AI-TensorFlow-Libtensorflow

 view release on metacpan or  search on metacpan

CONTRIBUTING  view on Meta::CPAN

<<<=== COPYRIGHT CONTRIBUTIONS ===>>>

[ BEGIN, APTECH FAMILY COPYRIGHT ASSIGNMENT AGREEMENT ]

By contributing to this repository, you agree that any and all such Contributions and derivative works thereof shall immediately become part of the APTech Family of software and documentation, and you accept and agree to the following legally-binding...

1. Definitions.

"You" or "Your" shall mean the copyright owner, or legal entity authorized by the copyright owner, that is making this Agreement.  For legal entities, the entity making a Contribution and all other entities that control, are controlled by, or are und...

"APTech" is defined as the Delaware corporation named Auto-Parallel Technologies, Inc. with a primary place of business in Cedar Park, Texas, USA.

The "APTech Family of software and documentation" (hereinafter the "APTech Family") is defined as all copyrightable works identified as "part of the APTech Family" immediately following their copyright notice, and includes but is not limited to this ...

"Team APTech" is defined as all duly-authorized contributors to the APTech Family, including You after making Your first Contribution to the APTech Family under the terms of this Agreement.

"Team APTech Leadership" is defined as all duly-authorized administrators and official representatives of the APTech Family, as listed publicly on the most up-to-date copy of the AutoParallel.com website.

"Contribution" shall mean any original work of authorship, including any changes or additions or enhancements to an existing work, that is intentionally submitted by You to this repository for inclusion in, or documentation of, any of the products or...

2. Assignment of Copyright.  Subject to the terms and conditions of this Agreement, and for good and valuable consideration, receipt of which You acknowledge, You hereby transfer to the Delaware corporation named Auto-Parallel Technologies, Inc. with...

You hereby agree that if You have or acquire hereafter any patent or interface copyright or other intellectual property interest dominating the software or documentation contributed to by the Work (or use of that software or documentation), such domi...

You hereby represent and warrant that You are the sole copyright holder for the Work and that You have the right and power to enter into this legally-binding contractual agreement.  You hereby indemnify and hold harmless APTech, its heirs, assignees,...

3. Grant of Patent License.  Subject to the terms and conditions of this Agreement, You hereby grant to APTech and to recipients of software distributed by APTech a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as ...

4. You represent that you are legally entitled to assign the above copyright and grant the above patent license.  If your employer(s) or contractee(s) have rights to intellectual property that you create that includes your Contributions, then you rep...

5. You represent that each of Your Contributions is Your original creation and is not subject to any third-party license or other restriction (including, but not limited to, related patents and trademarks) of which you are personally aware and which ...

6. You agree to submit written notification to Team APTech's Leadership of any facts or circumstances of which you become aware that would make the representations of this Agreement inaccurate in any respect.

[ END, APTECH FAMILY COPYRIGHT ASSIGNMENT AGREEMENT ]


<<<=== LEGAL OVERVIEW ===>>>

All APTech Family software and documentation is legally copyrighted by Auto-Parallel Technologies, Inc.

To maintain the legal integrity and defensibility of the APTech Family of software and documentation, all contributors to the APTech Family must assign copyright ownership to Auto-Parallel Technologies, Inc. under the terms of the APTech Family Copyr...

CONTRIBUTING  view on Meta::CPAN


Why The FSF Gets Copyright Assignments From Contributors
By Professor Eben Moglen, Columbia University Law School
Copyright © 2001, 2008, 2009, 2014 Free Software Foundation, Inc.
The quoted text below is not modified, and is licensed under a Creative Commons Attribution-NoDerivs 3.0 United States License.
http://www.gnu.org/licenses/why-assign.en.html
http://creativecommons.org/licenses/by-nd/3.0/us/

"Under US copyright law, which is the law under which most free software programs have historically been first published, there are very substantial procedural advantages to registration of copyright.  And despite the broad right of distribution conv...

In order to make sure that all of our copyrights can meet the recordkeeping and other requirements of registration, and in order to be able to enforce the GPL most effectively, FSF requires that each author of code incorporated in FSF projects provid...


<<<=== COMMITMENT TO FREE & OPEN SOURCE SOFTWARE ===>>>

Auto-Parallel Technologies, Inc. is committed to maintaining the free-and-open-source software (FOSS) basis of the APTech Family.

If your APTech Family contribution is accepted and merged into an official APTech Family source repository, then your contribution is automatically published online with FOSS licensing, currently the Apache License Version 2.0.


<<<=== EMPLOYER COPYRIGHT DISCLAIMER AGREEMENT ===>>>

The file named EMPLOYERS.pdf contains the Employer Copyright Disclaimer Agreement.  If you are employed or work as an independent contractor, and either your job involves computer programming or you have executed an agreement giving your employer or ...


<<<=== OTHER CONTRIBUTORS ===>>>

If anyone other than yourself has written software source code or documentation as part of your APTech Family contribution, then they must submit their contributions themselves under the terms of the APTech Family Copyright Assignment Agreement above...

Please be sure you DO NOT STUDY OR INCLUDE any 3rd-party or public-domain intellectual property as part of your APTech Family contribution, including but not limited to: source code; documentation; copyrighted, trademarked, or patented components; or...


<<<=== RECOGNITION ===>>>

Once we have received your contribution under the terms of the APTech Family Copyright Assignment Agreement above, as well as any necessary Employer Copyright Disclaimer Agreement(s), then we will begin the process of reviewing any software pull requ...


<<<=== SUBMISSION ===>>>

When you are ready to submit the signed agreement(s), please answer the following 12 questions about yourself and your APTech Family contribution, then include your answers in the body of your e-mail or on a separate sheet of paper in snail mail, and...

1.  Full Legal Name
2.  Preferred Pseudonym (or "none")
3.  Country of Citizenship
4.  Date of Birth (spell full month name)
5.  Snail Mail Address (include country)
6.  E-Mail Address
7.  Names of APTech Family Files Modified (or "none")
8.  Names of APTech Family Files Created (or "none")
9.  Current Employer(s) or Contractee(s) (or "none")
10. Does Your Job Involve Computer Programming? (or "not applicable")
11. Does Your Job Involve an IP Ownership Agreement? (or "not applicable")
12. Name(s) & Employer(s) of Additional Contributors (or "none")

Snail Mail Address:

Auto-Parallel Technologies, Inc.
[ CONTACT VIA E-MAIL BELOW FOR STREET ADDRESS ]
Cedar Park, TX, USA, 78613

E-Mail Address (Remove "NOSPAM." Before Sending):

william.braswell at NOSPAM.autoparallel.com

THANKS FOR CONTRIBUTING!  :-)

COPYRIGHT  view on Meta::CPAN

AI::TensorFlow::Libtensorflow is Copyright © 2022 Auto-Parallel Technologies, Inc.
All rights reserved.

AI::TensorFlow::Libtensorflow is part of the APTech Family of software and documentation.

This program is free software; you can redistribute it and/or modify
it under the terms of the Apache License Version 2.0.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
Apache License Version 2.0 for more details.

Changes  view on Meta::CPAN

0.0.7 2023-10-05 01:27:42-0400

  Features

   - Add object detection demo. See <https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow/pull/23>.

  Refactoring

   - Add timer to the notebooks to time the inference steps. See <https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow/pull/17>.

  Documentation

   - Add information about installing GPU version of `libtensorflow` either on

Changes  view on Meta::CPAN

     Update the CI to additionally build the GPU Docker image. See <https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow/pull/16>.

0.0.6 2023-01-30 15:22:04-0500

  - Documentation

      - Fix NAME for Notebook POD.

0.0.5 2023-01-30 11:46:31-0500

  - Features

      - Docker images with dependencies for notebooks.
      - Support for running notebooks in Binder.

  - Documentation

      - Add manual index and quickstart guide.
      - Add InferenceUsingTFHubEnformerGeneExprPredModel tutorial.

0.0.4 2022-12-21 15:57:53-0500

  - Features

      - Add Data::Printer and stringification support for several classes.
      - Add `::TFLibrary` class. Move `GetAllOpList()` method there.

  - Documentation

      - Add InferenceUsingTFHubMobileNetV2Model tutorial.

0.0.3 2022-12-15 10:46:52-0500

  - Features

      - Add more testing of basic API. Complete port of "(CAPI, *)" tests
        from upstream `tensorflow/c/c_api_test.cc`.

0.0.2 2022-11-28 14:33:33-0500

  - Features

      - Explicit support for minimum Perl v5.14.

0.0.1 2022-11-25 11:43:37-0500

  Features

    - First release.

LICENSE  view on Meta::CPAN


      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

LICENSE  view on Meta::CPAN

      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following

LICENSE  view on Meta::CPAN

   Copyright 2022 Auto-Parallel Technologies, Inc

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

META.json  view on Meta::CPAN

         "examples",
         "inc",
         "share",
         "t",
         "xt",
         "maint"
      ]
   },
   "prereqs" : {
      "configure" : {
         "requires" : {
            "ExtUtils::MakeMaker" : "0",
            "perl" : "5.014"
         }
      },
      "develop" : {
         "requires" : {
            "Moose" : "0",
            "Moose::Role" : "0",
            "Pod::Simple::Search" : "0",
            "Test::More" : "0.88",
            "Test::Perl::Critic" : "0",
            "Test::Pod::LinkCheck::Lite" : "0",
            "Test::Pod::Snippets" : "0",
            "Test::Pod::Snippets::Parser" : "0",
            "With::Roles" : "0"
         },

META.json  view on Meta::CPAN

            "Module::Runtime" : "0",
            "Mu" : "0",
            "Path::Tiny" : "0",
            "Sort::Key::Multi" : "0",
            "Sub::Uplevel" : "0",
            "Syntax::Construct" : "0",
            "Types::Path::Tiny" : "0"
         }
      },
      "runtime" : {
         "requires" : {
            "Alien::Libtensorflow" : "0",
            "Class::Tiny" : "0",
            "Const::Exporter" : "0",
            "Const::Fast" : "0",
            "Devel::StrictMode" : "0",
            "Exporter::Tiny" : "0",
            "FFI::C" : "0.12",
            "FFI::C::ArrayDef" : "0",
            "FFI::C::StructDef" : "0",
            "FFI::CheckLib" : "0.28",

META.json  view on Meta::CPAN

            "perl" : "5.014",
            "strict" : "0",
            "warnings" : "0"
         },
         "suggests" : {
            "Data::Printer" : "0",
            "PDL" : "0"
         }
      },
      "test" : {
         "requires" : {
            "Data::Dumper" : "0",
            "PDL" : "0",
            "PDL::Core" : "0",
            "Path::Tiny" : "0",
            "Test2::V0" : "0",
            "Test::More" : "0",
            "aliased" : "0",
            "lib" : "0",
            "perl" : "5.014"
         }
      }
   },
   "release_status" : "stable",
   "resources" : {
      "homepage" : "https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow",
      "repository" : {
         "type" : "git",
         "url" : "https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow.git",
         "web" : "https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow"
      }
   },
   "version" : "0.0.7",
   "x_generated_by_perl" : "v5.26.1",
   "x_serialization_backend" : "Cpanel::JSON::XS version 4.37",
   "x_spdx_expression" : "Apache-2.0"
}

