AI-FuzzyEngine

 view release on metacpan or  search on metacpan

lib/AI/FuzzyEngine.pm  view on Meta::CPAN


use strict;
use warnings;
use Carp;
use Scalar::Util;
use List::Util;
use List::MoreUtils;

use AI::FuzzyEngine::Variable;

sub new {
    my ($class) = @_;
    my $self = bless {}, $class;

    $self->{_variables} = [];
    return $self;
}

sub variables { @{ shift->{_variables} } };

sub and {
    my ($self, @vals) = @_;

    # PDL awareness: any element is a piddle?
    return List::Util::min(@vals) if _non_is_a_piddle(@vals);

    _check_for_PDL();
    my $vals = $self->_cat_array_of_piddles(@vals);
    return $vals->mv(-1, 0)->minimum;
}

sub or {
    my ($self, @vals) = @_;

    # PDL awareness: any element is a piddle?
    return List::Util::max(@vals) if _non_is_a_piddle(@vals);

    _check_for_PDL();
    my $vals = $self->_cat_array_of_piddles(@vals);
    return $vals->mv(-1, 0)->maximum;
}

sub not {
    my ($self, $val) = @_;
    return 1-$val;
}

sub true  { return 1 }

sub false { return 0 }

sub new_variable {
    my ($self, @pars) = @_;

    my $variable_class = $self->_class_of_variable();
    my $var = $variable_class->new($self, @pars);
    push @{$self->{_variables}}, $var;
    Scalar::Util::weaken $self->{_variables}->[-1];
    return $var;
}

sub reset {
    my ($self) = @_;
    $_->reset() for $self->variables(); 
    return $self;
}

sub _class_of_variable { 'AI::FuzzyEngine::Variable' }

sub _non_is_a_piddle {
    return List::MoreUtils::none {ref $_ eq 'PDL'} @_;
}

my $_PDL_is_imported;
sub _check_for_PDL {
    return if $_PDL_is_imported;
    die "PDL not loaded"       unless $INC{'PDL.pm'};
    die "PDL::Core not loaded" unless $INC{'PDL/Core.pm'};
    $_PDL_is_imported = 1;
}

sub _cat_array_of_piddles {
    my ($class, @vals)  = @_;

    # TODO: Rapid return if @_ == 1 (isa piddle)
    # TODO: join "-", ndims -> Schnellcheck auf gleiche Dim.

    # All elements must get piddles
    my @pdls  = map { PDL::Core::topdl($_) } @vals;

    # Get size of wrapping piddle (using a trick)
    # applying valid expansion rules for element wise operations

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN


use 5.008009;
use version 0.77; our $VERSION = version->declare('v0.2.2');

use strict;
use warnings;
use Carp;
use Scalar::Util qw(blessed weaken);
use List::MoreUtils;

sub new {
    my ($class, @pars) = @_;
    my $self = bless {}, $class;

    $self->_init(@pars);

    return $self;
}

sub name        { shift->{name}        }
sub variable    { shift->{variable}    }
sub fuzzyEngine { shift->{fuzzyEngine} }
sub memb_fun    { shift->{memb_fun}    }

sub degree {
    my ($self, @vals) = @_;

    if (@vals) {
        # Multiple input degrees are conjuncted: 
        my $and_degree  = $self->fuzzyEngine->and( @vals );

        # Result counts against (up to now) best hit
        my $last_degree = $self->{degree};
        $self->{degree} = $self->fuzzyEngine->or( $last_degree, $and_degree );
    };

    return $self->{degree};
}

# internal helpers, return @x and @y from the membership functions
sub _x_of ($) { return @{shift->[0]} };
sub _y_of ($) { return @{shift->[1]} };

sub _init {
    my ($self, %pars) = @_;
    my %defaults = ( name        => '',
                     value       => 0,
                     memb_fun    => [[]=>[]], # \@x => \@y
                     variable    => undef,
                     fuzzyEngine => undef,
                   );

    my %attrs = ( %defaults, %pars );

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN


    $self->{degree} = 0;

    my @x = _x_of $self->memb_fun;
    croak 'No double interpolation points allowed'
        if List::MoreUtils::uniq( @x ) < @x;

    $self;
}

sub _copy_fun {
    my ($class, $fun) = @_;
    my @x = @{$fun->[0]}; #    my @x = _x_of $fun;, improve speed
    my @y = @{$fun->[1]};
    return [ \@x => \@y ];
}

sub _interpol {
    my ($class, $fun, $val_x) = @_;

    my @x = @{$fun->[0]}; # speed
    my @y = @{$fun->[1]};

    if (not ref $val_x eq 'PDL') {

        return $y[ 0] if $val_x <= $x[ 0];
        return $y[-1] if $val_x >= $x[-1];

