap' => 'DESTROY'] => [
	arg 'TF_ApiDefMap' => 'apimap'
] => 'void');

$ffi->attach( [ 'ApiDefMapPut' => 'Put' ] => [
	arg 'TF_ApiDefMap' => 'api_def_map',
	arg 'tf_text_buffer' => [qw(text text_len)],
	arg 'TF_Status' => 'status',
] => 'void' );

$ffi->attach( ['ApiDefMapGet' => 'Get' ] => [
	arg 'TF_ApiDefMap' => 'api_def_map',
	arg 'tf_text_buffer'  => [qw(name name_len)],
	arg 'TF_Status' => 'status',
] => 'TF_Buffer');

1;

lib/AI/TensorFlow/Libtensorflow/ApiDefMap.pm  view on Meta::CPAN

=head2 New

  use AI::TensorFlow::Libtensorflow;
  use AI::TensorFlow::Libtensorflow::Status;

  my $map = ApiDefMap->New(
    AI::TensorFlow::Libtensorflow::TFLibrary->GetAllOpList,
    my $status = AI::TensorFlow::Libtensorflow::Status->New
  );
  ok $map, 'Created ApiDefMap';

B<C API>: L<< C<TF_NewApiDefMap>|AI::TensorFlow::Libtensorflow::Manual::CAPI/TF_NewApiDefMap >>

=head1 METHODS

lib/AI/TensorFlow/Libtensorflow/ApiDefMap.pm  view on Meta::CPAN

Get($name, $status)
>>>

=back

  my $api_def_buf = $map->Get(
    'NoOp',
    my $status = AI::TensorFlow::Libtensorflow::Status->New
  );

  cmp_ok $api_def_buf->length, '>', 0, 'Got ApiDef buffer for NoOp operation';

 view all matches for this distribution


AI-Termites

 view release on metacpan or  search on metacpan

lib/AI/Termites/LoginquitasPostulo.pm  view on Meta::CPAN


sub before_termites_action {
    my $self = shift;
    my @ixs = grep !$self->{wood}[$_]{taken}, 0..$#{$self->{wood}};
    $self->{kdtree_ixs} = \@ixs;
    $self->{kdtree} = Math::Vector::Real::kdTree->new(map $_->{pos}, @{$self->{wood}}[@ixs]);
}

sub termite_take_wood_p {
    my ($self, $termite) = @_;
    my $pos = $termite->{pos};

 view all matches for this distribution


AI-XGBoost

 view release on metacpan or  search on metacpan

examples/capi_dump_model.pl  view on Meta::CPAN

my $dtest = XGDMatrixCreateFromFile('agaricus.txt.test');

my $booster = XGBoosterCreate([$dtrain]);
XGBoosterUpdateOneIter($booster, 1, $dtrain);

my $json_model_with_stats = XGBoosterDumpModelEx($booster, "featmap.txt", 1, "json");

say Dumper $json_model_with_stats;

XGBoosterFree($booster);
XGDMatrixFree($dtrain);

 view all matches for this distribution


AIIA-GMT

 view release on metacpan or  search on metacpan

lib/AIIA/GMT.pm  view on Meta::CPAN


sub text2entity {
    my $txt = shift;
    $txt =~ s/\n//g;
    my $num;
    map {$num++;} split(/\s/, $txt);
    die "Usage: &text2entity(\'less than 3000 words\');\n" if ($num > 3000);
    return &submit($txt);
}

sub submit {
    my @args = (shift);
    my $client = Frontier::Client->new(url => $SERVER_URL, debug => 0);
    my $ret = $client->call('Annotator.getAnnotation', @args);
    my @rep;
    map {push @rep, $_->{'offset'} . "\t" . $_->{'mention'};} @{$ret->{'mentions'}};
    @rep = sort @rep;
    return \@rep;
}

1;

 view all matches for this distribution


AIX-LVM

 view release on metacpan or  search on metacpan

lib/AIX/LVM.pm  view on Meta::CPAN



sub get_logical_volumes
{
	my $self = shift;
	return map {keys %{$self->{$_}->{lvol}}}keys %{$self};
}


sub get_physical_volumes
{
	my $self = shift;
	return map {keys %{$self->{$_}->{pvol}}}keys %{$self};
}


sub get_volume_group_properties
{

 view all matches for this distribution


AIX-Perfstat

 view release on metacpan or  search on metacpan

inc/Devel/CheckLib.pm  view on Meta::CPAN

        my $exefile = File::Temp::mktemp( 'assertlibXXXXXXXX' ) . $Config{_exe};
        my @sys_cmd;
        # FIXME: re-factor - almost identical code later when linking
        if ( $Config{cc} eq 'cl' ) {                 # Microsoft compiler
            require Win32;
            @sys_cmd = (@cc, $cfile, "/Fe$exefile", (map { '/I'.Win32::GetShortPathName($_) } @incpaths));
        } elsif($Config{cc} =~ /bcc32(\.exe)?/) {    # Borland
            @sys_cmd = (@cc, (map { "-I$_" } @incpaths), "-o$exefile", $cfile);
        } else {                                     # Unix-ish
                                                     # gcc, Sun, AIX (gcc, cc)
            @sys_cmd = (@cc, $cfile, (map { "-I$_" } @incpaths), "-o", "$exefile");
        }
        warn "# @sys_cmd\n" if $args{debug};
        my $rv = $args{debug} ? system(@sys_cmd) : _quiet_system(@sys_cmd);
        push @missing, $header if $rv != 0 || ! -x $exefile; 
        _cleanup_exe($exefile);