META.yml  view on Meta::CPAN

---
abstract: 'Bindings for Libtensorflow deep learning library'
author:
  - 'Zakariyya Mughal <zmughal@cpan.org>'
build_requires:
  Data::Dumper: '0'
  PDL: '0'
  PDL::Core: '0'
  Path::Tiny: '0'
  Test2::V0: '0'
  Test::More: '0'
  aliased: '0'
  lib: '0'
  perl: '5.014'
configure_requires:
  ExtUtils::MakeMaker: '0'
  perl: '5.014'
dynamic_config: 0
generated_by: 'Dist::Zilla version 6.030, CPAN::Meta::Converter version 2.150010'
license: apache
meta-spec:
  url: http://module-build.sourceforge.net/META-spec-v1.4.html
  version: '1.4'
name: AI-TensorFlow-Libtensorflow
no_index:
  directory:
    - eg
    - examples
    - inc
    - share
    - t
    - xt
    - maint
requires:
  Alien::Libtensorflow: '0'
  Class::Tiny: '0'
  Const::Exporter: '0'
  Const::Fast: '0'
  Devel::StrictMode: '0'
  Exporter::Tiny: '0'
  FFI::C: '0.12'
  FFI::C::ArrayDef: '0'
  FFI::C::StructDef: '0'
  FFI::CheckLib: '0.28'

META.yml  view on Meta::CPAN

  Types::Common: '0'
  Types::Standard: '0'
  base: '0'
  constant: '0'
  feature: '0'
  namespace::autoclean: '0'
  overload: '0'
  perl: '5.014'
  strict: '0'
  warnings: '0'
resources:
  homepage: https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow
  repository: https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow.git
version: 0.0.7
x_generated_by_perl: v5.26.1
x_serialization_backend: 'YAML::Tiny version 1.74'
x_spdx_expression: Apache-2.0

dist.ini  view on Meta::CPAN

;; For xt/author/pod-linkcheck.t
; authordep Test::Pod::LinkCheck::Lite
;; For xt/author/pod-snippets.t
; authordep Test::Pod::Snippets
; authordep Pod::Simple::Search
; authordep With::Roles

[Test::Perl::Critic]
; authordep Perl::Critic::Community

[Prereqs / RuntimeRequires]
; Needs Perl v5.14 for Feature::Compat::Defer
perl = 5.014
FFI::Platypus = 2.00
FFI::C = 0.12
FFI::CheckLib = 0
FFI::Platypus::Type::Enum = 0
FFI::Platypus::Type::PtrObject = 0

[Prereqs / RuntimeSuggests]
PDL = 0

lib/AI/TensorFlow/Libtensorflow/ApiDefMap.pm  view on Meta::CPAN

use namespace::autoclean;
use AI::TensorFlow::Libtensorflow::Lib qw(arg);

my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
$ffi->mangler(AI::TensorFlow::Libtensorflow::Lib->mangler_default);

$ffi->attach( [ 'NewApiDefMap' => 'New' ] => [
	arg 'TF_Buffer' => 'op_list_buffer',
	arg 'TF_Status' => 'status',
] => 'TF_ApiDefMap' => sub {
	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
});

$ffi->attach( ['DeleteApiDefMap' => 'DESTROY'] => [
	arg 'TF_ApiDefMap' => 'apimap'
] => 'void');

$ffi->attach( [ 'ApiDefMapPut' => 'Put' ] => [
	arg 'TF_ApiDefMap' => 'api_def_map',
	arg 'tf_text_buffer' => [qw(text text_len)],
	arg 'TF_Status' => 'status',

lib/AI/TensorFlow/Libtensorflow/Buffer.pm  view on Meta::CPAN

	my $opaque = $ffi->cast('data_deallocator_t', 'opaque', $closure);
	$self->_data_deallocator( $opaque );
}


$ffi->attach( [ 'NewBuffer' => 'New' ] => [] => 'TF_Buffer' );

$ffi->attach( [ 'NewBufferFromString' => 'NewFromString' ] => [
	arg 'tf_buffer_buffer' => [qw(proto proto_len)]
] => 'TF_Buffer' => sub {
	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
});


$ffi->attach( [ 'DeleteBuffer' => 'DESTROY' ] => [ 'TF_Buffer' ], 'void' );

1;

__END__

=pod

lib/AI/TensorFlow/Libtensorflow/Buffer.pm  view on Meta::CPAN

=head1 NAME

AI::TensorFlow::Libtensorflow::Buffer - Buffer that holds pointer to data with length

=head1 SYNOPSIS

  use aliased 'AI::TensorFlow::Libtensorflow::Buffer' => 'Buffer';

=head1 DESCRIPTION

C<TFBuffer> is a data structure that stores a pointer to a block of data, the
length of the data, and optionally a deallocator function for memory
management.

This structure is typically used in C<libtensorflow> to store the data for a
serialized protocol buffer.

=head1 CONSTRUCTORS

=head2 New

lib/AI/TensorFlow/Libtensorflow/DataType.pm  view on Meta::CPAN

  use AI::TensorFlow::Libtensorflow::DataType qw(FLOAT @DTYPES);
  use List::Util qw(max);

  my $dtype = FLOAT;
  is FLOAT->Size, 4, 'FLOAT is 4 bytes large';
  is max(map { $_->Size } @DTYPES), 16,
    'Largest type has sizeof() == 16 bytes';

=head1 DESCRIPTION

Enum representing native data types used inside of containers such as
L<TFTensor|AI::TensorFlow::Libtensorflow::Lib::Types/TFTensor>.

=head1 CONSTANTS

=head2 STRING

String.

=head2 BOOL

lib/AI/TensorFlow/Libtensorflow/DataType.pm  view on Meta::CPAN

=head2 QUINT8

8-bit quantized unsigned integer.

=head2 QUINT16

16-bit quantized unsigned integer.

=head2 RESOURCE

Handle to a mutable resource.

=head2 VARIANT

Variant.

=head1 METHODS

=head2 Size

  my $size = $dtype->Size();

lib/AI/TensorFlow/Libtensorflow/Eager/Context.pm  view on Meta::CPAN

use strict;
use warnings;
use AI::TensorFlow::Libtensorflow::Lib qw(arg);
my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
$ffi->mangler(AI::TensorFlow::Libtensorflow::Lib->mangler_default);

$ffi->attach( [ 'NewContext' => 'New' ] => [
	arg TFE_ContextOptions => 'opts',
	arg TF_Status => 'status'
] => 'TFE_Context' => sub {
	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
} );

__END__

=pod

=encoding UTF-8

=head1 NAME

lib/AI/TensorFlow/Libtensorflow/Graph.pm  view on Meta::CPAN

package AI::TensorFlow::Libtensorflow::Graph;
# ABSTRACT: A TensorFlow computation, represented as a dataflow graph
$AI::TensorFlow::Libtensorflow::Graph::VERSION = '0.0.7';
use strict;
use warnings;
use namespace::autoclean;
use AI::TensorFlow::Libtensorflow::Lib qw(arg);
use AI::TensorFlow::Libtensorflow::Buffer;
use AI::TensorFlow::Libtensorflow::Output;
my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
$ffi->mangler(AI::TensorFlow::Libtensorflow::Lib->mangler_default);

lib/AI/TensorFlow/Libtensorflow/Graph.pm  view on Meta::CPAN

	arg 'tf_dims_buffer' => [qw(dims num_dims)],
	arg 'TF_Status' => 'status',
] => 'void');

$ffi->attach( ['GraphGetTensorShape' => 'GetTensorShape'] => [
	arg 'TF_Graph' => 'graph',
	arg 'TF_Output' => 'output',
	arg 'tf_dims_buffer' => [qw(dims num_dims)],
	arg 'TF_Status' => 'status',
] => 'void' => sub {
	my ($xs, @rest) = @_;
	my ($graph, $output, $status) = @rest;
	my $dims = [ (0)x($graph->GetTensorNumDims($output, $status)) ];
	$xs->($graph, $output, $dims, $status);
	return $dims;
});

$ffi->attach( [ 'GraphGetTensorNumDims' => 'GetTensorNumDims' ] => [
	arg 'TF_Graph' => 'graph',
	arg 'TF_Output' => 'output',
	arg 'TF_Status' => 'status',
] => 'int');

lib/AI/TensorFlow/Libtensorflow/Graph.pm  view on Meta::CPAN

1;

__END__

=pod

=encoding UTF-8

=head1 NAME

AI::TensorFlow::Libtensorflow::Graph - A TensorFlow computation, represented as a dataflow graph

=head1 SYNOPSIS

  use aliased 'AI::TensorFlow::Libtensorflow::Graph' => 'Graph';

=head1 DESCRIPTION

=head1 CONSTRUCTORS

=head2 New

lib/AI/TensorFlow/Libtensorflow/ImportGraphDefResults.pm  view on Meta::CPAN

use warnings;
use namespace::autoclean;
use AI::TensorFlow::Libtensorflow::Lib qw(arg);
use FFI::Platypus::Buffer qw(buffer_to_scalar window);
use List::Util ();

my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
$ffi->mangler(AI::TensorFlow::Libtensorflow::Lib->mangler_default);

$ffi->attach( [ 'DeleteImportGraphDefResults' => 'DESTROY' ] => [
	arg TF_ImportGraphDefResults => 'results',
] => 'void' );

$ffi->attach( [ 'ImportGraphDefResultsReturnOutputs' => 'ReturnOutputs' ] => [
	arg TF_ImportGraphDefResults => 'results',
	arg 'int*' => 'num_outputs',
	arg 'opaque*' => { id => 'outputs', type => 'TF_Output_struct_array*' },
] => 'void' => sub {
	my ($xs, $results) = @_;
	my $num_outputs;
	my $outputs_array = undef;
	$xs->($results, \$num_outputs, \$outputs_array);
	return [] if $num_outputs == 0;

	my $sizeof_output = $ffi->sizeof('TF_Output');
	window(my $outputs_packed, $outputs_array, $sizeof_output * $num_outputs );
	# due to unpack, these are copies (no longer owned by $results)
	my @outputs = map bless(\$_, "AI::TensorFlow::Libtensorflow::Output"),
		unpack "(a${sizeof_output})*", $outputs_packed;
	return \@outputs;
});

$ffi->attach( [ 'ImportGraphDefResultsReturnOperations' => 'ReturnOperations' ] => [
	arg TF_ImportGraphDefResults => 'results',
	arg 'int*' => 'num_opers',
	arg 'opaque*' => { id => 'opers', type => 'TF_Operation_array*' },
] => 'void' => sub {
	my ($xs, $results) = @_;
	my $num_opers;
	my $opers_array = undef;
	$xs->($results, \$num_opers, \$opers_array);
	return [] if $num_opers == 0;

	my $opers_array_base_packed = buffer_to_scalar($opers_array,
		$ffi->sizeof('opaque') * $num_opers );
	my @opers = map {
		$ffi->cast('opaque', 'TF_Operation', $_ )
	} unpack "(@{[ AI::TensorFlow::Libtensorflow::Lib::_pointer_incantation ]})*", $opers_array_base_packed;
	return \@opers;
} );

$ffi->attach( [ 'ImportGraphDefResultsMissingUnusedInputMappings' => 'MissingUnusedInputMappings' ] => [
    arg TF_ImportGraphDefResults => 'results',
    arg 'int*' => 'num_missing_unused_input_mappings',
    arg 'opaque*' => { id => 'src_names', ctype => 'const char***' },
    arg 'opaque*' => { id => 'src_indexes', ctype => 'int**' },
] => 'void' => sub {
	my ($xs, $results) = @_;
	my $num_missing_unused_input_mappings;
	my $src_names;
	my $src_indexes;
	$xs->($results,
		\$num_missing_unused_input_mappings,
		\$src_names, \$src_indexes
	);
	my $src_names_str   = $ffi->cast('opaque',
		"string[$num_missing_unused_input_mappings]", $src_names);
	my $src_indexes_int = $ffi->cast('opaque',
		"int[$num_missing_unused_input_mappings]", $src_indexes);
	return [ List::Util::zip($src_names_str, $src_indexes_int) ];
});

lib/AI/TensorFlow/Libtensorflow/Manual.pod  view on Meta::CPAN

=item L<AI::TensorFlow::Libtensorflow::Manual::Quickstart>

Start here to get an overview of the library.