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN

        return $val_y;
    };

    my ($val_y) = $val_x->interpolate( PDL->pdl(@x), PDL->pdl(@y) );
    return $val_y;
}

# Some functions are not marked private (using leading '_')
# but should be used by AI::FuzzyEngine::Variable only:

sub set_x_limits {
    my ($class, $fun, $from, $to) = @_;

    my @x = _x_of $fun;
    my @y = _y_of $fun;

    return $fun unless @x;

    if (@x == 1) {
        # Explicitly deal with this case to allow recursive removing of points
        $fun->[0] = [$from => $to];

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN

            $y[-1] = $class->_interpol( $fun => $to );
        };

    };

    $fun->[0] = \@x;
    $fun->[1] = \@y;
    return $fun;
}

sub synchronize_funs {
    my ($class, $funA, $funB) = @_;
    # change $funA, $funB directly, use their references
    # \@x and \@y as part of $fun will be replaced nevertheless

    my @xA = _x_of $funA;
    my @yA = _y_of $funA;
    my @xB = _x_of $funB;
    my @yB = _y_of $funB;

    croak '$funA is empty' unless @xA;

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN


        $funA->[0] = \@x;
        $funA->[1] = \@yA;
        $funB->[0] = \@x;
        $funB->[1] = \@yB;
    };

    return;
};

sub _max_of {
    my ($factor, $ar, $br) = @_;
    my @y;
    for my $ix ( reverse 0..$#$ar ) {
        my $max = $ar->[$ix] * $factor > $br->[$ix] * $factor ?
                                         $ar->[$ix] : $br->[$ix]; 
        $y[$ix] = $max;
    };
    return @y;
}

sub _minmax_of_pair_of_funs {
    my ($class, $factor, $funA, $funB) = @_;
    # $factor > 0: 'max' operation
    # $factor < 0: 'min' operation

    # synchronize interpolation points (original functions are changed)
    $class->synchronize_funs( $funA, $funB );

    my @x  = _x_of $funA;
    my @yA = _y_of $funA;
    my @yB = _y_of $funB;
    # my @y  = List::MoreUtils::pairwise { $a*$factor > $b*$factor ?
    #                                      $a : $b
    #                                    } @yA, @yB;

    my @y = _max_of( $factor, \@yA, \@yB ); # faster than pairwise

    return [ \@x, \@y ];
}

sub _minmax_of_funs {
    my ($class, $factor, $funA, @moreFuns) = @_;
    return $funA unless @moreFuns;

    my $funB = shift @moreFuns;
    my $fun  = $class->_minmax_of_pair_of_funs( $factor, $funA, $funB );

    # solve recursively
    return $class->_minmax_of_funs( $factor, $fun, @moreFuns );
}

sub min_of_funs {
    my ($class, @funs) = @_;
    # Copy can not moved to _minmax_of_funs (is recursively called)
    my @copied_funs = map { $class->_copy_fun($_) } @funs;
    return $class->_minmax_of_funs( -1, @copied_funs );
}

sub max_of_funs {
    my ($class, @funs) = @_;
    # Copy can not moved to _minmax_of_funs (is recursively called)
    my @copied_funs = map { $class->_copy_fun($_) } @funs;
    return $class->_minmax_of_funs( 1, @copied_funs );
}

sub clip_fun {
    my ($class, $fun, $max_y) = @_;

    # clip by min operation on function $fun
    my @x         = _x_of $fun;
    my @y         = ( $max_y ) x @x;
    my $fun_limit = [ \@x => \@y ];
    return $class->min_of_funs( $fun, $fun_limit );
}

sub centroid {
    my ($class, $fun) = @_;

    # x and y values, check
    my @x = _x_of $fun;
    my @y = _y_of $fun;
    croak "At least two points needed" if @x < 2;

    # using code fragments from Ala Qumsieh (AI::FuzzyInference::Set)

    # Left 

lib/AI/FuzzyEngine/Set.pm  view on Meta::CPAN

    $ta += $_->[1] for @areas;

    croak "Function has no height --> no centroid" unless $ta;

    # Final Centroid in x direction
    my $c = 0;
    $c += $_->[0] * $_->[1] for @areas;
    return $c / $ta;
}

sub fuzzify {
    my ($self, $val) = @_;

    my $fun = $self->memb_fun;
    croak "No valid membership function"
        unless @{$fun->[0]}; # at least one x

    return $self->{degree} = $self->_interpol( $fun => $val );
}

sub reset {
    my ($self) = @_;
    $self->{degree} = 0;
    $self;
}

# Replace a membership function
# To be called by variable->change_set( 'setname' => $new_fun );
sub replace_memb_fun {
    my ($self, $new_fun) = @_;
    $self->{memb_fun} = $new_fun;
    return;
}

1;

