Result:
found more than 436 distributions - search limited to the first 2001 files matching your query ( run in 0.934 )


AI-NNFlex

 view release on metacpan or  search on metacpan

examples/add.pl  view on Meta::CPAN



$network->init();

# Taken from Mesh ex_add.pl
my $dataset = AI::NNFlex::Dataset->new([
[ 1,   1   ], [ 2    ],
[ 1,   2   ], [ 3    ],
[ 2,   2   ], [ 4    ],
[ 20,  20  ], [ 40   ],
[ 10,  10  ], [ 20   ],

 view all matches for this distribution


AI-Nerl

 view release on metacpan or  search on metacpan

examples/digits/deep_digits.pl  view on Meta::CPAN


use FindBin qw($Bin); 
chdir $Bin;

unless (-e "t10k-labels-idx1-ubyte.fits"){ die <<"NODATA";}
pull this data by running get_digits.sh
convert it to FITS by running idx_to_fits.pl
NODATA


my $images = rfits('t10k-images-idx3-ubyte.fits');
my $labels = rfits('t10k-labels-idx1-ubyte.fits');
my $y = identity(10)->range($labels->transpose)->sever;
say 't10k data loaded';

my $nerl = AI::Nerl->new(
   # type => image,dims=>[28,28],...
   scale_input => 1/256,
);

 view all matches for this distribution


AI-NeuralNet-BackProp

 view release on metacpan or  search on metacpan

BackProp.pm  view on Meta::CPAN

		shift if(substr($_[0],0,4) eq 'AI::'); 
		my ($fa,$fb)=(shift,shift);
		sprintf("%.3f",((($fb-$fa)*((($fb-$fa)<0)?-1:1))/$fa)*100);
	}
	
	# This sub will take an array ref of a data set, which it expects in this format:
	#   my @data_set = (	[ ...inputs... ], [ ...outputs ... ],
	#				   				   ... rows ...
	#				   );
	#
	# This wil sub returns the percentage of 'forgetfullness' when the net learns all the
	# data in the set in order. Usage:
	#
	#	 learn_set(\@data,[ options ]);
	#
	# Options are options in hash form. They can be of any form that $net->learn takes.
	#
	# It returns a percentage string.
	#
	sub learn_set {
		my $self	=	shift if(substr($_[0],0,4) eq 'AI::'); 
		my $data	=	shift;
		my %args	=	@_;
		my $len		=	$#{$data}/2-1;
		my $inc		=	$args{inc};
		my $max		=	$args{max};
	    my $error	=	$args{error};
	    my $p		=	(defined $args{flag})	?$args{flag}	   :1;
	    my $row		=	(defined $args{pattern})?$args{pattern}*2+1:1;
	    my ($fa,$fb);
		for my $x (0..$len) {
			print "\nLearning index $x...\n" if($AI::NeuralNet::BackProp::DEBUG);
			my $str = $self->learn( $data->[$x*2],			# The list of data to input to the net
					  		  		$data->[$x*2+1], 		# The output desired
					    			inc=>$inc,				# The starting learning gradient
					    			max=>$max,				# The maximum num of loops allowed
					    			error=>$error);			# The maximum (%) error allowed
			print $str if($AI::NeuralNet::BackProp::DEBUG); 
		}
			
		
		my $res;
		$data->[$row] = $self->crunch($data->[$row]) if($data->[$row] == 0);
		
		if ($p) {
			$res=pdiff($data->[$row],$self->run($data->[$row-1]));
		} else {
			$res=$data->[$row]->[0]-$self->run($data->[$row-1])->[0];
		}
		return $res;
	}
	