=item L<AI::TensorFlow::Libtensorflow::Manual::GPU>

GPU-specific installation and usage information.

=item L<AI::TensorFlow::Libtensorflow::Manual::CAPI>

Appendix of all C API functions with their signatures. These are linked from
the documentation of individual methods.

=back

=head1 AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

=head1 COPYRIGHT AND LICENSE

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=head2 TF_GraphSetTensorShape

=over 2

  Sets the shape of the Tensor referenced by `output` in `graph` to
  the shape described by `dims` and `num_dims`.
  
  If the number of dimensions is unknown, `num_dims` must be set to
  -1 and `dims` can be null. If a dimension is unknown, the
  corresponding entry in the `dims` array must be -1.
  
  This does not overwrite the existing shape associated with `output`,
  but merges the input shape with the existing shape.  For example,
  setting a shape of [-1, 2] with an existing shape [2, -1] would set
  a final shape of [2, 2] based on shape merging semantics.
  
  Returns an error into `status` if:
    * `output` is not in `graph`.
    * An invalid shape is being set (e.g., the shape being set
      is incompatible with the existing shape).

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=head2 TF_GraphGetTensorShape

=over 2

  Returns the shape of the Tensor referenced by `output` in `graph`
  into `dims`. `dims` must be an array large enough to hold `num_dims`
  entries (e.g., the return value of TF_GraphGetTensorNumDims).
  
  If the number of dimensions in the shape is unknown or the shape is
  a scalar, `dims` will remain untouched. Otherwise, each element of
  `dims` will be set corresponding to the size of the dimension. An
  unknown dimension is represented by `-1`.
  
  Returns an error into `status` if:
    * `output` is not in `graph`.
    * `num_dims` does not match the actual number of dimensions.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_GraphGetTensorShape(TF_Graph* graph,
                                                    TF_Output output,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrFuncName(TF_OperationDescription* desc,
                                                const char* attr_name,
                                                const char* value, size_t length);

=head2 TF_SetAttrShape

=over 2

  Set `num_dims` to -1 to represent "unknown rank".  Otherwise,
  `dims` points to an array of length `num_dims`.  `dims[i]` must be
  >= -1, with -1 meaning "unknown dimension".

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrShape(TF_OperationDescription* desc,
                                             const char* attr_name,
                                             const int64_t* dims, int num_dims);

=head2 TF_SetAttrShapeList

=over 2

  `dims` and `num_dims` must point to arrays of length `num_shapes`.
  Set `num_dims[i]` to -1 to represent "unknown rank".  Otherwise,
  `dims[i]` points to an array of length `num_dims[i]`.  `dims[i][j]`
  must be >= -1, with -1 meaning "unknown dimension".

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrShapeList(TF_OperationDescription* desc,
                                                 const char* attr_name,
                                                 const int64_t* const* dims,
                                                 const int* num_dims,
                                                 int num_shapes);

=head2 TF_SetAttrTensorShapeProto

=over 2

  `proto` must point to an array of `proto_len` bytes representing a
  binary-serialized TensorShapeProto.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProto(
      TF_OperationDescription* desc, const char* attr_name, const void* proto,
      size_t proto_len, TF_Status* status);

=head2 TF_SetAttrTensorShapeProtoList

=over 2

  `protos` and `proto_lens` must point to arrays of length `num_shapes`.
  `protos[i]` must point to an array of `proto_lens[i]` bytes
  representing a binary-serialized TensorShapeProto.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProtoList(
      TF_OperationDescription* desc, const char* attr_name,
      const void* const* protos, const size_t* proto_lens, int num_shapes,
      TF_Status* status);

=head2 TF_SetAttrTensor

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                  const char* attr_name,
                                                  TF_Tensor* const* values,
                                                  int num_values,
                                                  TF_Status* status);

=head2 TF_SetAttrValueProto

=over 2

  `proto` should point to a sequence of bytes of length `proto_len`
  representing a binary serialization of an AttrValue protocol
  buffer.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SetAttrValueProto(TF_OperationDescription* desc,
                                                  const char* attr_name,
                                                  const void* proto,
                                                  size_t proto_len,
                                                  TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                       TF_Status* status);

=head2 TF_OperationGetAttrStringList

=over 2

  Get the list of strings in the value of the attribute `attr_name`.  Fills in
  `values` and `lengths`, each of which must point to an array of length at
  least `max_values`.
  
  The elements of values will point to addresses in `storage` which must be at
  least `storage_size` bytes in length.  Ideally, max_values would be set to
  TF_AttrMetadata.list_size and `storage` would be at least
  TF_AttrMetadata.total_size, obtained from TF_OperationGetAttrMetadata(oper,
  attr_name).
  
  Fails if storage_size is too small to hold the requested number of strings.

=back

  /* From <tensorflow/c/c_api.h> */

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                      const char* attr_name,
                                                      int64_t* value,
                                                      int num_dims,
                                                      TF_Status* status);

=head2 TF_OperationGetAttrShapeList

=over 2

  Fills in `dims` with the list of shapes in the attribute `attr_name` of
  `oper` and `num_dims` with the corresponding number of dimensions. On return,
  for every i where `num_dims[i]` > 0, `dims[i]` will be an array of
  `num_dims[i]` elements. A value of -1 for `num_dims[i]` indicates that the
  i-th shape in the list is unknown.
  
  The elements of `dims` will point to addresses in `storage` which must be
  large enough to hold at least `storage_size` int64_ts.  Ideally, `num_shapes`
  would be set to TF_AttrMetadata.list_size and `storage_size` would be set to
  TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper,
  attr_name).
  
  Fails if storage_size is insufficient to hold the requested shapes.

=back

  /* From <tensorflow/c/c_api.h> */

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                           const char* attr_name,
                                                           TF_Tensor** values,
                                                           int max_values,
                                                           TF_Status* status);

=head2 TF_OperationGetAttrValueProto

=over 2

  Sets `output_attr_value` to the binary-serialized AttrValue proto
  representation of the value of the `attr_name` attr of `oper`.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_OperationGetAttrValueProto(
      TF_Operation* oper, const char* attr_name, TF_Buffer* output_attr_value,
      TF_Status* status);

=head2 TF_OperationGetNumAttrs

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph,
                                                            size_t* pos);

=head2 TF_GraphToGraphDef

=over 2

  Write out a serialized representation of `graph` (as a GraphDef protocol
  message) to `output_graph_def` (allocated by TF_NewBuffer()).
  `output_graph_def`'s underlying buffer will be freed when TF_DeleteBuffer()
  is called.
  
  May fail on very large graphs in the future.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_GraphToGraphDef(TF_Graph* graph,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddControlDependency(
      TF_ImportGraphDefOptions* opts, TF_Operation* oper);

=head2 TF_ImportGraphDefOptionsAddReturnOutput

=over 2

  Add an output in `graph_def` to be returned via the `return_outputs` output
  parameter of TF_GraphImportGraphDef(). If the output is remapped via an input
  mapping, the corresponding existing tensor in `graph` will be returned.
  `oper_name` is copied and has no lifetime requirements.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddReturnOutput(
      TF_ImportGraphDefOptions* opts, const char* oper_name, int index);

=head2 TF_ImportGraphDefOptionsNumReturnOutputs

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern int TF_ImportGraphDefOptionsNumReturnOperations(
      const TF_ImportGraphDefOptions* opts);

=head2 TF_ImportGraphDefResultsReturnOutputs

=over 2

  Fetches the return outputs requested via
  TF_ImportGraphDefOptionsAddReturnOutput(). The number of fetched outputs is
  returned in `num_outputs`. The array of return outputs is returned in
  `outputs`. `*outputs` is owned by and has the lifetime of `results`.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOutputs(
      TF_ImportGraphDefResults* results, int* num_outputs, TF_Output** outputs);

=head2 TF_ImportGraphDefResultsReturnOperations

=over 2

  Fetches the return operations requested via
  TF_ImportGraphDefOptionsAddReturnOperation(). The number of fetched
  operations is returned in `num_opers`. The array of return operations is
  returned in `opers`. `*opers` is owned by and has the lifetime of `results`.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOperations(
      TF_ImportGraphDefResults* results, int* num_opers, TF_Operation*** opers);

=head2 TF_ImportGraphDefResultsMissingUnusedInputMappings

=over 2

  Fetches any input mappings requested via
  TF_ImportGraphDefOptionsAddInputMapping() that didn't appear in the GraphDef
  and weren't used as input to any node in the imported graph def. The number
  of fetched mappings is returned in `num_missing_unused_input_mappings`. The
  array of each mapping's source node name is returned in `src_names`, and the
  array of each mapping's source index is returned in `src_indexes`.
  
  `*src_names`, `*src_indexes`, and the memory backing each string in
  `src_names` are owned by and have the lifetime of `results`.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsMissingUnusedInputMappings(
      TF_ImportGraphDefResults* results, int* num_missing_unused_input_mappings,
      const char*** src_names, int** src_indexes);

=head2 TF_DeleteImportGraphDefResults

=over 2

  Deletes a results object returned by TF_GraphImportGraphDefWithResults().

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_DeleteImportGraphDefResults(
      TF_ImportGraphDefResults* results);

=head2 TF_GraphImportGraphDefWithResults

=over 2

  Import the graph serialized in `graph_def` into `graph`.  Returns nullptr and
  a bad status on error. Otherwise, returns a populated
  TF_ImportGraphDefResults instance. The returned instance must be deleted via
  TF_DeleteImportGraphDefResults().

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                    TF_Status* status);

=head2 TF_GraphImportGraphDefWithReturnOutputs

=over 2

  Import the graph serialized in `graph_def` into `graph`.
  Convenience function for when only return outputs are needed.
  
