Result:
found more than 436 distributions - search limited to the first 2001 files matching your query ( run in 0.826 )


AI-CRM114

 view release on metacpan or  search on metacpan

lib/AI/CRM114.pm  view on Meta::CPAN


__END__

=head1 NAME

AI::CRM114 - Wrapper for the statistical data classifier CRM114

=head1 SYNOPSIS

  use AI::CRM114;
  my $crm = AI::CRM114->new(cmd => '/path/to/crm');

 view all matches for this distribution


AI-Categorizer

 view release on metacpan or  search on metacpan

eg/demo.pl  view on Meta::CPAN

use AI::Categorizer::Collection::Files;
use AI::Categorizer::Learner::NaiveBayes;
use File::Spec;

die("Usage: $0 <corpus>\n".
    "  A sample corpus (data set) can be downloaded from\n".
    "     http://www.cpan.org/authors/Ken_Williams/data/reuters-21578.tar.gz\n".
    "  or http://www.limnus.com/~ken/reuters-21578.tar.gz\n")
  unless @ARGV == 1;

my $corpus = shift;

 view all matches for this distribution


AI-Chat

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

t/01-openai.t
t/manifest.t
t/pod-coverage.t
t/pod.t
t/version.t
META.yml                                 Module YAML meta-data (added by MakeMaker)
META.json                                Module JSON meta-data (added by MakeMaker)

 view all matches for this distribution


AI-Classifier

 view release on metacpan or  search on metacpan

lib/AI/Classifier/Text/FileLearner.pm  view on Meta::CPAN

has iterator => ( is => 'ro', lazy_build => 1 );
sub _build_iterator {
    my $self = shift;
    my $rule = File::Find::Rule->new( );
    $rule->file;
    $rule->not_name('*.data');
    $rule->start( $self->training_dir );
    return $rule;
}

sub get_category {

 view all matches for this distribution


AI-DecisionTree

 view release on metacpan or  search on metacpan

eg/example.pl  view on Meta::CPAN


# Show the created tree structure as rules
print map "$_\n", $dtree->rule_statements;


# Will barf on inconsistent data
my $t2 = new AI::DecisionTree;
$t2->add_instance( attributes => { foo => 'bar' },
		   result => 1 );
$t2->add_instance( attributes => { foo => 'bar' },
		   result => 0 );

 view all matches for this distribution


AI-Embedding

 view release on metacpan or  search on metacpan

lib/AI/Embedding.pm  view on Meta::CPAN

     my ($self, $text, $verbose) = @_;

     my $response = $self->_get_embedding($text);
     if ($response->{'success'}) {
         my $embedding = decode_json($response->{'content'});
         return join (',', @{$embedding->{'data'}[0]->{'embedding'}});
     }
     $self->{'error'} = 'HTTP Error - ' . $response->{'reason'};
     return $response if defined $verbose;
     return undef;
 }

 view all matches for this distribution


AI-Evolve-Befunge

 view release on metacpan or  search on metacpan

lib/AI/Evolve/Befunge.pm  view on Meta::CPAN

critters may be weighed against eachother.  It provides a set of
commands which may be used by the critters to do useful things within
its universe (such as make a move in a board game, do a spellcheck,
or request a google search).

Physics engines register themselves with the Physics database (which
is managed by Physics.pm).  The arguments they pass to
register_physics() get wrapped up in a hash reference, which is copied
for you whenever you call Physics->new("pluginname").  The "commands"
argument is particularly important: this is where you add special
befunge commands and provide references to callback functions to

 view all matches for this distribution


AI-ExpertSystem-Advanced

 view release on metacpan or  search on metacpan

inc/Module/Install/Metadata.pm  view on Meta::CPAN

#line 1
package Module::Install::Metadata;

use strict 'vars';
use Module::Install::Base ();

use vars qw{$VERSION @ISA $ISCORE};

 view all matches for this distribution


AI-FANN-Evolving

 view release on metacpan or  search on metacpan

lib/AI/FANN/Evolving.pm  view on Meta::CPAN


=over

=item new

Constructor requires 'file', or 'data' and 'neurons' arguments. Optionally takes 
'connection_rate' argument for sparse topologies. Returns a wrapper around L<AI::FANN>.