=pod

=head1 NAME

lib/AI/FuzzyEngine/Variable.pm  view on Meta::CPAN

use strict;
use warnings;
use Scalar::Util qw( blessed looks_like_number );
use List::MoreUtils;
use Carp;

use AI::FuzzyEngine::Set;

my $set_class = _class_of_set();

sub new {
    my ($class, $fuzzyEngine, @pars) = @_;
    my $self = bless {}, $class;

    # check and store the assigned fuzzyEngine
    my $fe_class = 'AI::FuzzyEngine';
    croak "fuzzyEngine is not a $fe_class"
        unless blessed $fuzzyEngine && $fuzzyEngine->isa($fe_class);
    $self->{fuzzyEngine} = $fuzzyEngine;

    # load pars, create sets etc.
    $self->_init(@pars);

    return $self;
};

sub is_internal {   shift->{is_internal} }
sub from        {   shift->{from}        };
sub to          {   shift->{to}          };
sub sets        {   shift->{sets}        };
sub set_names   { @{shift->{set_names}}  };
sub set {
    my ($self, $set_name) = @_;
    return $self->{sets}{$set_name};
};
sub fuzzyEngine { shift->{fuzzyEngine} };

sub is_valid_set {
    my ($self, $set_name) = @_;
    # Should be simplified to exists $self->{sets}{$set_name}
    return List::MoreUtils::any { $_ eq $set_name } keys %{ $self->sets };
}

sub fuzzify {
    my ($self, $val) = @_;
    croak "Fuzzification not allowed for internal variables"
        if $self->is_internal;
    for my $set (values %{ $self->sets } ) {
        $set->fuzzify( $val );
    };
    return;
}

sub defuzzify {
    my ($self)  = @_;
    croak "Defuzzification not allowed for internal variables"
        if $self->is_internal;

    my @sets    = values %{$self->sets};
    my @funs    = map { $_->memb_fun } @sets;
    my @degrees = map { $_->degree   } @sets;

    # If all degrees are real scalars a shortcut is possible
    if (_non_is_a_piddle(@degrees)) {

lib/AI/FuzzyEngine/Variable.pm  view on Meta::CPAN

        my $c          = $set_class->centroid( $fun_agg );
        $defuzzified[$ix] = $c;
    };

    # Build result in shape of unified membership degrees
    my $flat_defuzzified = PDL->pdl( @defuzzified );
    my $defuzzified      = $flat_defuzzified->reshape(@dims_to_reshape);
    return $defuzzified;
}

sub _clipped_funs {
    # Clip all membership functions of a variable
    # according to the respective membership degree (array of scalar)
    my ($funs, $degrees) = @_;
    my @funs    = @$funs;    # Dereferencing here saves some time
    my @degrees = @$degrees;
    my @clipped = List::MoreUtils::pairwise {
                     $set_class->clip_fun($a => $b)
                  } @funs, @degrees;
    return \@clipped;
}

sub reset {
    my ($self) = @_;
    $_->reset() for values %{$self->sets};
    return $self;
}

sub change_set {
    my ($self, $setname, $new_memb_fun) = @_;
    my $set = $self->set( $setname );

    # Some checks
    croak "Set $setname does not exist" unless defined $set;
    croak 'Variable is internal' if $self->is_internal;

    # Convert to internal representation
    my $fun = $self->_curve_to_fun( $new_memb_fun );

lib/AI/FuzzyEngine/Variable.pm  view on Meta::CPAN

    $set->set_x_limits( $fun, $self->from => $self->to );

    # Hand the new function over to the set
    $set->replace_memb_fun( $fun );

    # and reset the variable
    $self->reset;
    return;
}

sub _init {
    my ($self, @pars) = @_;

    croak "Too few arguments" unless @pars >= 2;

    # Test for internal variable
    my ($from, $to, @sets);
    if (looks_like_number $pars[0]) {
        # $from => $to is given
        $self->{is_internal} = '';
        ($from, $to, @sets)  = @pars;

lib/AI/FuzzyEngine/Variable.pm  view on Meta::CPAN

        my $set = $set_class
            ->new( fuzzyEngine => $self->fuzzyEngine,
                   variable    => $self,
                   name        => $set_name,
                   memb_fun    => $fun, # [ [] => [] ] if is_internal
              );
        $self->{sets}{$set_name} = $set;

        # build membership function if necessary
        next SET_TO_BUILD if $self->can( $set_name );
        my $method = sub {
            my ($variable, @vals) = @_; # Variable, fuzzy values
            my $set = $variable->{sets}{$set_name};
            return $set->degree( @vals );
        };