  `num_return_outputs` must be the number of return outputs added (i.e. the
  result of TF_ImportGraphDefOptionsNumReturnOutputs()).  If
  `num_return_outputs` is non-zero, `return_outputs` must be of length
  `num_return_outputs`. Otherwise it can be null.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_GraphImportGraphDefWithReturnOutputs(
      TF_Graph* graph, const TF_Buffer* graph_def,
      const TF_ImportGraphDefOptions* options, TF_Output* return_outputs,
      int num_return_outputs, TF_Status* status);

=head2 TF_GraphImportGraphDef

=over 2

  Import the graph serialized in `graph_def` into `graph`.
  Convenience function for when no results are needed.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_GraphImportGraphDef(
      TF_Graph* graph, const TF_Buffer* graph_def,
      const TF_ImportGraphDefOptions* options, TF_Status* status);

=head2 TF_GraphCopyFunction

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern int TF_GraphNumFunctions(TF_Graph* g);

=head2 TF_GraphGetFunctions

=over 2

  Fills in `funcs` with the TF_Function* registered in `g`.
  `funcs` must point to an array of TF_Function* of length at least
  `max_func`. In usual usage, max_func should be set to the result of
  TF_GraphNumFunctions(g). In this case, all the functions registered in
  `g` will be returned. Else, an unspecified subset.
  
  If successful, returns the number of TF_Function* successfully set in
  `funcs` and sets status to OK. The caller takes ownership of
  all the returned TF_Functions. They must be deleted with TF_DeleteFunction.
  On error, returns 0, sets status to the encountered error, and the contents
  of funcs will be undefined.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_FinishWhile(const TF_WhileParams* params,
                                            TF_Status* status,
                                            TF_Output* outputs);

=head2 TF_AbortWhile

=over 2

  Frees `params`s resources without building a while loop. `params` is no
  longer valid after this returns. Either this or TF_FinishWhile() must be
  called after a successful TF_NewWhile() call.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_AbortWhile(const TF_WhileParams* params);

=head2 TF_AddGradients

=over 2

  Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s,
  i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
  
  `dx` are used as initial gradients (which represent the symbolic partial
  derivatives of some loss function `L` w.r.t. `y`).
  `dx` must be nullptr or have size `ny`.
  If `dx` is nullptr, the implementation will use dx of `OnesLike` for all
  shapes in `y`.
  The partial derivatives are returned in `dy`. `dy` should be allocated to
  size `nx`.
  
  Gradient nodes are automatically named under the "gradients/" prefix. To
  guarantee name uniqueness, subsequent calls to the same graph will
  append an incremental tag to the prefix: "gradients_1/", "gradients_2/", ...

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=head2 TF_AddGradientsWithPrefix

=over 2

  Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s,
  i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
  This is a variant of TF_AddGradients that allows to caller to pass a custom
  name prefix to the operations added to a graph to compute the gradients.
  
  `dx` are used as initial gradients (which represent the symbolic partial
  derivatives of some loss function `L` w.r.t. `y`).
  `dx` must be nullptr or have size `ny`.
  If `dx` is nullptr, the implementation will use dx of `OnesLike` for all
  shapes in `y`.
  The partial derivatives are returned in `dy`. `dy` should be allocated to
  size `nx`.
  `prefix` names the scope into which all gradients operations are being added.
  `prefix` must be unique within the provided graph otherwise this operation
  will fail. If `prefix` is nullptr, the default prefixing behaviour takes
  place, see TF_AddGradients for more details.

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

               array of operations is necessary to distinguish the case of
               creating a function with no body (e.g. identity or permutation)
               and the case of creating a function whose body contains all
               the nodes in the graph (except for the automatic skipping, see
               below).
   opers - Array of operations to become the body of the function or null.
           - If no array is given (`num_opers` = -1), all the
           operations in `fn_body` will become part of the function
           except operations referenced in `inputs`. These operations
           must have a single output (these operations are typically
           placeholders created for the sole purpose of representing
           an input. We can relax this constraint if there are
           compelling use cases).
           - If an array is given (`num_opers` >= 0), all operations
           in it will become part of the function. In particular, no
           automatic skipping of dummy input operations is performed.
   ninputs - number of elements in `inputs` array
   inputs - array of TF_Outputs that specify the inputs to the function.
            If `ninputs` is zero (the function takes no inputs), `inputs`
            can be null. The names used for function inputs are normalized
            names of the operations (usually placeholders) pointed to by
            `inputs`. These operation names should start with a letter.
            Normalization will convert all letters to lowercase and
            non-alphanumeric characters to '_' to make resulting names match
            the "[a-z][a-z0-9_]*" pattern for operation argument names.
            `inputs` cannot contain the same tensor twice.
   noutputs - number of elements in `outputs` array
   outputs - array of TF_Outputs that specify the outputs of the function.
             If `noutputs` is zero (the function returns no outputs), `outputs`
             can be null. `outputs` can contain the same tensor more than once.
   output_names - The names of the function's outputs. `output_names` array
                  must either have the same length as `outputs`
                  (i.e. `noutputs`) or be null. In the former case,
                  the names should match the regular expression for ArgDef
                  names - "[a-z][a-z0-9_]*". In the latter case,
                  names for outputs will be generated automatically.
   opts - various options for the function, e.g. XLA's inlining control.
   description - optional human-readable description of this function.
   status - Set to OK on success and an appropriate error on failure.
  
  Note that when the same TF_Output is listed as both an input and an output,
  the corresponding function's output will equal to this input,
  instead of the original node's output.
  
  Callers must also satisfy the following constraints:
  - `inputs` cannot refer to TF_Outputs within a control flow context. For
    example, one cannot use the output of "switch" node as input.
  - `inputs` and `outputs` cannot have reference types. Reference types are
    not exposed through C API and are being replaced with Resources. We support
    reference types inside function's body to support legacy code. Do not
    use them in new code.
  - Every node in the function's body must have all of its inputs (including

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern const char* TF_FunctionName(TF_Function* func);

=head2 TF_FunctionToFunctionDef

=over 2

  Write out a serialized representation of `func` (as a FunctionDef protocol
  message) to `output_func_def` (allocated by TF_NewBuffer()).
  `output_func_def`'s underlying buffer will be freed when TF_DeleteBuffer()
  is called.
  
  May fail on very large graphs in the future.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_FunctionToFunctionDef(TF_Function* func,
                                                      TF_Buffer* output_func_def,
                                                      TF_Status* status);

=head2 TF_FunctionImportFunctionDef

=over 2

  Construct and return the function whose FunctionDef representation is
  serialized in `proto`. `proto_len` must equal the number of bytes
  pointed to by `proto`.
  Returns:
   On success, a newly created TF_Function instance. It must be deleted by
   calling TF_DeleteFunction.
  
   On failure, null.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern TF_Function* TF_FunctionImportFunctionDef(
      const void* proto, size_t proto_len, TF_Status* status);

=head2 TF_FunctionSetAttrValueProto

=over 2

  Sets function attribute named `attr_name` to value stored in `proto`.
  If this attribute is already set to another value, it is overridden.
  `proto` should point to a sequence of bytes of length `proto_len`
  representing a binary serialization of an AttrValue protocol
  buffer.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_FunctionSetAttrValueProto(TF_Function* func,
                                                          const char* attr_name,
                                                          const void* proto,
                                                          size_t proto_len,
                                                          TF_Status* status);

=head2 TF_FunctionGetAttrValueProto

=over 2

  Sets `output_attr_value` to the binary-serialized AttrValue proto
  representation of the value of the `attr_name` attr of `func`.
  If `attr_name` attribute is not present, status is set to an error.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_FunctionGetAttrValueProto(
      TF_Function* func, const char* attr_name, TF_Buffer* output_attr_value,
      TF_Status* status);

=head2 TF_DeleteFunction

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=head2 TF_TryEvaluateConstant

=over 2

  Attempts to evaluate `output`. This will only be possible if `output` doesn't
  depend on any graph inputs (this function is safe to call if this isn't the
  case though).
  
  If the evaluation is successful, this function returns true and `output`s
  value is returned in `result`. Otherwise returns false. An error status is
  returned if something is wrong with the graph or input. Note that this may
  return false even if no error status is set.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern unsigned char TF_TryEvaluateConstant(TF_Graph* graph,
                                                             TF_Output output,
                                                             TF_Tensor** result,
                                                             TF_Status* status);

=head2 TF_NewSession

=over 2

  Return a new execution session with the associated graph, or NULL on
  error. Does not take ownership of any input parameters.
  
  *`graph` must be a valid graph (not deleted or nullptr). `graph` will be

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern TF_Session* TF_NewSession(TF_Graph* graph,
                                                  const TF_SessionOptions* opts,
                                                  TF_Status* status);

=head2 TF_LoadSessionFromSavedModel

=over 2

  This function creates a new TF_Session (which is created on success) using
  `session_options`, and then initializes state (restoring tensors and other
  assets) using `run_options`.
  
  Any NULL and non-NULL value combinations for (`run_options, `meta_graph_def`)
  are valid.
  
  - `export_dir` must be set to the path of the exported SavedModel.
  - `tags` must include the set of tags used to identify one MetaGraphDef in
     the SavedModel.
  - `graph` must be a graph newly allocated with TF_NewGraph().
  

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_CloseSession(TF_Session*, TF_Status* status);

=head2 TF_DeleteSession

=over 2

  Destroy a session object.
  
  Even if error information is recorded in *status, this call discards all
  local resources associated with the session.  The session may not be used
  during or after this call (and the session drops its reference to the
  corresponding graph).

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_DeleteSession(TF_Session*, TF_Status* status);

=head2 TF_SessionRun

=over 2

  Run the graph associated with the session starting with the supplied inputs
  (inputs[0,ninputs-1] with corresponding values in input_values[0,ninputs-1]).
  
  Any NULL and non-NULL value combinations for (`run_options`,
  `run_metadata`) are valid.
  
     - `run_options` may be NULL, in which case it will be ignored; or
       non-NULL, in which case it must point to a `TF_Buffer` containing the
       serialized representation of a `RunOptions` protocol buffer.
     - `run_metadata` may be NULL, in which case it will be ignored; or
       non-NULL, in which case it must point to an empty, freshly allocated
       `TF_Buffer` that may be updated to contain the serialized representation
       of a `RunMetadata` protocol buffer.
  
  The caller retains ownership of `input_values` (which can be deleted using
  TF_DeleteTensor). The caller also retains ownership of `run_options` and/or
  `run_metadata` (when not NULL) and should manually call TF_DeleteBuffer on
  them.
  
  On success, the tensors corresponding to outputs[0,noutputs-1] are placed in
  output_values[]. Ownership of the elements of output_values[] is transferred
  to the caller, which must eventually call TF_DeleteTensor on them.
  
  On failure, output_values[] contains NULLs.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_SessionRun(
      TF_Session* session,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern uint64_t TF_DeviceListIncarnation(
      const TF_DeviceList* list, int index, TF_Status* status);

=head2 TF_LoadLibrary

=over 2

  Load the library specified by library_filename and register the ops and
  kernels present in that library.
  
  Pass "library_filename" to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here.
  
  On success, place OK in status and return the newly created library handle.
  The caller owns the library handle.
  
  On failure, place an error status in status and return NULL.

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern TF_Library* TF_LoadLibrary(const char* library_filename,
                                                   TF_Status* status);

=head2 TF_GetOpList

=over 2

  Get the OpList of OpDefs defined in the library pointed by lib_handle.
  