	# This sub will take an array ref of a data set, which it expects in this format:
	#   my @data_set = (	[ ...inputs... ], [ ...outputs ... ],
	#				   				   ... rows ...
	#				   );
	#
	# This wil sub returns the percentage of 'forgetfullness' when the net learns all the
	# data in the set in RANDOM order. Usage:
	#
	#	 learn_set_rand(\@data,[ options ]);
	#
	# Options are options in hash form. They can be of any form that $net->learn takes.
	#
	# It returns a true value.
	#
	sub learn_set_rand {
		my $self	=	shift if(substr($_[0],0,4) eq 'AI::'); 
		my $data	=	shift;
		my %args	=	@_;
		my $len		=	$#{$data}/2-1;
		my $inc		=	$args{inc};
		my $max		=	$args{max};
	    my $error	=	$args{error};
	    my @learned;
		while(1) {
			_GET_X:
			my $x=$self->intr(rand()*$len);
			goto _GET_X if($learned[$x]);
			$learned[$x]=1;
			print "\nLearning index $x...\n" if($AI::NeuralNet::BackProp::DEBUG); 
			my $str =  $self->learn($data->[$x*2],			# The list of data to input to the net
					  		  		$data->[$x*2+1], 		# The output desired
					    			inc=>$inc,				# The starting learning gradient
			 		    			max=>$max,				# The maximum num of loops allowed
					    			error=>$error);			# The maximum (%) error allowed
			print $str if($AI::NeuralNet::BackProp::DEBUG); 
		}

 view all matches for this distribution


AI-NeuralNet-Hopfield

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

README
t/00-load.t
t/manifest.t
t/pod-coverage.t
t/pod.t
META.yml                                 Module YAML meta-data (added by MakeMaker)
META.json                                Module JSON meta-data (added by MakeMaker)

 view all matches for this distribution


AI-NeuralNet-Kohonen-Visual

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

Makefile.PL
MANIFEST
README
t/AI-NeuralNet-Kohonen-Visual.t
lib/AI/NeuralNet/Kohonen/Visual.pm
META.yml                                 Module meta-data (added by MakeMaker)

 view all matches for this distribution


AI-NeuralNet-Kohonen

 view release on metacpan or  search on metacpan

lib/AI/NeuralNet/Kohonen.pm  view on Meta::CPAN

	1 .5 0 orange
	1 .5 1 pink"
	);

	$_->train;
	$_->save_file('mydata.txt');
	exit;

=head1 DESCRIPTION

An illustrative implimentation of Kohonen's Self-organising Feature Maps (SOMs)

 view all matches for this distribution


AI-NeuralNet-Mesh

 view release on metacpan or  search on metacpan

Mesh.pm  view on Meta::CPAN

        # First create the individual nodes
		for my $x (0..$tmp-1) {         
			$self->{mesh}->[$x] = AI::NeuralNet::Mesh::node->new($self);
        }              
        
        # Get an instance of an output (data collector) node
		$self->{output} = AI::NeuralNet::Mesh::output->new($self);
		
		# Connect the output layer to the data collector
        for $x (0..$outputs-1) {                    
			$self->{mesh}->[$tmp-$outputs+$x]->add_output_node($self->{output});
		}
		
		# Now we use the _c() method to connect the layers together.

 view all matches for this distribution


AI-NeuralNet-SOM

 view release on metacpan or  search on metacpan

lib/AI/NeuralNet/SOM.pm  view on Meta::CPAN

    [ 0, 4, -3]);

  my @mes = $nn->train (30, ...);      # learn about the smallest errors
                                       # during training

  print $nn->as_data;                  # dump the raw data
  print $nn->as_string;                # prepare a somehow formatted string

  use AI::NeuralNet::SOM::Torus;
  # similar to above

 view all matches for this distribution


AI-NeuralNet-Simple

 view release on metacpan or  search on metacpan

examples/game_ai.pl  view on Meta::CPAN

    return $response;
}

sub display_result
{
    my ($net,@data) = @_;
    my $result      = $net->winner(\@data);
    my @health      = qw/Poor Average Good/;
    my @knife       = qw/No Yes/;
    my @gun         = qw/No Yes/;
    printf $format, 
        $health[$_[1]], 

 view all matches for this distribution


AI-Ollama-Client

 view release on metacpan or  search on metacpan

lib/AI/Ollama/Client.pm  view on Meta::CPAN


=head2 C<< deleteModel >>

  my $res = $client->deleteModel()->get;

Delete a model and its data.