        # register the new method to $self (the fuzzy variable)
        no strict 'refs';
        *{ $set_name } = $method;
    };
}

sub _non_is_a_piddle {
    return List::MoreUtils::none {ref $_ eq 'PDL'} @_;
}

# Might change for Variables inherited from AI::FuzzyEngine::Variable:
sub _class_of_set { 'AI::FuzzyEngine::Set' }

sub _curve_to_fun {
    # Convert input format for membership functions
    # to internal representation:
    # [$x11, $y11, $x12, $y12, ... ]
    # --> [ $x11, $x12,  ... ] => [$y11, $y12, ... ] ]
    my ($class, $curve) = @_;
    my %points = @$curve;
    my @x      = sort {$a<=>$b} keys %points;
    my @y      = @points{ @x };
    return [ \@x, \@y ];
}

t/01-fuzzyEngine.t  view on Meta::CPAN

use Test::Most;
use List::MoreUtils;

# check (not-) loading of PDL

BEGIN { use_ok 'AI::FuzzyEngine::Set'      };
BEGIN { use_ok 'AI::FuzzyEngine::Variable' };
BEGIN { use_ok 'AI::FuzzyEngine'           };

sub class     { 'AI::FuzzyEngine'           };
sub set_class { 'AI::FuzzyEngine::Set'      };
sub var_class { 'AI::FuzzyEngine::Variable' };

my $class        = class();
my $engine_class = class();
my $set_class    = set_class();
my $var_class    = var_class();

my $PDL_is_loaded = exists $INC{PDL};

subtest "$class constructor" => sub {
    can_ok $class, 'new';
    ok my $fe = $class->new, $class . '->new succeeds';
    isa_ok $fe, $class, 'What it returns';
};

subtest "$class operations" => sub {
    my $fe = $class->new();

    # Disjunction:
    my $a = $fe->or( 0.2, 0.5, 0.8, 0.7 );
    is( $a, 0.8, '"or"' );

    # Conjunction:
    my $b = $fe->and( 0.2, 0.5, 0.8, 0.7 );
    is( $b, 0.2, '"and"' );

t/01-fuzzyEngine.t  view on Meta::CPAN


    # True:
    my $t = $fe->true();
    is( $t, 1.0, '"true"' );

    # False:
    my $f = $fe->false();
    is( $f, 0.0, '"false"' );
};

subtest "Class $set_class _copy_fun" => sub {

    my $fun_in  = [[1=>2] => [-1=>1]];
    my $fun_out = $set_class->_copy_fun( $fun_in );
    ok(    ( $fun_out      ne $fun_in     )
        && ($fun_out->[0] ne $fun_in->[0])
        && ($fun_out->[1] ne $fun_in->[1]),
        '_copy_fun copies all references',
       );

    my $fun = [ [10] => [0.5] ];

t/01-fuzzyEngine.t  view on Meta::CPAN

             );

    $fun = [ [1, 2] => [1, 1] ];
    $set_class->set_x_limits( $fun, 0 => 3 );
    is_deeply( $fun,
               [ [0, 1, 2, 3] => [1, 1, 1, 1] ],
               'set_x_limits, enlarge', 
             );
};

subtest "Class $set_class set_x_limits" => sub {

    my $fun = [ [-1, 4] => [1, 1] ];
    $set_class->set_x_limits( $fun, 0 => 3 );
    is_deeply( $fun,
               [ [0, 3] => [1, 1] ],
               'set_x_limits, reduce', 
             );

    $fun = [ [-0.4, -0.2, 1.2, 1.4] => [0, 1, 1, 0] ];
    $set_class->set_x_limits( $fun, -0.2 => 1.2 );

t/01-fuzzyEngine.t  view on Meta::CPAN

             );

    $fun = [ [-1.2, -1.0, 1.2, 1.4] => [0, 1, 1, 0] ];
    $set_class->set_x_limits( $fun, -0.2 => 0.2 );
    is_deeply( $fun,
               [ [-0.2, 0.2] => [1, 1] ],
               'set_x_limits skip inner points',
             );
};

subtest "Class $set_class synchronize_funs" => sub {

    my $funA = [ [1, 2] => [-1, -2] ];
    my $funB = [ [0, 4] => [-2, -3] ];
    $set_class->synchronize_funs( $funA, $funB );
    is_deeply( $funA->[0], [0, 1, 2, 4], 'synchronize_funs $funA->x' );
    is_deeply( $funB->[0], [0, 1, 2, 4], 'synchronize_funs $funB->x' );
    # y: borders not clipped, so interpol uses border values directly
    is_deeply( $funA->[1], [-1,    -1,   -2, -2],
               'synchronize_funs $funA->y',
             );

t/01-fuzzyEngine.t  view on Meta::CPAN

               [ [0, 0.75, 1] => [2, 1.625, 1.5] ],
               'synchronize_funs $funB with crossing curves',
             );