  Returns a TF_Buffer. The memory pointed to by the result is owned by
  lib_handle. The data in the buffer will be the serialized OpList proto for
  ops defined in the library.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern TF_Buffer TF_GetOpList(TF_Library* lib_handle);

=head2 TF_DeleteLibraryHandle

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_DeleteLibraryHandle(TF_Library* lib_handle);

=head2 TF_GetAllOpList

=over 2

  Get the OpList of all OpDefs defined in this address space.
  Returns a TF_Buffer, ownership of which is transferred to the caller
  (and can be freed using TF_DeleteBuffer).
  
  The data in the buffer will be the serialized OpList proto for ops registered
  in this address space.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern TF_Buffer* TF_GetAllOpList(void);

=head2 TF_NewApiDefMap

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_DeleteApiDefMap(TF_ApiDefMap* apimap);

=head2 TF_ApiDefMapPut

=over 2

  Add ApiDefs to the map.
  
  `text` corresponds to a text representation of an ApiDefs protocol message.
  (https://www.tensorflow.org/code/tensorflow/core/framework/api_def.proto).
  
  The provided ApiDefs will be merged with existing ones in the map, with
  precedence given to the newly added version in case of conflicts with
  previous calls to TF_ApiDefMapPut.

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_ApiDefMapPut(TF_ApiDefMap* api_def_map,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/c_api.h> */
  TF_CAPI_EXPORT extern void TF_RegisterFilesystemPlugin(
      const char* plugin_filename, TF_Status* status);

=head2 TF_NewShape

=over 2

  Return a new, unknown rank shape object. The caller is responsible for
  calling TF_DeleteShape to deallocate and destroy the returned shape.

=back

  /* From <tensorflow/c/tf_shape.h> */
  TF_CAPI_EXPORT extern TF_Shape* TF_NewShape();

=head2 TF_ShapeDims

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/tf_tensor.h> */
  TF_CAPI_EXPORT extern int64_t TF_TensorElementCount(const TF_Tensor* tensor);

=head2 TF_TensorBitcastFrom

=over 2

  Copy the internal data representation of `from` to `to`. `new_dims` and
  `num_new_dims` specify the new shape of the `to` tensor, `type` specifies its
  data type. On success, *status is set to TF_OK and the two tensors share the
  same data buffer.
  
  This call requires that the `from` tensor and the given type and shape (dims
  and num_dims) are "compatible" (i.e. they occupy the same number of bytes).
  Specifically, given from_type_size = TF_DataTypeSize(TF_TensorType(from)):
  
  ShapeElementCount(dims, num_dims) * TF_DataTypeSize(type)
  
  must equal
  
  TF_TensorElementCount(from) * from_type_size
  
  where TF_ShapeElementCount would be the number of elements in a tensor with
  the given shape.
  
  In addition, this function requires:
    * TF_DataTypeSize(TF_TensorType(from)) != 0
    * TF_DataTypeSize(type) != 0
  
  If any of the requirements are not met, *status is set to
  TF_INVALID_ARGUMENT.

=back

  /* From <tensorflow/c/tf_tensor.h> */
  TF_CAPI_EXPORT extern void TF_TensorBitcastFrom(const TF_Tensor* from,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/tf_tstring.h> */
  TF_CAPI_EXPORT extern void TF_StringDealloc(TF_TString *tstr);

=head2 TF_DataTypeSize

=over 2

  TF_DataTypeSize returns the sizeof() for the underlying type corresponding
  to the given TF_DataType enum value. Returns 0 for variable length types
  (eg. TF_STRING) or on failure.

=back

  /* From <tensorflow/c/tf_datatype.h> */
  TF_CAPI_EXPORT extern size_t TF_DataTypeSize(TF_DataType dt);

=head2 TF_NewOpDefinitionBuilder

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern void TF_DeleteOpDefinitionBuilder(
      TF_OpDefinitionBuilder* builder);

=head2 TF_OpDefinitionBuilderAddAttr

=over 2

  Adds an attr to the given TF_OpDefinitionBuilder. The spec has
  format "<name>:<type>" or "<name>:<type>=<default>"
  where <name> matches regexp [a-zA-Z][a-zA-Z0-9_]*.
  By convention, names containing only capital letters are reserved for
  attributes whose values can be inferred by the operator implementation if not
  supplied by the user. If the attribute name contains characters other than
  capital letters, the operator expects the user to provide the attribute value
  at operation runtime.
  
  <type> can be:
    "string", "int", "float", "bool", "type", "shape", or "tensor"
    "numbertype", "realnumbertype", "quantizedtype"
        (meaning "type" with a restriction on valid values)
    "{int32,int64}" or {realnumbertype,quantizedtype,string}"
        (meaning "type" with a restriction containing unions of value types)
    "{\"foo\", \"bar\n baz\"}", or "{'foo', 'bar\n baz'}"
        (meaning "string" with a restriction on valid values)
    "list(string)", ..., "list(tensor)", "list(numbertype)", ...
        (meaning lists of the above types)
    "int >= 2" (meaning "int" with a restriction on valid values)
    "list(string) >= 2", "list(int) >= 2"
        (meaning "list(string)" / "list(int)" with length at least 2)
  <default>, if included, should use the Proto text format
  of <type>.  For lists use [a, b, c] format.
  
  Note that any attr specifying the length of an input or output will
  get a default minimum of 1 unless the >= # syntax is used.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  Sets the is_stateful property of the builder to the given value.
  
  The op built by this builder is stateful if its behavior depends on some
  state beyond its input tensors (e.g. variable reading op) or if it has a
  side-effect (e.g. printing or asserting ops). Equivalently, stateless ops
  must always produce the same output for the same input and have no
  side-effects.
  
  By default Ops may be moved between devices. Stateful ops should either not
  be moved, or should only be moved if that state can also be moved (e.g. via
  some sort of save / restore). Stateful ops are guaranteed to never be
  optimized away by Common Subexpression Elimination (CSE).

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_OpDefinitionBuilderSetIsStateful(
      TF_OpDefinitionBuilder* builder, bool is_stateful);

=head2 TF_OpDefinitionBuilderSetAllowsUninitializedInput

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern int64_t TF_ShapeInferenceContextNumInputs(
      TF_ShapeInferenceContext* ctx);

=head2 TF_NewShapeHandle

=over 2

  Returns a newly allocated shape handle. The shapes represented by these
  handles may be queried or mutated with the corresponding
  TF_ShapeInferenceContext...  functions.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern TF_ShapeHandle* TF_NewShapeHandle();

=head2 TF_ShapeInferenceContextGetInput

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern TF_ShapeHandle* TF_ShapeInferenceContextScalar(
      TF_ShapeInferenceContext* ctx);

=head2 TF_ShapeInferenceContextVectorFromSize

=over 2

  Returns a newly-allocate shape handle representing a vector of the given
  size. The returned handle should be freed with TF_DeleteShapeHandle.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern TF_ShapeHandle* TF_ShapeInferenceContextVectorFromSize(
      TF_ShapeInferenceContext* ctx, size_t size);

=head2 TF_NewDimensionHandle

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContext_GetAttrType(
      TF_ShapeInferenceContext* ctx, const char* attr_name, TF_DataType* val,
      TF_Status* status);

=head2 TF_ShapeInferenceContextRank

=over 2

  Returns the rank of the shape represented by the given handle.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern int64_t TF_ShapeInferenceContextRank(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle);

=head2 TF_ShapeInferenceContextRankKnown

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern int TF_ShapeInferenceContextRankKnown(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle);

=head2 TF_ShapeInferenceContextWithRank

=over 2

  If <handle> has rank <rank>, or its rank is unknown, return OK and return the
  shape with asserted rank in <*result>. Otherwise an error is placed into
  `status`.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRank(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
      TF_ShapeHandle* result, TF_Status* status);

=head2 TF_ShapeInferenceContextWithRankAtLeast

=over 2

  If <handle> has rank at least <rank>, or its rank is unknown, return OK and
  return the shape with asserted rank in <*result>. Otherwise an error is
  placed into `status`.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRankAtLeast(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
      TF_ShapeHandle* result, TF_Status* status);

=head2 TF_ShapeInferenceContextWithRankAtMost

=over 2

  If <handle> has rank at most <rank>, or its rank is unknown, return OK and
  return the shape with asserted rank in <*result>. Otherwise an error is
  placed into `status`.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextWithRankAtMost(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* handle, int64_t rank,
      TF_ShapeHandle* result, TF_Status* status);

=head2 TF_ShapeInferenceContextDim

=over 2

  Places a handle to the ith dimension of the given shape into *result.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextDim(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* shape_handle, int64_t i,
      TF_DimensionHandle* result);

=head2 TF_ShapeInferenceContextSubshape

=over 2

  Returns in <*result> a sub-shape of <shape_handle>, with dimensions
  [start:end]. <start> and <end> can be negative, to index from the end of the
  shape. <start> and <end> are set to the rank of <shape_handle> if > rank of
  <shape_handle>.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextSubshape(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* shape_handle, int64_t start,
      int64_t end, TF_ShapeHandle* result, TF_Status* status);

=head2 TF_ShapeInferenceContextSetUnknownShape

=over 2

  Places an unknown shape in all outputs for the given inference context. Used
  for shape inference functions with ops whose output shapes are unknown.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextSetUnknownShape(
      TF_ShapeInferenceContext* ctx, TF_Status* status);

=head2 TF_DimensionHandleValueKnown

=over 2

  Returns whether the given handle represents a known dimension.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern int TF_DimensionHandleValueKnown(
      TF_DimensionHandle* dim_handle);

=head2 TF_DimensionHandleValue

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern int64_t TF_DimensionHandleValue(
      TF_DimensionHandle* dim_handle);

=head2 TF_ShapeInferenceContextConcatenateShapes

=over 2

  Returns in <*result> the result of appending the dimensions of <second> to
  those of <first>.

=back

  /* From <tensorflow/c/ops.h> */
  TF_CAPI_EXPORT extern void TF_ShapeInferenceContextConcatenateShapes(
      TF_ShapeInferenceContext* ctx, TF_ShapeHandle* first,
      TF_ShapeHandle* second, TF_ShapeHandle* result, TF_Status* status);

=head2 TF_DeleteShapeHandle

=over 2

  Frees the given shape handle.

=back

  /* From <tensorflow/c/ops.h> */

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  and deleting entries as they are encountered.
  
  If dirname itself is not readable or does not exist, *undeleted_dir_count is
  set to 1, *undeleted_file_count is set to 0 and an appropriate status (e.g.
  TF_NOT_FOUND) is returned.
  
  If dirname and all its descendants were successfully deleted, TF_OK is
  returned and both error counters are set to zero.
  
  Otherwise, while traversing the tree, undeleted_file_count and
  undeleted_dir_count are updated if an entry of the corresponding type could
  not be deleted. The returned error status represents the reason that any one
  of these entries could not be deleted.
  
  Typical status codes:
   * TF_OK - dirname exists and we were able to delete everything underneath
   * TF_NOT_FOUND - dirname doesn't exist
   * TF_PERMISSION_DENIED - dirname or some descendant is not writable
   * TF_UNIMPLEMENTED - some underlying functions (like Delete) are not
     implemented

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern void TF_FileStat(const char* filename,
                                         TF_FileStatistics* stats,
                                         TF_Status* status);

=head2 TF_NewWritableFile

=over 2

  Creates or truncates the given filename and returns a handle to be used for
  appending data to the file. If status is TF_OK, *handle is updated and the
  caller is responsible for freeing it (see TF_CloseWritableFile).