=cut

=head2 C<< generateEmbedding >>

 view all matches for this distribution


AI-PBDD

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

Makefile.PL
MANIFEST
README
t/PBDD.t
XS.xs
META.yml                                 Module YAML meta-data (added by MakeMaker)
META.json                                Module JSON meta-data (added by MakeMaker)

 view all matches for this distribution


AI-PSO

 view release on metacpan or  search on metacpan

examples/NeuralNet/pso_ann.pl  view on Meta::CPAN

	print ANN "\n";
	close(ANN);
}

sub runANN($$) {
	my ($configFile, $dataFile) = @_;
	my $networkValue = `ann_compute $configFile $dataFile`;
	chomp($networkValue);
	return $networkValue;
}

 view all matches for this distribution


AI-ParticleSwarmOptimization-MCE

 view release on metacpan or  search on metacpan

LICENSE  view on Meta::CPAN

distributed under the terms of this Lesser General Public
License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or
data prepared so as to be conveniently linked with
application programs (which use some of those functions
and data) to form executables.

The "Library", below, refers to any such software library or
work which has been distributed under these terms. A "work
based on the Library" means either the Library or any
derivative work under copyright law: that is to say, a work

 view all matches for this distribution


AI-Pathfinding-AStar-Rectangle

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

t/06-setstart.t
t/07-dastar.t

examples/snake_labirint.pl
Benchmark/perl-vs-xs.pl
META.yml                                 Module meta-data (added by MakeMaker)

 view all matches for this distribution


AI-Pathfinding-OptimizeMultiple

 view release on metacpan or  search on metacpan

lib/AI/Pathfinding/OptimizeMultiple.pm  view on Meta::CPAN

use Scalar::Util qw/ blessed /;

has chosen_scans     => ( isa => 'ArrayRef', is => 'rw' );
has _iter_idx        => ( isa => 'Int', is => 'rw', default  => sub { 0; }, );
has _num_boards      => ( isa => 'Int', is => 'ro', init_arg => 'num_boards', );
has _orig_scans_data => ( isa => 'PDL', is => 'rw' );
has _optimize_for => ( isa => 'Str', is => 'ro', init_arg => 'optimize_for', );
has _scans_data   => ( isa => 'PDL', is => 'rw' );
has _selected_scans =>
    ( isa => 'ArrayRef', is => 'ro', init_arg => 'selected_scans', );
has _status => ( isa => 'Str',           is => 'rw' );
has _quotas => ( isa => 'ArrayRef[Int]', is => 'ro', init_arg => 'quotas' );
has _total_boards_solved => ( isa => 'Int', is => 'rw' );
has _total_iters         => ( is  => 'rw' );
has _trace_cb =>
    ( isa => 'Maybe[CodeRef]', is => 'ro', init_arg => 'trace_cb' );
has _scans_meta_data => ( isa => 'ArrayRef', is => 'ro', init_arg => 'scans' );
has _scans_iters_pdls =>
    ( isa => 'HashRef', is => 'rw', init_arg => 'scans_iters_pdls' );
has _stats_factors => (
    isa      => 'HashRef',
    is       => 'ro',

 view all matches for this distribution


AI-Perceptron-Simple

 view release on metacpan or  search on metacpan

lib/AI/Perceptron/Simple.pm  view on Meta::CPAN

    } );

    # train
    $nerve->tame( ... );
    $nerve->exercise( ... );
    $nerve->train( $training_data_csv, $expected_column_name, $save_nerve_to );
    # or
    $nerve->train(
        $training_data_csv, $expected_column_name, $save_nerve_to, 
        $show_progress, $identifier); # these two parameters must go together


