AI-PSO

 view release on metacpan or  search on metacpan

lib/AI/PSO.pm  view on Meta::CPAN

  sum.  The other implementation allows the user to define the weighting
  of how much a particle follows its own path versus following its 
  peers.  In both cases there is an element of randomness.

  Solution convergence is quite fast once one particle becomes close to 
  a local maxima.  Having more particles active means there is more of 
  a chance that you will not be stuck in a local maxima.  Often times 
  different neighborhoods (when not configured in a global neighborhood 
  fashion) will converge to different maxima.  It is quite interesting 
  to watch graphically.  If the fitness function is expensive to 
  compute, then it is often useful to start out with a small number of
  particles first and get a feel for how the algorithm converges.

  The algorithm implemented in this module is taken from the book 
  I<Swarm Intelligence> by Russell Eberhart and James Kennedy.  
  I highly suggest you read the book if you are interested in this 
  sort of thing.  


=head1 EXPORTED FUNCTIONS



( run in 0.316 second using v1.01-cache-2.11-cpan-0d8aa00de5b )