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern void TF_NewWritableFile(const char* filename,
                                                TF_WritableFileHandle** handle,
                                                TF_Status* status);

=head2 TF_CloseWritableFile

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern void TF_DeleteFile(const char* filename,
                                           TF_Status* status);

=head2 TF_StringStreamNext

=over 2

  Retrieves the next item from the given TF_StringStream and places a pointer
  to it in *result. If no more items are in the list, *result is set to NULL
  and false is returned.
  
  Ownership of the items retrieved with this function remains with the library.
  Item points are invalidated after a call to TF_StringStreamDone.

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern bool TF_StringStreamNext(TF_StringStream* list,
                                                 const char** result);

=head2 TF_StringStreamDone

=over 2

  Frees the resources associated with given string list. All pointers returned
  by TF_StringStreamNext are invalid after this call.

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern void TF_StringStreamDone(TF_StringStream* list);

=head2 TF_GetChildren

=over 2

  Retrieves the list of children of the given directory. You can iterate
  through the list with TF_StringStreamNext. The caller is responsible for
  freeing the list (see TF_StringStreamDone).

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern TF_StringStream* TF_GetChildren(const char* filename,
                                                        TF_Status* status);

=head2 TF_GetLocalTempDirectories

=over 2

  Retrieves a list of directory names on the local machine that may be used for
  temporary storage. You can iterate through the list with TF_StringStreamNext.
  The caller is responsible for freeing the list (see TF_StringStreamDone).

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern TF_StringStream* TF_GetLocalTempDirectories(void);

=head2 TF_GetTempFileName

=over 2

  Creates a temporary file name with an extension.
  The caller is responsible for freeing the returned pointer.

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern char* TF_GetTempFileName(const char* extension);

=head2 TF_NowNanos

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=head2 TF_StartThread

=over 2

  Returns a new thread that is running work_func and is identified
  (for debugging/performance-analysis) by thread_name.
  
  The given param (which may be null) is passed to work_func when the thread
  starts. In this way, data may be passed from the thread back to the caller.
  
  Caller takes ownership of the result and must call TF_JoinThread on it
  eventually.

=back

  /* From <tensorflow/c/env.h> */
  TF_CAPI_EXPORT extern TF_Thread* TF_StartThread(const TF_ThreadOptions* options,
                                                  const char* thread_name,
                                                  void (*work_func)(void*),
                                                  void* param);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  to the computation.
  
  The TF_OpKernelContext pointer received by compute_func is owned by
  TensorFlow and will be deleted once compute_func returns. It must not be used
  after this.
  
  Finally, when TensorFlow no longer needs the kernel, it will call
  delete_func if one is provided. This function will receive the pointer
  returned in `create_func` or nullptr if no `create_func` was provided.
  
  The caller should pass the result of this function to
  TF_RegisterKernelBuilder, which will take ownership of the pointer. If, for
  some reason, the kernel builder will not be registered, the caller should
  delete it with TF_DeleteKernelBuilder.

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern TF_KernelBuilder* TF_NewKernelBuilder(
      const char* op_name, const char* device_name,
      void* (*create_func)(TF_OpKernelConstruction*),

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern void TF_KernelBuilder_TypeConstraint(
      TF_KernelBuilder* kernel_builder, const char* attr_name,
      const TF_DataType type, TF_Status* status);

=head2 TF_KernelBuilder_HostMemory

=over 2

  Specify that this kernel requires/provides an input/output arg
  in host memory (instead of the default, device memory).

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern void TF_KernelBuilder_HostMemory(
      TF_KernelBuilder* kernel_builder, const char* arg_name);

=head2 TF_KernelBuilder_Priority

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern void TF_GetInput(TF_OpKernelContext* ctx, int i,
                                         TF_Tensor** tensor, TF_Status* status);

=head2 TF_InputRange

=over 2

  Retrieves the start and stop indices, given the input name. Equivalent to
  OpKernel::InputRange(). `args` will contain the result indices and status.

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern void TF_InputRange(TF_OpKernelContext* ctx,
                                           const char* name,
                                           TF_InputRange_Args* args);

=head2 TF_SetOutput

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern TF_StringView TF_GetOpKernelName(TF_OpKernelContext* ctx);

=head2 TF_GetResourceMgrDefaultContainerName

=over 2

  Returns the default container of the resource manager in OpKernelContext.
  
  The returned TF_StringView's underlying string is owned by the OpKernel and
  has the same lifetime as the OpKernel.

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern TF_StringView TF_GetResourceMgrDefaultContainerName(
      TF_OpKernelContext* ctx);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

      TF_OpKernelConstruction* ctx, const char* attr_name, TF_Bool* vals,
      int max_vals, TF_Status* status);

=head2 TF_OpKernelConstruction_GetAttrStringList

=over 2

  Interprets the named kernel construction attribute as string array and fills
  in `vals` and `lengths`, each of which must point to an array of length at
  least `max_values`. *status is set to TF_OK. The elements of values will
  point to addresses in `storage` which must be at least `storage_size` bytes
  in length. Ideally, max_values would be set to list_size and `storage` would
  be at least total_size, obtained from
  TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, list_size,
  total_size).

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern void TF_OpKernelConstruction_GetAttrStringList(
      TF_OpKernelConstruction* ctx, const char* attr_name, char** vals,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

      TF_OpKernelConstruction* ctx, const char* attr_name, TF_Tensor** vals,
      int max_values, TF_Status* status);

=head2 TF_OpKernelConstruction_GetAttrFunction

=over 2

  Interprets the named kernel construction attribute as a
  tensorflow::NameAttrList and returns the serialized proto as TF_Buffer.
  `status` will be set. The caller takes ownership of the returned TF_Buffer
  (if not null) and is responsible for managing its lifetime.

=back

  /* From <tensorflow/c/kernels.h> */
  TF_CAPI_EXPORT extern TF_Buffer* TF_OpKernelConstruction_GetAttrFunction(
      TF_OpKernelConstruction* ctx, const char* attr_name, TF_Status* status);

=head2 TF_OpKernelConstruction_HasAttr

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

      int num_dims, TF_AllocatorAttributes* alloc_attrs, TF_Status* status);

=head2 TF_AssignVariable

=over 2

  Expose higher level Assignment operation for Pluggable vendors to implement
  in the plugin for Training. The API takes in the context with indices for
  the input and value tensors. It also accepts the copy callback provided by
  pluggable vendor to do the copying of the tensors. The caller takes ownership
  of the `source` and `dest` tensors and is responsible for freeing them with
  TF_DeleteTensor. This function will return an error when the following
  conditions are met:
    1. `validate_shape` is set to `true`
    2. The variable is initialized
    3. The shape of the value tensor doesn't match the shape of the variable
       tensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

      TF_Status* status);

=head2 TF_AssignRefVariable

=over 2

  Expose higher level Assignment operation for Pluggable vendors to implement
  in the plugin for Training on ref variables. The API takes in the context
  with indices for the input and value tensors. It also accepts the copy
  callback provided by pluggable vendor to do the copying of the tensors. The
  caller takes ownership of the `source` and `dest` tensors and is responsible
  for freeing them with TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_AssignRefVariable(
      TF_OpKernelContext* ctx, int input_ref_index, int output_ref_index,
      int value_index, bool use_locking, bool validate_shape,
      void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
                       TF_Tensor* dest),

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=head2 TF_AssignUpdateVariable

=over 2

  Expose higher level AssignUpdate operation for Pluggable vendors to implement
  in the plugin for Training. The API takes in the context with indices for the
  input and value tensors. It also accepts the copy callback provided by
  pluggable vendor to do the copying of the tensors and the update callback to
  apply the arithmetic operation. The caller takes ownership of the `source`,
  `dest`, `tensor` and `value` tensors and is responsible for freeing them with
  TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_AssignUpdateVariable(
      TF_OpKernelContext* ctx, int input_index, int value_index, int Op,
      int isVariantType,
      void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
                       TF_Tensor* dest),
      void (*updateFunc)(TF_OpKernelContext* ctx, TF_Tensor* tensor,
                         TF_Tensor* value, int Op),
      TF_Status* status);

=head2 TF_MaybeLockVariableInputMutexesInOrder

=over 2

  This is a helper function which acquires mutexes in-order to provide
  thread-safe way of performing weights update during the optimizer op. It
  returns an opaque LockHolder handle back to plugin. This handle is passed to
  the Release API for releasing the locks when the weight update is done. The
  caller takes ownership of the `source` and `dest` tensors and is responsible
  for freeing them with TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_MaybeLockVariableInputMutexesInOrder(
      TF_OpKernelContext* ctx, bool do_lock, bool sparse, const int* const inputs,
      size_t len,
      void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
                       TF_Tensor* dest),
      TF_VariableInputLockHolder** lockHolder, TF_Status* status);

=head2 TF_GetInputTensorFromVariable

=over 2

  This interface returns `out` tensor which is updated corresponding to the
  variable passed with input index. The caller takes ownership of the `source`
  and `dest` tensors and is responsible for freeing them with TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_GetInputTensorFromVariable(
      TF_OpKernelContext* ctx, int input, bool lock_held, bool isVariantType,
      bool sparse,
      void (*copyFunc)(TF_OpKernelContext* ctx, TF_Tensor* source,
                       TF_Tensor* dest),
      TF_Tensor** out, TF_Status* status);

=head2 TF_OpKernelContext_ForwardRefInputToRefOutput

=over 2

  This interface forwards the reference from input to the output tensors
  corresponding to the indices provided with `input_index` and `output_index`

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_OpKernelContext_ForwardRefInputToRefOutput(
      TF_OpKernelContext* ctx, int32_t input_index, int32_t output_index);

=head2 TF_ReleaseVariableInputLockHolder

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                           TF_Status* status);

=head2 TF_AddNVariant

=over 2

  Expose higher level AddN operation for Pluggable vendors to implement
  in the plugin for Variant data types. The API takes in the context and a
  callback provided by pluggable vendor to do a Binary Add operation on the
  tensors unwrapped from the Variant tensors. The caller takes ownership of the
  `a`, `b` and `out` tensors and is responsible for freeing them with
  TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_AddNVariant(
      TF_OpKernelContext* ctx,
      void (*binary_add_func)(TF_OpKernelContext* ctx, TF_Tensor* a, TF_Tensor* b,
                              TF_Tensor* out),
      TF_Status* status);

=head2 TF_ZerosLikeVariant

=over 2

  Expose higher level ZerosLike operation for Pluggable vendors to implement
  in the plugin for Variant data types. The API takes in the context and a
  callback provided by pluggable vendor to do a ZerosLike operation on the
  tensors unwrapped from the Variant tensors. The caller takes ownership of the
  `input` and `out` tensors and is responsible for freeing them with
  TF_DeleteTensor.