    $funA = [ [] => [] ];
    $funB = [ [] => [] ];
    throws_ok { $set_class->synchronize_funs( $funA, $funB )
              } qr/is empty/, 'Checks for empty functions';
};

subtest "Class $set_class min & max" => sub {

    my $funA = [ [1, 2] => [-1, -2] ];
    my $funB = [ [0, 4] => [-2, -3] ];
    is_deeply( $set_class->min_of_funs( $funA, $funB ),
               [ [0, 1, 2, 4] => [-2, -2.25, -2.5, -3] ],
               'min_of_funs',
             );
    is_deeply( $set_class->max_of_funs( $funA, $funB ),
               [ [0, 1, 2, 4] => [-1,    -1,   -2, -2] ],
               'max_of_funs',
             );

    my $funC = [ [0, 4] => [-2.75, -2.75] ];
    is_deeply( $set_class->min_of_funs( $funA, $funB, $funC ),
               [ [0, 1, 2, 3, 4] => [-2.75, -2.75, -2.75, -2.75, -3] ],
               'min_of_funs recursively',
             );
};

subtest "Class $set_class clip_fun, centroid" => sub {

    my $funA = [ [0, 1, 2] => [0, 1, 0] ];
    my $funA_clipped = $set_class->clip_fun( $funA => 0.5 );
    is_deeply( $funA_clipped,
               [ [0, 0.5, 1, 1.5, 2] => [0, 0.5, 0.5, 0.5, 0] ],
               'clip_fun',
             );

    my $fun = [ [1, 2] => [1, 1] ];
    my $c   = $set_class->centroid( $fun );

t/01-fuzzyEngine.t  view on Meta::CPAN

    is( $c, 0, 'centroid combination, checking area calculation' );
};

my $fe = a_fuzzyEngine();
my %set_pars = ( fuzzyEngine => $fe,
                 variable    => a_variable( $fe ),
                 name        => 'few',
                 memb_fun    => [[7, 8] => [0, 1]],
               );

subtest "$set_class constructor" => sub {

    my $s = $set_class->new(%set_pars);
    isa_ok( $s, $set_class, 'What the constructor returns' );

    is_deeply( [         $s->name, $s->memb_fun, $s->variable, $s->fuzzyEngine],
               [@set_pars{qw(name      memb_fun     variable)},            $fe],
               'Attributes given in the constructor',
           );
};

subtest "$set_class methods" => sub {

    my $s = $set_class->new(%set_pars);
    is( $s->degree, 0, 'Initial (internal) membership degree is 0' );

    $s->degree( 0.2 );
    is( $s->degree, 0.2, 'degree can be set by assignment' );

    $s->degree( 0.1 );
    is( $s->degree, 0.2, 'Disjunction of last and new degree' );

t/01-fuzzyEngine.t  view on Meta::CPAN

             );

    my $degree = $s->fuzzify( 0.2 );
    is( $degree, 0.1, 'fuzzify returns degree' );

    $set_pars{memb_fun} = [ [0, 1, 1, 2] => [1, 2, 3, 4] ];
    throws_ok {$s = AI::FuzzyEngine::Set->new(%set_pars)
              } qr/no double/i, 'Checks double interpolation coordinates';
};

subtest "$set_class special memb_fun methods" => sub {

    # Replace a membership function
    my $s = $set_class->new(%set_pars);
    is_deeply( $s->memb_fun, [[7, 8] => [0, 1]],
               '(preconditions)',
             ) or diag 'Test broken, check precondition';

    my $new_fun = [ [5, 6] => [0.5, 0.7] ];
    $s->replace_memb_fun( $new_fun );
    is_deeply( $s->memb_fun, $new_fun, 'replace_memb_fun' );
    1;
};

subtest "$var_class functions" => sub {

    my $memb_fun = $var_class->_curve_to_fun( [8=>1, 7=>0] );
    is_deeply( $memb_fun, [[7, 8] => [0, 1]], '_curve_to_fun' );

    $memb_fun = $var_class->_curve_to_fun( [] );
    is_deeply( $memb_fun, [[]=>[]], '_curve_to_fun( [] )' );
};

my @var_pars = ( 0 => 10,                   # order is relevant!
                 'low'  => [0, 1, 10, 0],
                 'high' => [0, 0, 10, 1],
               );

subtest "$var_class constructor" => sub {

    my $v  = $var_class->new( $fe, @var_pars );
    isa_ok( $v, $var_class, '$v' );

    is( $v->fuzzyEngine, $fe, 'fuzzyEngine is stored' );
    ok( ! $v->is_internal, 'Variable is not internal' );

    is_deeply( [$v->from, $v->to, [ sort keys %{ $v->sets } ] ],
               [       0,     10, [ sort qw(low high)       ] ],
               'Variable attributes and set names',
             );
};

subtest "$var_class methods" => sub {

    my $v  = $var_class->new( $fe, @var_pars );
    ok(   $v->is_valid_set('high'     ), 'is_valid_set (true) ' );
    ok( ! $v->is_valid_set('wrong_set'), 'is_valid_set (false)' );
};

subtest "$var_class generated sets" => sub {
    my $v  = $var_class->new( $fe, @var_pars );

    my $low_set = $v->sets->{low};
    isa_ok( $low_set, $set_class, 'What variable generates' );
    is_deeply( $low_set->memb_fun,
               [ [0, 10] => [1, 0] ],
               'and receives converted membership functions',
             );

    can_ok( $v, 'low' ); # can_ok needs no description!

