Algorithm-DecisionTree
view release on metacpan or search on metacpan
lib/Algorithm/BoostedDecisionTree.pm view on Meta::CPAN
#--------------------------------------------------------------------------------------
# Copyright (c) 2017 Avinash Kak. All rights reserved. This program is free
# software. You may modify and/or distribute it under the same terms as Perl itself.
# This copyright notice must remain attached to the file.
#
# Algorithm::BoostedDecisionTree is a Perl module for boosted decision-tree based
# classification of multidimensional data.
# -------------------------------------------------------------------------------------
#use lib 'blib/lib', 'blib/arch';
#use 5.10.0;
use strict;
use warnings;
use Carp;
use Algorithm::DecisionTree 3.43;
use List::Util qw(reduce min max);
our $VERSION = '3.43';
lib/Algorithm/DecisionTreeWithBagging.pm view on Meta::CPAN
#--------------------------------------------------------------------------------------
# Copyright (c) 2017 Avinash Kak. All rights reserved. This program is free
# software. You may modify and/or distribute it under the same terms as Perl itself.
# This copyright notice must remain attached to the file.
#
# Algorithm::DecisionTreeWithBagging is a Perl module for incorporating bagging in
# decision tree construction and in classification using decision trees.
# -------------------------------------------------------------------------------------
#use lib 'blib/lib', 'blib/arch';
#use 5.10.0;
use strict;
use warnings;
use Carp;
use Algorithm::DecisionTree 3.43;
our $VERSION = '3.43';
############################################ Constructor ##############################################
lib/Algorithm/RandomizedTreesForBigData.pm view on Meta::CPAN
#--------------------------------------------------------------------------------------
# Copyright (c) 2017 Avinash Kak. All rights reserved. This program is free
# software. You may modify and/or distribute it under the same terms as Perl itself.
# This copyright notice must remain attached to the file.
#
# Algorithm::RandomizedTreesForBigData is a Perl module for inducing multiple decision
# trees using randomized selection of samples from a large training data file.
# -------------------------------------------------------------------------------------
#use lib 'blib/lib', 'blib/arch';
#use 5.10.0;
use strict;
use warnings;
use Carp;
use List::Util qw(pairmap);
use Algorithm::DecisionTree 3.43;
our $VERSION = '3.43';
lib/Algorithm/RegressionTree.pm view on Meta::CPAN
#--------------------------------------------------------------------------------------
# Copyright (c) 2017 Avinash Kak. All rights reserved. This program is free
# software. You may modify and/or distribute it under the same terms as Perl itself.
# This copyright notice must remain attached to the file.
#
# Algorithm::RegressionTree is a Perl module for constructing regression trees. It calls
# on the main Algorithm::DecisionTree module for some of its functionality.
# -------------------------------------------------------------------------------------
#use lib 'blib/lib', 'blib/arch';
#use 5.10.0;
use strict;
use warnings;
use Carp;
use File::Basename;
use Algorithm::DecisionTree 3.43;
use List::Util qw(reduce min max pairmap sum);
use Math::GSL::Matrix;
use Graphics::GnuplotIF;
use Test::Simple tests => 2;
use lib '../blib/lib','../blib/arch';
use Algorithm::DecisionTree;
# Test 1 (Digest Parameter File and Generate Training Data):
my $parameter_file = "t/param.txt";
my $output_training_datafile = "t/__trainingdata.csv";
my $data_gen = TrainingDataGeneratorSymbolic->new(
output_training_datafile => $output_training_datafile,
( run in 0.267 second using v1.01-cache-2.11-cpan-87723dcf8b7 )