=back

  /* From <tensorflow/c/kernels_experimental.h> */
  TF_CAPI_EXPORT extern void TF_ZerosLikeVariant(
      TF_OpKernelContext* ctx,
      void (*zeros_like_func)(TF_OpKernelContext* ctx, TF_Tensor* input,
                              TF_Tensor* out),
      TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx,
                                                              TF_Status* status);

=head2 TFE_ContextClearCaches

=over 2

  Clears the internal caches in the TFE context. Useful when reseeding random
  ops.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_ContextClearCaches(TFE_Context* ctx);

=head2 TFE_ContextSetThreadLocalDevicePlacementPolicy

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern const char* TFE_TensorHandleDeviceName(
      TFE_TensorHandle* h, TF_Status* status);

=head2 TFE_TensorHandleBackingDeviceName

=over 2

  Returns the name of the device in whose memory `h` resides.
  
  This function will block till the operation that produces `h` has completed.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern const char* TFE_TensorHandleBackingDeviceName(
      TFE_TensorHandle* h, TF_Status* status);

=head2 TFE_TensorHandleCopySharingTensor

=over 2

  Return a pointer to a new TFE_TensorHandle that shares the underlying tensor
  with `h`. On success, `status` is set to OK. On failure, `status` reflects
  the error and a nullptr is returned.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor(
      TFE_TensorHandle* h, TF_Status* status);

=head2 TFE_TensorHandleResolve

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h,
                                                           TF_Status* status);

=head2 TFE_TensorHandleCopyToDevice

=over 2

  Create a new TFE_TensorHandle with the same contents as 'h' but placed
  in the memory of the device name 'device_name'.
  If source and destination are the same device, then this creates a new handle
  that shares the underlying buffer. Otherwise, it currently requires at least
  one of the source or destination devices to be CPU (i.e., for the source or
  destination tensor to be placed in host memory).
  If async execution is enabled, the copy may be enqueued and the call will
  return "non-ready" handle. Else, this function returns after the copy has
  been done.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopyToDevice(
      TFE_TensorHandle* h, TFE_Context* ctx, const char* device_name,
      TF_Status* status);

=head2 TFE_TensorHandleTensorDebugInfo

=over 2

  Retrieves TFE_TensorDebugInfo for `handle`.
  If TFE_TensorHandleTensorDebugInfo succeeds, `status` is set to OK and caller
  is responsible for deleting returned TFE_TensorDebugInfo.
  If TFE_TensorHandleTensorDebugInfo fails, `status` is set to appropriate
  error and nullptr is returned. This function can block till the operation
  that produces `handle` has completed.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern TFE_TensorDebugInfo* TFE_TensorHandleTensorDebugInfo(
      TFE_TensorHandle* h, TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_DeleteTensorDebugInfo(
      TFE_TensorDebugInfo* debug_info);

=head2 TFE_TensorDebugInfoOnDeviceNumDims

=over 2

  Returns the number of dimensions used to represent the tensor on its device.
  The number of dimensions used to represent the tensor on device can be
  different from the number returned by TFE_TensorHandleNumDims.
  The return value was current at the time of TFE_TensorDebugInfo creation.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern int TFE_TensorDebugInfoOnDeviceNumDims(
      TFE_TensorDebugInfo* debug_info);

=head2 TFE_TensorDebugInfoOnDeviceDim

=over 2

  Returns the number of elements in dimension `dim_index`.
  Tensor representation on device can be transposed from its representation
  on host. The data contained in dimension `dim_index` on device
  can correspond to the data contained in another dimension in on-host
  representation. The dimensions are indexed using the standard TensorFlow
  major-to-minor order (slowest varying dimension first),
  not the XLA's minor-to-major order.
  On-device dimensions can be padded. TFE_TensorDebugInfoOnDeviceDim returns
  the number of elements in a dimension after padding.
  The return value was current at the time of TFE_TensorDebugInfo creation.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern int64_t TFE_TensorDebugInfoOnDeviceDim(

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_OpSetAttrType(TFE_Op* op, const char* attr_name,
                                               TF_DataType value);

=head2 TFE_OpSetAttrShape

=over 2

  If the number of dimensions is unknown, `num_dims` must be set to
  -1 and `dims` can be null.  If a dimension is unknown, the
  corresponding entry in the `dims` array must be -1.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_OpSetAttrShape(TFE_Op* op, const char* attr_name,
                                                const int64_t* dims,
                                                const int num_dims,
                                                TF_Status* out_status);

=head2 TFE_OpSetAttrFunction

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_ContextExportRunMetadata(TFE_Context* ctx,
                                                          TF_Buffer* buf,
                                                          TF_Status* status);

=head2 TFE_ContextStartStep

=over 2

  Some TF ops need a step container to be set to limit the lifetime of some
  resources (mostly TensorArray and Stack, used in while loop gradients in
  graph mode). Calling this on a context tells it to start a step.

=back

  /* From <tensorflow/c/eager/c_api.h> */
  TF_CAPI_EXPORT extern void TFE_ContextStartStep(TFE_Context* ctx);

=head2 TFE_ContextEndStep

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


=back

  /* From <tensorflow/c/eager/dlpack.h> */
  TF_CAPI_EXPORT extern void TFE_CallDLManagedTensorDeleter(void* dlm_ptr);

=head2 TFE_OpReset

=over 2

  Resets `op_to_reset` with `op_or_function_name` and `raw_device_name`. This
  is for performance optimization by reusing an exiting unused op rather than
  creating a new op every time. If `raw_device_name` is `NULL` or empty, it
  does not set the device name. If it's not `NULL`, then it attempts to parse
  and set the device name. It's effectively `TFE_OpSetDevice`, but it is faster
  than separately calling it because if the existing op has the same
  `raw_device_name`, it skips parsing and just leave as it is.

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_OpReset(TFE_Op* op_to_reset,
                                         const char* op_or_function_name,
                                         const char* raw_device_name,
                                         TF_Status* status);

=head2 TFE_ContextEnableGraphCollection

=over 2

  Enables only graph collection in RunMetadata on the functions executed from
  this context.

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx,
                                                  TF_Status* status);

=head2 TFE_TensorHandleDevicePointer

=over 2

  This function will block till the operation that produces `h` has
  completed. This is only valid on local TFE_TensorHandles. The pointer
  returned will be on the device in which the TFE_TensorHandle resides (so e.g.
  for a GPU tensor this will return a pointer to GPU memory). The pointer is
  only guaranteed to be valid until TFE_DeleteTensorHandle is called on this
  TensorHandle. Only supports POD data types.

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void* TFE_TensorHandleDevicePointer(TFE_TensorHandle*,
                                                            TF_Status*);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern size_t TFE_TensorHandleDeviceMemorySize(TFE_TensorHandle*,
                                                                TF_Status*);

=head2 TFE_NewTensorHandleFromDeviceMemory

=over 2

  Creates a new TensorHandle from memory residing in the physical device
  device_name. Takes ownership of the memory, and will call deleter to release
  it after TF no longer needs it or in case of error.
  
  Custom devices must use TFE_NewCustomDeviceTensorHandle instead.

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory(
      TFE_Context* ctx, const char* device_name, TF_DataType, const int64_t* dims,
      int num_dims, void* data, size_t len,
      void (*deallocator)(void* data, size_t len, void* arg),
      void* deallocator_arg, TF_Status* status);

=head2 TFE_HostAddressSpace

=over 2

  Retrieves the address space (i.e. job, replia, task) of the local host and
  saves it in the buffer.

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_HostAddressSpace(TFE_Context* ctx,
                                                  TF_Buffer* buf);

=head2 TFE_OpGetAttrs

=over 2

  Fetch a reference to `op`'s attributes. The returned reference is only valid
  while `op` is alive.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern bool TFE_IsCustomDevice(TFE_Context* ctx,
                                                const char* device_name);

=head2 TFE_NewCustomDeviceTensorHandle

=over 2

  Creates a new TensorHandle from memory residing in a custom device. Takes
  ownership of the memory pointed to by `tensor_handle_data`, and calls
  `methods.deallocator` to release it after TF no longer needs it or in case of
  an error.
  
  This call is similar to `TFE_NewTensorHandleFromDeviceMemory`, but supports
  custom devices instead of physical devices and does not require blocking
  waiting for exact shapes.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                      const char* key,
                                                      const char* value,
                                                      TF_Status* status);

=head2 TFE_GetConfigKeyValue

=over 2

  Get configuration key and value using coordination service.
  The config key must be set before getting its value. Getting value of
  non-existing config keys will result in errors.

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_GetConfigKeyValue(TFE_Context* ctx,
                                                   const char* key,
                                                   TF_Buffer* value_buf,
                                                   TF_Status* status);

=head2 TFE_DeleteConfigKeyValue

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=over 2

=back

  /* From <tensorflow/c/eager/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_WaitAtBarrier(TFE_Context* ctx,
                                               const char* barrier_id,
                                               int64_t barrier_timeout_in_ms,
                                               TF_Status* status);

=head2 TF_GetNodesToPreserveListSize

=over 2

  Get a set of node names that must be preserved. They can not be transformed
  or removed during the graph transformation. This includes feed and fetch
  nodes, keep_ops, init_ops. Fills in `num_values` and `storage_size`, they
  will be used in `TF_GetNodesToPreserveList`.

=back

  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_GetNodesToPreserveListSize(
      const TF_GrapplerItem* item, int* num_values, size_t* storage_size,
      TF_Status* status);

=head2 TF_GetNodesToPreserveList

=over 2

  Get a set of node names that must be preserved. They can not be transformed
  or removed during the graph transformation. This includes feed and fetch
  nodes, keep_ops, init_ops. Fills in `values` and `lengths`, each of which
  must point to an array of length at least `num_values`.
  
  The elements of values will point to addresses in `storage` which must be at
  least `storage_size` bytes in length.  `num_values` and `storage` can be
  obtained from TF_GetNodesToPreserveSize
  
  Fails if storage_size is too small to hold the requested number of strings.

=back

  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_GetNodesToPreserveList(
      const TF_GrapplerItem* item, char** values, size_t* lengths, int num_values,
      void* storage, size_t storage_size, TF_Status* status);

=head2 TF_GetFetchNodesListSize

=over 2

  Get a set of node names for fetch nodes. Fills in `values` and `lengths`,
  they will be used in `TF_GetFetchNodesList`

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

                                                      size_t* storage_size,
                                                      TF_Status* status);

=head2 TF_GetFetchNodesList

=over 2

  Get a set of node names for fetch nodes. Fills in `values` and `lengths`,
  each of which must point to an array of length at least `num_values`.
  
  The elements of values will point to addresses in `storage` which must be at
  least `storage_size` bytes in length.  `num_values` and `storage` can be
  obtained from TF_GetFetchNodesSize
  
  Fails if storage_size is too small to hold the requested number of strings.

=back

  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_GetFetchNodesList(const TF_GrapplerItem* item,
                                                  char** values, size_t* lengths,

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

      TF_GraphProperties* graph_properties);

=head2 TF_InferStatically

=over 2

  Infer tensor shapes through abstract interpretation.
  If assume_valid_feeds is true, it can help infer shapes in the fanout of fed
  nodes. This may cause incorrectness in graph analyses, but is useful for
  simulation or scheduling.
  If aggressive_shape_inference is true, nodes are executed on the host to
  identify output values when possible and does other aggressive strategies.
  This may cause incorrectness in graph analyses, but is useful for simulation
  or scheduling.
  If include_input_tensor_values is true, the values of constant
  tensors will included in the input properties.
  If include_output_tensor_values is true, the values of constant tensors will
  be included in the output properties.