    # validate
    $nerve->take_lab_test( ... );
    $nerve->take_mock_exam( ... );

    # fill results to original file
    $nerve->validate( { 
        stimuli_validate => $validation_data_csv, 
        predicted_column_index => 4,
     } );
    # or        
    # fill results to a new file
    $nerve->validate( {
        stimuli_validate => $validation_data_csv,
        predicted_column_index => 4,
        results_write_to => $new_csv
    } );


 view all matches for this distribution


AI-PredictionClient-Alien-TensorFlowServingProtos

 view release on metacpan or  search on metacpan

alien_packages/tds/base64.proto  view on Meta::CPAN

option cc_enable_arenas = true;
option java_outer_classname = "base64";
option java_multiple_files = true;
option java_package = "org.tds";

// Protocol buffer to encode/decode base64 data for JSON transport.
// Protocol Buffers encode bytes to base64 when transforming to JSON.

message Base64Proto {
 repeated bytes base64  = 1;
};

 view all matches for this distribution


AI-PredictionClient

 view release on metacpan or  search on metacpan

lib/AI/PredictionClient.pm  view on Meta::CPAN


If you don't have a server to talk to, but want to see if most everything else is working use 
the --debug_loopback_interface. This will provide a sample response you can test the client with. 
The module can use the same loopback interface for debugging your bespoke clients.

The --debug_verbose option will dump the data structures of the request and response to allow
you to see what is going on.

=head3 The response from a live server to the camel image looks like this:

 Inception.pl --image_file=zzzzz --debug_camel --host=107.170.xx.xxx --port=9000    

 view all matches for this distribution


AI-SimulatedAnnealing

 view release on metacpan or  search on metacpan

t/annealing_tests.t  view on Meta::CPAN

        when ($Text::BSV::Exception::IO_ERROR) {
            say STDERR "Couldn't open $DQ$bsv_file_path$DQ for reading.";
            exit(1);
        }
        when ($Text::BSV::Exception::INVALID_DATA_FORMAT) {
            say STDERR "Invalid BSV data:  " . $exception->get_message();
            exit(1);
        }
        default {
            say STDERR $exception->get_message();
            exit(1);
        } # end when
    } # end given
} # end if

# Generate a list of distances for each probability from the data in the
# BSV file:
my $field_names = $bsv_file_reader->get_field_names();
my @mapped_distances; # indexes 2-5 = Probability constants;
                      # values = references to number arrays

 view all matches for this distribution


AI-Termites

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

Makefile.PL
MANIFEST			This list of files
README
samples/termites.pl
t/AI-Termites.t
META.yml                                 Module meta-data (added by MakeMaker)

 view all matches for this distribution


AI-XGBoost

 view release on metacpan or  search on metacpan

examples/basic.pl  view on Meta::CPAN

use AI::XGBoost qw(train);

# We are going to solve a binary classification problem:
#  Mushroom poisonous or not

my $train_data = DMatrix->From(file => 'agaricus.txt.train');
my $test_data = DMatrix->From(file => 'agaricus.txt.test');

# With XGBoost we can solve this problem using 'gbtree' booster
#  and as loss function a logistic regression 'binary:logistic'
#  (Gradient Boosting Regression Tree)
# XGBoost Tree Booster has a lot of parameters that we can tune
# (https://github.com/dmlc/xgboost/blob/master/doc/parameter.md)

my $booster = train(data => $train_data, number_of_rounds => 10, params => {
        objective => 'binary:logistic',
        eta => 1.0,
        max_depth => 2,
        silent => 1
    });

# For binay classification predictions are probability confidence scores in [0, 1]
#  indicating that the label is positive (1 in the first column of agaricus.txt.test)
my $predictions = $booster->predict(data => $test_data);

say join "\n", @$predictions[0 .. 10];

 view all matches for this distribution


AIIA-GMT

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

MANIFEST
ppport.h
README
t/AIIA-GMT.t
lib/AIIA/GMT.pm
META.yml                                 Module meta-data (added by MakeMaker)

 view all matches for this distribution


( run in 0.934 second using v1.00-cache-2.02-grep-82fe00e-cpan-4673cadbf75 )