Algorithm-KMeans
view release on metacpan or search on metacpan
examples/cluster_after_data_normalization.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## cluster_after_data_normalization.pl
## IMPORTANT: Read the 6 point customization of a script like this in the file:
##
## cluster_and_visualize.pl
## This script demonstrates the use of the
##
examples/cluster_and_visualize.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## cluster_and_visualize.pl
## This is the most basic script in the `examples' directory of the Algorithm::KMeans
## module. This script shows how the module is supposed to be called for clustering
## your data file. You must experiment with all of the different options at the
## six locations mentioned below in order to become more familiar with the capabilities
## of the module.
examples/cluster_and_visualize_with_data_visualization.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## cluster_and_visualize_with_data_visualization.pl
## IMPORTANT: Read the 6 point customization of a script like this in the
## file
## cluster_and_visualize.pl
examples/data_generator.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
use strict;
use Algorithm::KMeans;
# The Parameter File:
# How the synthetic data is generated for clustering is
# controlled entirely by the input_parameter_file keyword in
# the function call shown below. The mean vector and
# covariance matrix entries in file must be according to the
examples/find_best_K_and_cluster.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## find_best_K_and_cluster.pl
## IMPORTANT: Read the 6 point customization of a script like this in the file:
##
## cluster_and_visualize.pl
examples/find_best_K_in_range_and_cluster.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## find_best_K_in_range_and_cluster.pl
## IMPORTANT: Read the 6 point customization of a script like this in the
## file:
## cluster_and_visualize.pl
examples/which_cluster_for_new_data.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## which_cluster_for_new_data.pl
## Let's say that after you are done with the clustering of your data, you have a
## new data element and you want to find out as to which cluster it belongs to.
## This script demonstrates how you can do that by making calls to the following
## two methods of the module:
##
## which_cluster_for_new_data_element()
use Test::Simple tests => 3;
use lib '../blib/lib','../blib/arch';
use Algorithm::KMeans;
# Test 1 (Data Generation):
my $datafile = "__testdata.dat";
Algorithm::KMeans->cluster_data_generator(
output_datafile => $datafile,
number_data_points_per_cluster => 20 );
open IN, $datafile;
( run in 0.554 second using v1.01-cache-2.11-cpan-87723dcf8b7 )