=cut

sub new {

 view all matches for this distribution


AI-FuzzyEngine

 view release on metacpan or  search on metacpan

lib/AI/FuzzyEngine.pm  view on Meta::CPAN

    my $problem   = $fe->new_variable( -0.5 => 2,
                           no  => [-0.5, 0, 0, 1, 0.5, 0, 1, 0],
                           yes => [         0, 0, 0.5, 1, 1, 1, 1.5, 1, 2, 0],
                         );

    # Input data is a pdl of arbitrary dimension
    my $data = pdl( [0, 4, 6, 10] );
    $severity->fuzzify( $data );

    # Membership degrees are piddles now:
    print 'Severity is high: ', $severity->high, "\n";
    # [0 0.5 1 1]

 view all matches for this distribution


AI-FuzzyInference

 view release on metacpan or  search on metacpan

FuzzyInference.pm  view on Meta::CPAN

    return $obj;
}

# sub _init() - private method.
#
# no arguments. Initializes the data structures we will need.
# It also defines the default logic operations we might need.

sub _init {
    my $self = shift;

 view all matches for this distribution


AI-Gene-Sequence

 view release on metacpan or  search on metacpan

AI/Gene/Sequence.pm  view on Meta::CPAN


A gene is a sequence of tokens, each a member of some group
of simillar tokens (they can of course all be members of a
single group).  This module encodes genes as a string
representing token types, and an array containing the
tokens themselves, this allows for arbitary data to be
stored as a token in a gene.

For instance, a regular expression could be encoded as:

 $self = ['ccartm',['a', 'b', '|', '[A-Z]', '\W', '*?'] ]

 view all matches for this distribution


AI-Genetic-Pro

 view release on metacpan or  search on metacpan

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

	$self->_fitness_real($self->fitness);
	$self->fitness(\&_fitness_cached);
	return;
}
#=======================================================================
sub _check_data_ref {
	my ($self, $data_org) = @_;
	my $data = clone($data_org);
	my $ars;
	for(0..$#$data){
		next if $ars->{$data->[$_]};
		$ars->{$data->[$_]} = 1;
		unshift @{$data->[$_]}, undef;
	}
	return $data;
}
#=======================================================================
# we have to find C to (in some cases) incrase value of range
# due to design model
sub _find_fix_range {
	my ($self, $data) = @_;

	for my $idx (0..$#$data){
		if($data->[$idx]->[1] < 1){ 
			my $const = 1 - $data->[$idx]->[1];
			push @{$self->_fix_range}, $const; 
			$data->[$idx]->[1] += $const;
			$data->[$idx]->[2] += $const;
		}else{ push @{$self->_fix_range}, 0; }
	}

	return $data;
}
#=======================================================================
sub init { 
	my ( $self, $data ) = @_;
	
	croak q/You have to pass some data to "init"!/ unless $data;
	#-------------------------------------------------------------------
	$self->generation(0);
	$self->_init( $data );
	$self->_fitness( { } );
	$self->_fix_range( [ ] );
	$self->_history( [  [ ], [ ], [ ] ] );
	$self->_init_cache if $self->cache;
	#-------------------------------------------------------------------
	
	if($self->type eq q/listvector/){
		croak(q/You have to pass array reference if "type" is set to "listvector"/) unless ref $data eq 'ARRAY';
		$self->_translations( $self->_check_data_ref($data) );
	}elsif($self->type eq q/bitvector/){
		croak(q/You have to pass integer if "type" is set to "bitvector"/) if $data !~ /^\d+$/o;
		$self->_translations( [ [ 0, 1 ] ] );
		$self->_translations->[$_] = $self->_translations->[0] for 1..$data-1;
	}elsif($self->type eq q/combination/){
		croak(q/You have to pass array reference if "type" is set to "combination"/) unless ref $data eq 'ARRAY';
		$self->_translations( [ clone($data) ] );
		$self->_translations->[$_] = $self->_translations->[0] for 1..$#$data;
	}elsif($self->type eq q/rangevector/){
		croak(q/You have to pass array reference if "type" is set to "rangevector"/) unless ref $data eq 'ARRAY';
		$self->_translations( $self->_find_fix_range( $self->_check_data_ref($data) ));
	}else{
		croak(q/You have to specify first "type" of vector!/);
	}
	
	my $size = 0;

 view all matches for this distribution


AI-LibNeural

 view release on metacpan or  search on metacpan

LICENSE  view on Meta::CPAN

contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License").  Each licensee is
addressed as "you".

  A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

  The "Library", below, refers to any such software library or work
which has been distributed under these terms.  A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a

 view all matches for this distribution


AI-ML

 view release on metacpan or  search on metacpan

lib/AI/ML/Expr.pm  view on Meta::CPAN


=cut

sub plot {
    my ($x, $y, $theta, $file) = @_;
    my @xdata  = $x->vector_to_list();
    my @ydata  = $y->vector_to_list();
    my @thetas = $theta->vector_to_list();
    my $f = $thetas[0] . "+" . $thetas[1] . "*x";

    #print STDERR "$_\n" for(@xdata);
    #rint STDERR "$_\n" for(@ydata);
    #print STDERR "$f\n";
    #print STDERR "\n\nFILE == $file\n\n";
    my $chart = Chart::Gnuplot->new(
            output     => $file,
            title     => "Nice one",
            xlabel     => "x",
            ylabel     => "y"
    );

    my $points = Chart::Gnuplot::DataSet->new(
            xdata     => \@xdata,
            ydata     => \@ydata,
            style     => "points"
    );

    my $func = Chart::Gnuplot::DataSet->new(
            func     => $f

 view all matches for this distribution


AI-MXNet-Gluon-ModelZoo

 view release on metacpan or  search on metacpan

examples/image_classification.pl  view on Meta::CPAN

use Getopt::Long qw(HelpMessage);

