AI-FANN-Evolving

 view release on metacpan or  search on metacpan

lib/AI/FANN/Evolving/Gene.pm  view on Meta::CPAN

			
			# invoke the error_func provided by the experiment
			$fitness += $error_func->($observed,$expected);
		}
		$fitness /= $env->length;
		
		# store result
		$self->{'fitness'} = $fitness;

		# store the AI		
		my $outfile = $self->experiment->workdir . "/${fitness}.ann";
		$self->ann->save($outfile);
		return $self->{'fitness'};
	}
}

=item fitness

Stores the fitness value after expressing the fitness function

=cut

script/aivolver  view on Meta::CPAN

use AI::FANN::Evolving::TrainData;
use Algorithm::Genetic::Diploid::Logger ':levels';

# initialize config variables
my $verbosity = WARN; # log level
my $formatter = 'simple'; # log formatter
my %initialize;       # settings to start the population
my %data;             # train and test data files
my %experiment;       # experiment settings
my %ann;              # ANN settings
my $outfile;

# there are no arguments
if ( not @ARGV ) {
	pod2usage( '-verbose' => 0 );
}

# first argument is a config file
if ( -e $ARGV[0] ) {
	my $conf = shift;
	my $yaml = LoadFile($conf);
	$outfile    = $yaml->{'outfile'}         if defined $yaml->{'outfile'};
	$verbosity  = $yaml->{'verbosity'}       if defined $yaml->{'verbosity'};
	$formatter  = $yaml->{'formatter'}       if defined $yaml->{'formatter'};
	%initialize = %{ $yaml->{'initialize'} } if defined $yaml->{'initialize'};
	%data       = %{ $yaml->{'data'} }       if defined $yaml->{'data'};
	%experiment = %{ $yaml->{'experiment'} } if defined $yaml->{'experiment'};
	%ann        = %{ $yaml->{'ann'} }        if defined $yaml->{'ann'};
}

# process command line arguments
GetOptions(
	'verbose+'     => \$verbosity,
	'formatter=s'  => \$formatter,
	'outfile=s'    => \$outfile,
	'initialize=s' => \%initialize,
	'data=s'       => \%data,
	'experiment=s' => \%experiment,
	'ann=s'        => \%ann,
	'help|?'       => sub { pod2usage( '-verbose' => 1 ) },
	'manual'       => sub { pod2usage( '-verbose' => 2 ) },
);

# configure ANN
AI::FANN::Evolving->defaults(%ann);

script/aivolver  view on Meta::CPAN

	%experiment,
);

# initialize the experiment
$exp->initialize(%initialize);

# run!
my ( $fittest, $fitness ) = $exp->run();
$log->info("*** overall best fitness: $fitness");
my ($gene) = sort { $a->fitness <=> $b->fitness } map { $_->genes } $fittest->chromosomes;
$gene->ann->save($outfile);

__END__

=pod

=head1 NAME

aivolver - Evolves optimal artificial neural networks

=head1 SYNOPSIS

script/aivolver  view on Meta::CPAN

Prints help message and exits.

=item B<-m/--manual>

Prints manual page and exits.

=item B<-v/--verbose>

Increments verbosity of the process. Can be used multiple times.

=item B<-o/--outfile <file.annE<gt>>

File name for the fittest ANN file over all generations.

=item B<-d/--data <key=valueE<gt>>

The C<data> argument is used multiple times, each time followed by a key/value pair
that defines the location of one of the data files. The key/value pairs are as follows:

=over

script/aivolver  view on Meta::CPAN

Artificial neural networks (ANNs) are decision-making machines that develop their
capabilities by training on input data. During this training, the ANN builds a
topology of input neurons, hidden neurons, and output neurons that respond to signals
in ways (and with sensitivities) that are determined by a variety of parameters. How
these parameters will interact to give rise to the final functionality of the ANN is
hard to predict I<a priori>, but can be optimized in a variety of ways.

C<aivolver> is a program that does this by evolving parameter settings using a genetic
algorithm that runs for a number of generations determined by C<ngens>. During this
process it writes the intermediate ANNs into the C<workdir> until the best result is
written to the C<outfile>.

The genetic algorithm proceeds by simulating a population of C<individual_count> diploid
individuals that each have C<chromosome_count> chromosomes whose C<gene_count> genes
encode the parameters of the ANN. During each generation, each individual is trained
on a sample data set, and the individual's fitness is then calculated by testing its
predictive abilities on an out-of-sample data set. The fittest individuals (whose
fraction of the total is determined by C<reproduction_rate>) are selected for breeding
in proportion to their fitness.

Before breeding, each individual undergoes a process of mutation, where a fraction of



( run in 0.260 second using v1.01-cache-2.11-cpan-4d50c553e7e )