AI-NeuralNet-Kohonen-Visual

 view release on metacpan or  search on metacpan

Changes  view on Meta::CPAN

Revision history for Perl extension AI::NeuralNet::Kohonen::Demo::RGB.

0.03  Fri May 05 21:17:00 2006
	Packaged, test and pod fix

0.02  Thu Mar 20 2003 11:25 2003
	Now a sub-class of AI::NeuralNet::Kohonen::Visual.

0.011 Thu Mar 13 18:21:37 2003
	Added unified distance matrix display.

0.01  Thu Mar 13 12:21:37 2003
	- original version; created by h2xs 1.21 with options
		-X -n AI::NeuralNet::Kohonen::Demo::RGB

README  view on Meta::CPAN

AI/NeuralNet/Kohonen/Visual version 0.01
========================================

A sub-class of "AI::NeuralNet::Kohonen" that Impliments extra methods
to make use of TK for visualisations.

INSTALLATION

To install this module type the following:

   perl Makefile.PL
   make
   make test
   make install

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN


AI::NeuralNet::Kohonen::Visual - Tk-based Visualisation

=head1 SYNOPSIS

Test the test file in this distribution, or:

	package YourClass;
	use base "AI::NeuralNet::Kohonen::Visual";

	sub get_colour_for { my ($self,$x,$y) = (shift,shift,shift);
		# From here you return a TK colour name.
		# Get it as you please; for example, values of a 3D map:
		return sprintf("#%02x%02x%02x",
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[0])),
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[1])),
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[2])),
		);
	}

	exit;

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

	$net->main_loop;

	exit;


=head1 DESCRIPTION

Provides TK-based visualisation routines for C<AI::NueralNet::Kohonen>.
Replaces the earlier C<AI::NeuralNet::Kohonen::Demo::RGB>.

This is a sub-class of C<AI::NeuralNet::Kohonen>
that impliments extra methods to make use of TK.

This moudle is itself intended to be sub-classed by you,
where you provide a version of the method C<get_colour_for>:
see L<METHOD get_colour_for> and L<SYNOPSIS> for details.


=head1 CONSTRUCTOR (new)

The following paramter fields are added to the base module's fields:

=over 4

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

use Tk qw/DoOneEvent DONT_WAIT/;



=head1 METHOD train

Over-rides the base class to provide TK displays of the map.

=cut

sub train { my ($self,$epochs) = (shift,shift);
	$epochs = $self->{epochs} unless defined $epochs;
	$self->{display_scale} = 10 if not defined 	$self->{display_scale};

	&{$self->{train_start}} if exists $self->{train_start};

	$self->prepare_display if not defined $self->{_mw} or ref $self->{_mw} ne 'MainWindow';

	# Replaces Tk's MainLoop
    for (0..$self->{epochs}) {
		if ($self->{_quit_flag}) {

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

	$_->smooth if $self->{smooth};
	$self->plot_map if $self->{MainLoop};
	&{$self->{train_end}} if exists $self->{train_end};
	MainLoop if $self->{MainLoop};

	return 1;
}

=head1 METHOD get_colour_for

This method is intended to be sub-classed.

Currently it only operates on the first three elements
of a weight vector, turning them into RGB values.

It returns the a TK colour for a node at position C<x>,C<y> in the
C<map> paramter.

Accepts: C<x> and C<y> co-ordinates in the map.

=cut

sub get_colour_for { my ($self,$x,$y) = (shift,shift,shift);
	my $_0 = $self->{map}->[$x]->[$y]->{weight}->[0];
	$_0 = $self->{missing_colour} || 0 if $_0 eq $self->{missing_mask};
	my $_1 = $self->{map}->[$x]->[$y]->{weight}->[1];
	$_1 = $self->{missing_colour} || 0 if $_1 eq $self->{missing_mask};
	my $_2 = $self->{map}->[$x]->[$y]->{weight}->[2];
	$_2 = $self->{missing_colour} || 0 if $_2 eq $self->{missing_mask};
	return sprintf("#%02x%02x%02x",
		(int (255 * $_0)),
		(int (255 * $_1)),
		(int (255 * $_2)),
	);
}


=head1 METHOD prepare_display

Depracated: see L<METHOD create_empty_map>.

=cut

sub prepare_display {
	return $_[0]->create_empty_map;
}

=head1 METHOD create_empty_map

Sets up a TK C<MainWindow> and C<Canvas> to
act as an empty map.

