AI-PSO
view release on metacpan or search on metacpan
lib/AI/PSO.pm view on Meta::CPAN
sum. The other implementation allows the user to define the weighting
of how much a particle follows its own path versus following its
peers. In both cases there is an element of randomness.
Solution convergence is quite fast once one particle becomes close to
a local maxima. Having more particles active means there is more of
a chance that you will not be stuck in a local maxima. Often times
different neighborhoods (when not configured in a global neighborhood
fashion) will converge to different maxima. It is quite interesting
to watch graphically. If the fitness function is expensive to
compute, then it is often useful to start out with a small number of
particles first and get a feel for how the algorithm converges.
The algorithm implemented in this module is taken from the book
I<Swarm Intelligence> by Russell Eberhart and James Kennedy.
I highly suggest you read the book if you are interested in this
sort of thing.
=head1 EXPORTED FUNCTIONS
( run in 0.316 second using v1.01-cache-2.11-cpan-0d8aa00de5b )