t/01-fuzzyEngine.t  view on Meta::CPAN

                              'low'  => [0, 1],
                              'med'  => [0, 0],
                            );

    # $v and $w have a 'low' function.
    # Are they independent with regard to degree?
    is( $v->low, 0.1, 'degree for low unchanged from other variables' );
    is( $w->low, 0,   'degree for low of the new variable is independent');
};

subtest "$var_class order of sets" => sub {
    my @range        = 0..99;
    my @list_of_sets = map { ("s_$_" => [$_,1]) } @range;

    my $x = $var_class->new( $fe, 0 => 1, @list_of_sets );
    my @indexes      = map {/(\d+)/} $x->set_names;

    no warnings qw(once);
    my @is_same = List::MoreUtils::pairwise {$a==$b} @range, @indexes;
    ok( ( List::MoreUtils::all {$_} @is_same ),
        q{set_names returns the set's names in correct range},
    );
};

subtest "$var_class completing membership functions in x" => sub {

    my $v  = $var_class->new( $fe,
                              0 => 10,
                              'low'  => [ 3, 1,  6, 0],
                              'med'  => [ 5, 0.5],
                              'high' => [ -5, 0, 15, 1],
                            );

    is_deeply( $v->sets->{low}->memb_fun(),
               [ [0, 3, 6, 10] => [1, 1, 0, 0] ],

t/01-fuzzyEngine.t  view on Meta::CPAN

               [ [0, 10] => [0.5, 0.5] ],
               'even if constant',
             );

    is_deeply( $v->sets->{high}->memb_fun(),
               [ [0, 10] => [0.25, 0.75] ],
               '... limits even when crossing edges',
             );
};

subtest "$var_class change_set" => sub {
    my $v  = $var_class->new( $fe,
                              0 => 10,
                              'low'  => [ 3, 1,  6, 0],
                              # becomes [ [0, 3, 6, 10] => [1, 1, 0, 0] ],
                              'high' => [ -5, 0, 15, 1],
                            );

    $v->fuzzify( 5 ); # $v->low > 0 && $v->high > 0

    my $new_memb_fun = [2, 1, 8, 0];

t/01-fuzzyEngine.t  view on Meta::CPAN

             );

    is_deeply( [$v->low, $v->high], [0, 0], 'change_set resets the variable' );

    throws_ok { $v->change_set( 'wrong_set' )
              } qr/set/i, 'change_set checks correct set name';

    1;
};

subtest "$var_class fuzzification and defuzzification" => sub {

    my $v  = $var_class->new( $fe,
                              0 => 10,
                              'low'  => [ 3, 1,  6, 0],
                              'med'  => [ 5, 0.5],
                              'high' => [ -5, 0, 15, 1],
                            );

    $v->fuzzify( 0 );
    is_deeply( [$v->low, $v->med, $v->high],

t/01-fuzzyEngine.t  view on Meta::CPAN

    $v->low( 1 );
    $val = $v->defuzzify();
    ok( ($val > 0.5 && $val < 1), 'defuzzy low + 0.5*high' );
};

my @int_var_pars = ( # $from => $to MISSING --> internal
                     'low'  => [0, 1, 10, 0],
                     'high' => [0, 0, 10, 1],
                   );

subtest "$var_class (internal) constructor" => sub {

    my $v  = $var_class->new( $fe, @int_var_pars );
    isa_ok( $v, $var_class, '$v' );

    is( $v->fuzzyEngine, $fe, 'fuzzyEngine is stored' );
    ok( $v->is_internal, 'Variable is internal' );
    is( ref( $v->sets), 'HASH', 'sets is a HashRef' );

    is_deeply( [$v->from, $v->to, [ sort keys %{ $v->sets } ] ],
               [   undef,  undef, [ sort qw(low high)       ] ],
               'Variable attributes and set names',
             );
};

subtest "$var_class (internal) methods" => sub {

    my $v  = $var_class->new( $fe, @int_var_pars );
    ok(   $v->is_valid_set('high'     ), 'is_valid_set (true) ' );
    ok( ! $v->is_valid_set('wrong_set'), 'is_valid_set (false)' );

    my $low_set = $v->set('low');
    isa_ok( $low_set, $set_class, 'What variable->set returns' );
    is_deeply( $low_set->memb_fun,
               [[]=>[]],
               'Membership function is empty',

t/01-fuzzyEngine.t  view on Meta::CPAN

    throws_ok { $v->fuzzify(0)
              } qr/internal/, 'Checks illegal fuzzify call';
    throws_ok { $v->defuzzify
              } qr/internal/, 'Checks illegal defuzzify call';
    throws_ok { $v->change_set( low => [[]=>[]] )
              } qr/internal/i, 'Blocks change_set';
};