=cut

sub create_empty_map { my $self = shift;
	my ($w,$h);
	if ($self->{display} and $self->{display} eq 'hex'){
		$w = ($self->{map_dim_x}+1) * ($self->{display_scale}+2);
		$h = ($self->{map_dim_y}+1) * ($self->{display_scale}+2);
	} else {
		$w = ($self->{map_dim_x}+1) * ($self->{display_scale});
		$h = ($self->{map_dim_y}+1) * ($self->{display_scale});
	}
	$self->{_mw} = MainWindow->new(
		-width	=> $w + 20,
		-height	=> $h + 20,
	);
	$self->{_mw}->fontCreate(qw/TAG -family verdana -size 8 -weight bold/);
	$self->{_mw}->resizable( 0, 0);
    $self->{_quit_flag} = 0;
    $self->{_mw}->protocol('WM_DELETE_WINDOW' => sub {$self->{_quit_flag}=1});
	$self->{_canvas} = $self->{_mw}->Canvas(
		-width	=> $w,
		-height	=> $h,
		-relief	=> 'raised',
		-border => 2,
	);
	$self->{_canvas}->pack(-side=>'top');
	$self->{_label} = $self->{_mw}->Button(
		-command      => sub { $self->{_mw}->destroy;$self->{_mw} = undef; },
		-relief       => 'groove',
		-text         => ' ',
		-wraplength   => $w,
		-textvariable => \$self->{_label_txt}
	);
	$self->{_label}->pack(-side=>'top');
	return 1;
}


lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

C<hicol> to highlight it with colour. If no C<hicolo> is provided,
it default to red.

When called, this method also sets the object field flag C<plotted>:
currently, this prevents C<main_loop> from calling this routine.

See also L<METHOD get_colour_for>.

=cut

sub plot_map { my ($self,$args) = (shift,{@_});
	$self->{plotted} = 1;
	# MW may have been destroyed
	$self->prepare_display if not defined $self->{_mw};
	my $yo = 5+($self->{display_scale}/2);
	for my $x (0..$self->{map_dim_x}){
		for my $y (0..$self->{map_dim_y}){
			my $colour;
			if ($args->{bmu_x} and $args->{bmu_x}==$x and $args->{bmu_y}==$y){
				$colour = $args->{hicol} || 'red';
			} else {

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

=head1 METHOD label_map

Put a text label on the map for the node at the I<x,y> co-ordinates
supplied in the first two paramters, using the text supplied in the
third.

Very naive: no attempt to check the text will appear on the map.

=cut

sub label_map { my ($self,$x,$y,$t) = (shift,shift,shift,shift);
	$self->{_canvas}->createText(
		$x*$self->{display_scale}+($self->{display_scale}),
		$y*$self->{display_scale}+($self->{display_scale}),
		-text	=> $t,
		-anchor => 'w',
		-fill 	=> 'white',
		-font	=> 'TAG',
	);
}


=head1 METHOD main_loop

Calls TK's C<MainLoop> to keep a window open until the user closes it.

=cut

sub main_loop { my $self = shift;
	$self->plot_map unless $self->{plotted};
	MainLoop;
}



1;

__END__

t/AI-NeuralNet-Kohonen-Visual.t  view on Meta::CPAN

);
isa_ok( $net->{input}, 'ARRAY');
is( $net->{input}->[0]->{values}->[0],1);
is( $net->{input}->[0]->{values}->[1],0);
is( $net->{input}->[0]->{values}->[2],0);
is( $net->{weight_dim}, 2);

$net->train;

diag "Will automatically destroy this window in $delay seconds";
$net->{_mw}->after($delay*1000, sub{ $net->{_mw}->destroy } );

$net->main_loop;
pass;


diag "# Test 2 ... this is *slow*, sorry\n";
$net = AI::NeuralNet::Kohonen::Visual->new(
	display		=> 'hex',
	map_dim	=> 39,
	epochs => 19,

t/AI-NeuralNet-Kohonen-Visual.t  view on Meta::CPAN

# Create an empty map
# and populate with training data

diag "# Plotting results\n";
foreach my $bmu ($net->get_results){
	$net->label_map(@$bmu->[1],@$bmu->[2],"+".@$bmu->[3]);
}


diag "Will automatically destroy this window in $delay seconds";
$net->{_mw}->after($delay*1000, sub{ $net->{_mw}->destroy } );

$net->plot_map;
$net->main_loop;

diag "# Done\n";

# $net->main_loop;

__END__



( run in 0.719 second using v1.01-cache-2.11-cpan-88abd93f124 )