GetOptions(
    ## my Pembroke Welsh Corgi Kyuubi, enjoing Solar eclipse of August 21, 2017
    'image=s' => \(my $image = 'http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/'.
                               'gluon/dataset/kyuubi.jpg'),
    'model=s' => \(my $model = 'resnet152_v2'),
    'help'    => sub { HelpMessage(0) },
) or HelpMessage(1);

## get a pretrained model (download parameters file if necessary)
my $net = get_model($model, pretrained => 1);

## ImageNet classes
my $fname = download('http://data.mxnet.io/models/imagenet/synset.txt');
my @text_labels = map { chomp; s/^\S+\s+//; $_ } IO::File->new($fname)->getlines;

## get the image from the disk or net
if($image =~ /^https/)
{
    eval { require IO::Socket::SSL; };
    die "Need to have IO::Socket::SSL installed for https images" if $@;
}
$image = $image =~ /^https?/ ? download($image) : $image;

# Following the conventional way of preprocessing ImageNet data:
# Resize the short edge into 256 pixes,
# And then perform a center crop to obtain a 224-by-224 image.
# The following code uses the image processing functions provided 
# in the AI::MXNet::Image module.

 view all matches for this distribution


AI-MXNet

 view release on metacpan or  search on metacpan

examples/calculator.pl  view on Meta::CPAN

    my($batch_size, $func) = @_;
    # get samples
    my $n = 16384;
    ## creates a pdl with $n rows and two columns with random
    ## floats in the range between 0 and 1
    my $data = PDL->random(2, $n);
    ## creates the pdl with $n rows and one column with labels
    ## labels are floats that either sum or product, etc of
    ## two random values in each corresponding row of the data pdl
    my $label = $func->($data->slice('0,:'), $data->slice('1,:'));
    # partition into train/eval sets
    my $edge = int($n / 8);
    my $validation_data = $data->slice(":,0:@{[ $edge - 1 ]}");
    my $validation_label = $label->slice(":,0:@{[ $edge - 1 ]}");
    my $train_data = $data->slice(":,$edge:");
    my $train_label = $label->slice(":,$edge:");
    # build iterators around the sets
    return(mx->io->NDArrayIter(
        batch_size => $batch_size,
        data => $train_data,
        label => $train_label,
    ), mx->io->NDArrayIter(
        batch_size => $batch_size,
        data => $validation_data,
        label => $validation_label,
    ));
}

## the network model
sub nn_fc {
    my $data = mx->sym->Variable('data');
    my $ln = mx->sym->exp(mx->sym->FullyConnected(
        data => mx->sym->log($data),
        num_hidden => 1,
    ));
    my $wide = mx->sym->Concat($data, $ln);
    my $fc = mx->sym->FullyConnected(
	$wide,
	num_hidden => 1
    );
    return mx->sym->MAERegressionOutput(data => $fc, name => 'softmax');
}

sub learn_function {
    my(%args) = @_;
    my $func = $args{func};

 view all matches for this distribution


AI-MXNetCAPI

 view release on metacpan or  search on metacpan

mxnet.i  view on Meta::CPAN

typedef MXSymbol *SymbolHandle;
/*! \brief handle to a AtomicSymbol */
typedef MXAtomicSymbol *AtomicSymbolHandle;
/*! \brief handle to an Executor */
typedef MXExecutor *ExecutorHandle;
/*! \brief handle a dataiter creator */
typedef MXDataIterCreator *DataIterCreator;
/*! \brief handle to a DataIterator */
typedef MXDataIter *DataIterHandle;
/*! \brief handle to KVStore */
typedef MXKVStore *KVStoreHandle;

 view all matches for this distribution


AI-MaxEntropy

 view release on metacpan or  search on metacpan

inc/Module/Install/Metadata.pm  view on Meta::CPAN

#line 1
package Module::Install::Metadata;

use strict 'vars';
use Module::Install::Base;

use vars qw{$VERSION $ISCORE @ISA};

 view all matches for this distribution


AI-MicroStructure

 view release on metacpan or  search on metacpan

bin/from-folder.pl  view on Meta::CPAN


p @{[keys %$files,reverse @ARGV,$storage]};

__DATA__
our $c = AI::MicroStructure::Context->new(@ARGV);
    $c->retrieveIndex($PWD."/t/docs"); #"/home/santex/data-hub/data-hub" structures=0 text=1 json=1



   my $style = {};
      $style->{explicit}  = 1;

 view all matches for this distribution


( run in 0.826 second using v1.00-cache-2.02-grep-82fe00e-cpan-4673cadbf75 )