$fe = $class->new();

subtest "$class as factory" => sub {

    my $v = $fe->new_variable( 0 => 10,
                               'low'  => [0, 1, 10, 0],
                               'high' => [0, 0, 10, 1],
                             );
    isa_ok( $v, $var_class, 'What $fe->new_variable returns' );
    is_deeply( [$v->from, $v->to, [ sort keys %{ $v->sets } ] ],
               [       0,     10, [ sort qw(low high)       ] ],
               'Variable attributes and set names by new_variable',
             );

t/01-fuzzyEngine.t  view on Meta::CPAN

    is( $w->low, 0.2, 'Other variables stay unchanged' );

    my $fe_resetted = $fe->reset();
    isa_ok( $fe_resetted,
            $class,
            'What fuzzyEngine->reset returns',
          );
    is( $w->low, 0.0, 'FuzzyEngine resets all variables' );
};

subtest 'synopsis' => sub {

    # Engine (or factory) provides fuzzy logical arithmetic
    my $fe = $class->new();

    # Disjunction:
    my $a = $fe->or ( 0.2, 0.5, 0.8, 0.7 ); # 0.8
    # Conjunction:
    my $b = $fe->and( 0.2, 0.5, 0.8, 0.7 ); # 0.2
    # Negation:
    my $c = $fe->not( 0.4 );                # 0.6

t/01-fuzzyEngine.t  view on Meta::CPAN

    # All sets provide the respective membership degrees of their variables: 
    my $saturation_is_over = $saturation->over(); # no defuzzification!
    my $green_is_ok        = $green->ok();

    # Defuzzification ( is a matter of the fuzzy set )
    my $delta_green = $green->defuzzify(); # -5 ... 5

    ok( 1, 'POD synopsis' );
};

subtest 'PDL may not be loaded' => sub {
    if ($PDL_is_loaded) {
        diag "PDL was loaded at start of test - check not possible";
    }
    else {
        ok( (not exists $INC{PDL}), 'Module does not load PDL' );
    };
};

done_testing();

sub a_variable {
    # Careful!
    # a_variable does not register its result into $fuzzyEngine.
    # ==> is missing in $fe->variables;
    #
    my ($fuzzyEngine, @pars) = @_;
    my $v = var_class()->new( $fuzzyEngine,
                              0 => 1,
                              'low'  => [0, 0],
                              'high' => [1, 1],
                              @pars,
                            );
    return $v;
}

sub a_fuzzyEngine { return class()->new() }

1;

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

use Test::Most;
use List::MoreUtils;

use AI::FuzzyEngine::Set;
use AI::FuzzyEngine::Variable;
use AI::FuzzyEngine;

sub class     { 'AI::FuzzyEngine'           };
sub set_class { 'AI::FuzzyEngine::Set'      };
sub var_class { 'AI::FuzzyEngine::Variable' };

my $class        = class();
my $set_class    = set_class();
my $var_class    = var_class();

# Can PDL be loaded? skip_all if not.
my $module = 'PDL';
my $msg    = qq{Cannot find $module. }
           . qq{$class is not $module aware on your computer};
if (not eval "use $module; 1") { plan skip_all => $msg };

subtest "$class internal functions" => sub {

    # _cat_array_of_piddles

    my @vals = (0..2);
    my $vals = $class->_cat_array_of_piddles(@vals);
    is( $vals->ndims, 1, 'ndims of cat topdl with scalars');
    ok_all( $vals == pdl( [ 0, 1, 2 ] ),
            'cat topdl with scalars',
          );

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

            'cat topdl two 2dim 4elem pdls',
          ) or diag $vals;

    @vals = ( pdl([1]), pdl([]) );
    throws_ok { $class->_cat_array_of_piddles(@vals)
              } qr/empty/i,
                  '_cat_array_of_piddles checks for empty piddles';

};

subtest "$class PDL operations" => sub {
    my $fe = $class->new();

    # Negation:
    my $c = $fe->not( 0.4 );
    ok( ref $c eq '', 'not scalar: scalar' );
    ok( $c == 0.6,    'not scalar: result' );

    $c = $fe->not( pdl( 0.4 ) );
    isa_ok( $c, 'PDL', 'not(PDL scalar)'         );
    ok( $c == 0.6,     'not(PDL scalar): result' );