inc/Devel/CheckLib.pm  view on Meta::CPAN

    for my $lib ( @libs ) {
        my $exefile = File::Temp::mktemp( 'assertlibXXXXXXXX' ) . $Config{_exe};
        my @sys_cmd;
        if ( $Config{cc} eq 'cl' ) {                 # Microsoft compiler
            require Win32;
            my @libpath = map { 
                q{/libpath:} . Win32::GetShortPathName($_)
            } @libpaths; 
            @sys_cmd = (@cc, $cfile, "${lib}.lib", "/Fe$exefile", 
                        "/link", @libpath
            );
        } elsif($Config{cc} eq 'CC/DECC') {          # VMS
        } elsif($Config{cc} =~ /bcc32(\.exe)?/) {    # Borland
            my @libpath = map { "-L$_" } @libpaths;
            @sys_cmd = (@cc, "-o$exefile", "-l$lib", @libpath, $cfile);
        } else {                                     # Unix-ish
                                                     # gcc, Sun, AIX (gcc, cc)
            my @libpath = map { "-L$_" } @libpaths;
            @sys_cmd = (@cc, $cfile,  "-o", "$exefile", "-l$lib", @libpath);
        }
        warn "# @sys_cmd\n" if $args{debug};
        my $rv = $args{debug} ? system(@sys_cmd) : _quiet_system(@sys_cmd);
        push @missing, $lib if $rv != 0 || ! -x $exefile; 
        _cleanup_exe($exefile);
    } 
    unlink $cfile;

    my $miss_string = join( q{, }, map { qq{'$_'} } @missing );
    die("Can't link/include $miss_string\n") if @missing;
}

sub _cleanup_exe {
    my ($exefile) = @_;

 view all matches for this distribution


ALBD

 view release on metacpan or  search on metacpan

lib/ALBD.pm  view on Meta::CPAN


# generates precision and recall values by varying the threshold
# of the A->C ranking measure. Also generates precision at k, and
# mean average precision
# input:  none
# output: none, but precision, recall, precision at k, and map values
#         output to STDOUT
sub timeSlicing_generatePrecisionAndRecall_implicit {
    my $NUM_SAMPLES = 200; #TODO, read fomr file number of samples to average over for timeslicing
    my $self = shift;
    my $start; #used to record run times

 view all matches for this distribution


ALPM

 view release on metacpan or  search on metacpan

lib/ALPM.pm  view on Meta::CPAN

}

sub search
{
	my($self, @qry) = @_;
	return map { $_->search(@qry) } $self->dbs;
}

1;

 view all matches for this distribution


AMF-Connection

 view release on metacpan or  search on metacpan

examples/amfclient.pl  view on Meta::CPAN

BEGIN
  {
    no strict 'refs';

    # blessed hash object to JSON object
    map
      {
        my $amf_class = $_;
        my $foo = $amf_class."::TO_JSON";

        # unbless object

examples/amfclient.pl  view on Meta::CPAN


          'flex.messaging.messages.AcknowledgeMessage'
        );

    # blessed hash object to JSON array
    map
      {
        my $foo = $_."::TO_JSON";
        # unbless
        *$foo = sub {
            $_[0]->{'externalizedData'};

 view all matches for this distribution


AMF-Perl

 view release on metacpan or  search on metacpan

doc/cpu.pl  view on Meta::CPAN

sub getCpuUsage
{
    my $output = `uptime`;
    my @tokens = split /\s+/, $output;
    #Remove commas.
    @tokens = map {s/,//g; $_} @tokens;
    
    my @array;
    my %hash = ("Name" => 'L 1', "Value" => $tokens[10]);
    push @array, \%hash;
    my %hash1 = ("Name" => 'L 5', "Value" => $tokens[11]);

 view all matches for this distribution


AMPR-Rip44

 view release on metacpan or  search on metacpan

t/manifest.t  view on Meta::CPAN

plan skip_all => "Test::CheckManifest 0.9 required" if $@;

open( my $exclude_fh, q{<}, File::Spec->catfile( $dist_dir, 'ignore.txt' ) )
  or die "couldn't open ignore.txt: $!";

my @exclude_files = map{
  chomp;
  /\*/ ?
    glob( File::Spec->catfile( $dist_dir, $_ ) ) :
    File::Spec->catfile( $dist_dir, $_ )
} ( <$exclude_fh> );

 view all matches for this distribution


ANSI-Heatmap

 view release on metacpan or  search on metacpan

examples/boxes.pl  view on Meta::CPAN

use strict;
use warnings;
use ANSI::Heatmap;