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

    ok_all( $c == pdl([0.6, 0.7]), 'or(scalar, 2elem PDL): result' );
};

my $fe = a_fuzzyEngine();
my %set_pars = ( fuzzyEngine => $fe,
                 variable    => a_variable( $fe ),
                 name        => 'few',
                 memb_fun    => [[7, 8] => [0, 1]],
               );

subtest "$set_class PDL degree" => sub {

    my $s = $set_class->new(%set_pars);
    is( $s->degree, 0, 'Initial (internal) membership degree is 0' );

    $s->degree( pdl(0.2) );
    is( $s->degree, 0.2, 'degree can be set by assignment of a piddle' );
    isa_ok( $s->degree, 'PDL', '$s->degree' );

    $s->degree( 0.1 );
    is( $s->degree, 0.2, 'Disjunction of last and new degree (1)' );

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

    ok_all( $s->degree == pdl([0.3, 0.2] ),
            'Conjunction of multiple inputs ("and" operation)',
          );

    local $set_pars{memb_fun} = pdl( [[7, 8] => [0, 1]] );
    throws_ok{ $set_class->new(%set_pars)
             } qr/array ref/, 'Checks pureness of membership function';

};

subtest "$set_class PDL _interpol & fuzzify" => sub {

    local $set_pars{memb_fun} = [ [0.2, 0.3, 0.8, 1.0], # x
                                  [0.1, 0.5, 0.5, 0.0], # y
                                ];
    my $s = $set_class->new(%set_pars);

    # fuzzify some values
    # (no extrapolation in this test case)
    my $x        = pdl(0.2, 0.25, 0.3, 0.5, 0.8, 0.90, 1);
    my $expected = pdl(0.1, 0.30, 0.5, 0.5, 0.5, 0.25, 0 );
    my $got      = $s->fuzzify( $x );

    isa_ok( $got, 'PDL', 'What fuzzify (_interpol) returns' );
    ok_all( $got == $expected, 'fuzzify' ) or diag $got;
};

subtest "$var_class fuzzification with piddles" => sub {

    my $v  = $var_class->new( $fe,
                              0 => 10,
                              'low'  => [ 3, 1,  6, 0],
                              'med'  => [ 5, 0.5],
                              'high' => [ -5, 0, 15, 1],
                            );

    my $vals = pdl( [10, 5]);
    $v->fuzzify( $vals );

    isa_ok( $v->low, 'PDL', 'What $v->low returns' );

    ok_all( $v->low  == pdl([  0, 1/3]), '$v->low'  ); # :-))
    ok_all( $v->med  == pdl([0.5, 0.5]), '$v->med'  );
    ok_all( $v->high == pdl([3/4, 1/2]), '$v->high' );
};

subtest "$var_class defuzzification with piddles" => sub {

    my $v = AI::FuzzyEngine::Variable
        ->new( $fe,
               0 => 2,
               low  => [0 => 1, 1 => 1, 1.00001 => 0, 2 => 0],
               high => [0 => 0, 1 => 0, 1.00001 => 1, 2 => 1],
             );

    $v->low(  pdl(1, 0, 1) );
    $v->high( 0.5 ); # non pdl

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

    ok_all( abs($val_got-$val_exp) < 0.1, 'defuzzify a piddle' );

    # Performance: Run testfile by nytprofiler
    $v->reset;
    my $n =100;
    $v->low(  random($n) );
    $v->high( 1-$v->low  );
    lives_ok { $val_got = $v->defuzzify; } "Defuzzifying $n elements";
};

subtest 'PDL synopsis' => sub {
#    use PDL;
#    use AI::FuzzyEngine;

    # (Probably a stupide example)
    my $fe       = AI::FuzzyEngine->new();

    # Declare variables as usual
    my $severity  = $fe->new_variable( 0 => 10,
                          low  => [0, 1, 3, 1, 5, 0       ],
                          high => [      3, 0, 5, 1, 10, 1],

t/02-fuzzyEngine-pdl_aware.t  view on Meta::CPAN

    # [
    #  [         0 0.60952381 0.60952381 0.60952381]
    #  [         0       0.75          1          1]
    # ]

    ok( 1, 'POD synopsis' );
};

done_testing();

sub ok_all {
    my ($p, $descr) = @_;
    die 'First arg must be a piddle' unless ref $p eq 'PDL';
    ok(  $p->all() , $descr || '' );
}

sub a_variable {
    # Careful!
    # a_variable does not register its result into $fuzzyEngine.
    # ==> is missing in $fe->variables;
    #
    my ($fuzzyEngine, @pars) = @_;
    my $v = var_class()->new( $fuzzyEngine,
                              0 => 1,
                              'low'  => [0, 0],
                              'high' => [1, 1],
                              @pars,
                            );
    return $v;
}

sub a_fuzzyEngine { return $class->new() }

1;



( run in 0.285 second using v1.01-cache-2.11-cpan-4d50c553e7e )