binmode STDOUT, ':utf8';

for my $half (0,1) {
    for my $box ([2,2], [3, 5], [9,9], [10,10], [11,11], [21,19]) {
        my ($x, $y) = @$box;
        my $map = ANSI::Heatmap->new(
            half => $half,
            min_x => 1,
            min_y => 1,
            max_x => $x,
            max_y => $y,
            swatch => 'grayscale',
        );

        my @white = (
            (map { [1,$_], [$x,$_] } (1..$y)),
            (map { [$_, 1], [$_, $y] } (1..$x)),
        );
        for my $c (@white) {
            $map->set(@$c, 100);
        }
        print "$x x $y\n";
        print $map, "\n";
    }
}

 view all matches for this distribution


API-BigBlueButton

 view release on metacpan or  search on metacpan

lib/API/BigBlueButton/Requests.pm  view on Meta::CPAN

=cut

sub generate_url_query {
    my ( $self, $params ) = @_;

    my $string = CORE::join( '&', map { "$_=$params->{$_}" } sort keys %{ $params } );

    return $string;
}

sub _generate_data {

 view all matches for this distribution


API-CLI

 view release on metacpan or  search on metacpan

t/00.compile.t  view on Meta::CPAN

for my $lib (@module_files)
{
    # see L<perlfaq8/How can I capture STDERR from an external command?>
    my $stderr = IO::Handle->new;

    diag('Running: ', join(', ', map { my $str = $_; $str =~ s/'/\\'/g; q{'} . $str . q{'} }
            $^X, @switches, '-e', "require q[$lib]"))
        if $ENV{PERL_COMPILE_TEST_DEBUG};

    my $pid = open3($stdin, '>&STDERR', $stderr, $^X, @switches, '-e', "require q[$lib]");
    binmode $stderr, ':crlf' if $^O eq 'MSWin32';

t/00.compile.t  view on Meta::CPAN

    close $fh and skip("$file isn't perl", 1) unless $line =~ /^#!\s*(?:\S*perl\S*)((?:\s+-\w*)*)(?:\s*#.*)?$/;
    @switches = (@switches, split(' ', $1)) if $1;

    my $stderr = IO::Handle->new;

    diag('Running: ', join(', ', map { my $str = $_; $str =~ s/'/\\'/g; q{'} . $str . q{'} }
            $^X, @switches, '-c', $file))
        if $ENV{PERL_COMPILE_TEST_DEBUG};

    my $pid = open3($stdin, '>&STDERR', $stderr, $^X, @switches, '-c', $file);
    binmode $stderr, ':crlf' if $^O eq 'MSWin32';

 view all matches for this distribution


API-CPanel

 view release on metacpan or  search on metacpan

lib/API/CPanel.pm  view on Meta::CPAN

    my $params = shift;

    return '' unless $params &&
        ref $params eq 'HASH' && %$params ;

    my $result = join '&', map { "$_=$params->{$_}" } sort keys %$params;
    warn $result if $DEBUG;

    return $result;
}

 view all matches for this distribution


API-Client

 view release on metacpan or  search on metacpan

lib/API/Client.pm  view on Meta::CPAN


=head1 THIN CLIENT

The thin API client library is advantageous as it has complete API coverage and
can easily adapt to changes in the API with minimal effort. As a thin-client
superclass, this module does not map specific HTTP requests to specific
routines, nor does it provide parameter validation, pagination, or other
conventions found in typical API client implementations; Instead, it simply
provides a simple and consistent mechanism for dynamically generating HTTP
requests.  Additionally, this module has support for debugging and retrying API
calls as well as throwing exceptions when 4xx and 5xx server response codes are

 view all matches for this distribution


API-DirectAdmin

 view release on metacpan or  search on metacpan

lib/API/DirectAdmin.pm  view on Meta::CPAN


    return '' unless ref $params eq 'HASH' && scalar keys %$params;

    my %params = %$params;

    my $result = join '&', map { "$_=$params{$_}" } sort keys %params;

    return $result;
}

# Get + deparse

 view all matches for this distribution


API-Drip-Request

 view release on metacpan or  search on metacpan

lib/API/Drip/Request.pm  view on Meta::CPAN

=cut

my $config_validator = validation_for(
    params => {
        DRIP_CLIENT_CONF => { type => Str(), optional => 1 },
        map { $_ => { type => Str(), optional => 1 } } keys %DEFAULTS,
        debugger => { type => CodeRef(), optional => 1 },
    }
);

sub new {

lib/API/Drip/Request.pm  view on Meta::CPAN

    my ($self, %OPT)  = @_;

    unless ($self->{DRIP_DEBUG}) { return sub {}; }
    if ( $OPT{debugger} ) { return $OPT{debugger} }

    return sub { warn join "\n", map { ref($_) ? np $_ : $_ } @_ };
}

=head2 do_request

Accepts the following positional parameters:

 view all matches for this distribution


( run in 0.545 second using v1.01-cache-2.11-cpan-49f99fa48dc )