=back

  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_InferStatically(
      TF_GraphProperties* graph_properties, TF_Bool assume_valid_feeds,
      TF_Bool aggressive_shape_inference, TF_Bool include_input_tensor_values,
      TF_Bool include_output_tensor_values, TF_Status* s);

=head2 TF_GetInputPropertiesListSize

=over 2

  Get the size of input OpInfo::TensorProperties given node name.

=back

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_DeleteFunctionLibraryDefinition(
      TF_FunctionLibraryDefinition* fn_lib);

=head2 TF_LookUpOpDef

=over 2

  Shorthand for calling LookUp to get the OpDef from FunctionLibraryDefinition
  given op name. The returned OpDef is represented by TF_Buffer.

=back

  /* From <tensorflow/c/experimental/grappler/grappler.h> */
  TF_CAPI_EXPORT extern void TF_LookUpOpDef(TF_FunctionLibraryDefinition* fn_lib,
                                            const char* name, TF_Buffer* buf,
                                            TF_Status* s);

=head2 TF_TensorSpecDataType

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
  TF_CAPI_EXPORT extern TF_SavedModel* TF_LoadSavedModelWithTags(
      const char* dirname, TFE_Context* ctx, const char* const* tags,
      int tags_len, TF_Status* status);

=head2 TF_DeleteSavedModel

=over 2

  Deletes a TF_SavedModel, and frees any resources owned by it.

=back

  /* From <tensorflow/c/experimental/saved_model/public/saved_model_api.h> */
  TF_CAPI_EXPORT extern void TF_DeleteSavedModel(TF_SavedModel* model);

=head2 TF_GetSavedModelConcreteFunction

=over 2

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern TF_FunctionMetadata* TF_ConcreteFunctionGetMetadata(
      TF_ConcreteFunction* func);

=head2 TF_ConcreteFunctionMakeCallOp

=over 2

  Returns a TFE_Op suitable for executing this function. Caller must provide
  all function inputs in `inputs`, and must not add any additional inputs on
  the returned op. (i.e. don't call TFE_OpAddInput or TFE_OpAddInputList).
  The caller is responsible for deleting the returned TFE_Op. If op
  construction fails, `status` will be non-OK and the returned pointer will be
  null.
  TODO(bmzhao): Remove this function in a subsequent change; Design + implement
  a Function Execution interface for ConcreteFunction that accepts a tagged
  union of types (tensorflow::Value). This effectively requires moving much of
  the implementation of function.py/def_function.py to C++, and exposing a
  high-level API here. A strawman for what this interface could look like:
  TF_Value* TF_ExecuteFunction(TFE_Context*, TF_ConcreteFunction*, TF_Value*
  inputs, int num_inputs, TF_Status* status);

=back

  /* From <tensorflow/c/experimental/saved_model/public/concrete_function.h> */
  TF_CAPI_EXPORT extern TFE_Op* TF_ConcreteFunctionMakeCallOp(
      TF_ConcreteFunction* func, TFE_TensorHandle** inputs, int num_inputs,
      TF_Status* status);

=head2 TF_SignatureDefParamName

=over 2

  Returns the name of the given parameter. The caller is not responsible for
  freeing the returned char*.

=back

  /* From <tensorflow/c/experimental/saved_model/public/signature_def_param.h> */
  TF_CAPI_EXPORT extern const char* TF_SignatureDefParamName(
      const TF_SignatureDefParam* param);

=head2 TF_SignatureDefParamTensorSpec

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern TF_SignatureDefFunctionMetadata*
  TF_SignatureDefFunctionGetMetadata(TF_SignatureDefFunction* func);

=head2 TF_SignatureDefFunctionMakeCallOp

=over 2

  Returns a TFE_Op suitable for executing this function. Caller must provide
  all function inputs in `inputs`, and must not add any additional inputs on
  the returned op. (i.e. don't call TFE_OpAddInput or TFE_OpAddInputList).
  The caller is responsible for deleting the returned TFE_Op. If op
  construction fails, `status` will be non-OK and the returned pointer will be
  null.

=back

  /* From <tensorflow/c/experimental/saved_model/public/signature_def_function.h> */
  TF_CAPI_EXPORT extern TFE_Op* TF_SignatureDefFunctionMakeCallOp(
      TF_SignatureDefFunction* func, TFE_TensorHandle** inputs, int num_inputs,
      TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  /* From <tensorflow/c/experimental/saved_model/public/signature_def_param_list.h> */
  TF_CAPI_EXPORT extern const TF_SignatureDefParam* TF_SignatureDefParamListGet(
      const TF_SignatureDefParamList* list, int i);

=head2 TF_SignatureDefFunctionMetadataArgs

=over 2

  Retrieves the arguments of the SignatureDefFunction. The caller is not
  responsible for freeing the returned pointer.

=back

  /* From <tensorflow/c/experimental/saved_model/public/signature_def_function_metadata.h> */
  TF_CAPI_EXPORT extern const TF_SignatureDefParamList*
  TF_SignatureDefFunctionMetadataArgs(
      const TF_SignatureDefFunctionMetadata* list);

=head2 TF_SignatureDefFunctionMetadataReturns

=over 2

  Retrieves the returns of the SignatureDefFunction. The caller is not
  responsible for freeing the returned pointer.

=back

  /* From <tensorflow/c/experimental/saved_model/public/signature_def_function_metadata.h> */
  TF_CAPI_EXPORT extern const TF_SignatureDefParamList*
  TF_SignatureDefFunctionMetadataReturns(
      const TF_SignatureDefFunctionMetadata* list);

=head2 TF_EnableXLACompilation

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern char* TF_FunctionDebugString(TF_Function* func,
                                                     size_t* len);

=head2 TF_DequeueNamedTensor

=over 2

  Caller must call TF_DeleteTensor() over the returned tensor. If the queue is
  empty, this call is blocked.
  
  Tensors are enqueued via the corresponding TF enqueue op.
  TODO(hongm): Add support for `timeout_ms`.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern TF_Tensor* TF_DequeueNamedTensor(TF_Session* session,
                                                         int tensor_id,
                                                         TF_Status* status);

=head2 TF_EnqueueNamedTensor

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN


  On success, enqueues `tensor` into a TF-managed FifoQueue given by
  `tensor_id`, associated with `session`. There must be a graph node named
  "fifo_queue_enqueue_<tensor_id>", to be executed by this API call. It reads
  from a placeholder node "arg_tensor_enqueue_<tensor_id>".
  
  `tensor` is still owned by the caller. This call will be blocked if the queue
  has reached its capacity, and will be unblocked when the queued tensors again
  drop below the capacity due to dequeuing.
  
  Tensors are dequeued via the corresponding TF dequeue op.
  TODO(hongm): Add support for `timeout_ms`.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TF_EnqueueNamedTensor(TF_Session* session,
                                                   int tensor_id,
                                                   TF_Tensor* tensor,
                                                   TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TF_AttrBuilderCheckCanRunOnDevice(
      TF_AttrBuilder* builder, const char* device_type, TF_Status* status);

=head2 TF_GetNumberAttrForOpListInput

=over 2

  For argument number input_index, fetch the corresponding number_attr that
  needs to be updated with the argument length of the input list.
  Returns nullptr if there is any problem like op_name is not found, or the
  argument does not support this attribute type.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern const char* TF_GetNumberAttrForOpListInput(
      const char* op_name, int input_index, TF_Status* status);

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  TF_CAPI_EXPORT extern void TFE_EnableCollectiveOps(TFE_Context* ctx,
                                                     const void* proto,
                                                     size_t proto_len,
                                                     TF_Status* status);

=head2 TFE_AbortCollectiveOps

=over 2

  Aborts all ongoing collectives with the specified status. After abortion,
  subsequent collectives will error with this status immediately. To reset the
  collectives, create a new EagerContext.
  
  This is intended to be used when a peer failure is detected.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_AbortCollectiveOps(TFE_Context* ctx,
                                                    TF_Status* status);

=head2 TFE_CollectiveOpsCheckPeerHealth

=over 2

  Checks the health of collective ops peers. Explicit health check is needed in
  multi worker collective ops to detect failures in the cluster.  If a peer is
  down, collective ops may hang.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_CollectiveOpsCheckPeerHealth(
      TFE_Context* ctx, const char* task, int64_t timeout_in_ms,
      TF_Status* status);

=head2 TF_NewShapeAndTypeList

lib/AI/TensorFlow/Libtensorflow/Manual/CAPI.pod  view on Meta::CPAN

  Infer shapes for the given `op`. The arguments mimic the arguments of the
  `shape_inference::InferenceContext` constructor. Note the following:
    - The inputs of the `op` are not used for shape inference. So, it is
      OK to not have the inputs properly set in `op`. See `input_tensors`
      if you want shape inference to consider the input tensors of the
      op for shape inference.
    - The types need not be set in `input_shapes` as it is not used.
    - The number of `input_tensors` should be the same as the number of items
      in `input_shapes`.
  
  The results are returned in `output_shapes` and
  `output_resource_shapes_and_types`. The caller is responsible for freeing the
  memory in these buffers by calling `TF_DeleteShapeAndTypeList`.

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void TFE_InferShapes(
      TFE_Op* op, TF_ShapeAndTypeList* input_shapes, TF_Tensor** input_tensors,
      TF_ShapeAndTypeList* input_tensor_as_shapes,
      TF_ShapeAndTypeList** input_resource_shapes_and_types,
      TF_ShapeAndTypeList** output_shapes,
      TF_ShapeAndTypeList*** output_resource_shapes_and_types, TF_Status* status);

=head2 TF_ImportGraphDefOptionsSetValidateColocationConstraints

=over 2

=back

  /* From <tensorflow/c/c_api_experimental.h> */
  TF_CAPI_EXPORT extern void
  TF_ImportGraphDefOptionsSetValidateColocationConstraints(
      TF_ImportGraphDefOptions* opts, unsigned char enable);

=head2 TF_LoadPluggableDeviceLibrary

=over 2

  Load the library specified by library_filename and register the pluggable
  device and related kernels present in that library. This function is not
  supported on embedded on mobile and embedded platforms and will fail if
  called.
  
  Pass "library_filename" to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here.
  
  On success, returns the newly created library handle and places OK in status.
  The caller owns the library handle.
  

lib/AI/TensorFlow/Libtensorflow/Manual/GPU.pod  view on Meta::CPAN


An alternative to installing all the software listed on the "bare metal" host
machine is to use C<libtensorflow> via a Docker container and the
NVIDIA Container Toolkit. See L<AI::TensorFlow::Libtensorflow::Manual::Quickstart/DOCKER IMAGES>
for more information.

=head1 RUNTIME

When running C<libtensorflow>, your program will attempt to acquire quite a bit
of GPU VRAM. You can check if you have enough free VRAM by using the
C<nvidia-smi> command which displays resource information as well as which
processes are currently using the GPU.  If C<libtensorflow> is not able to
allocate enough memory, it will crash with an out-of-memory (OOM) error. This
is typical when running multiple programs that both use the GPU.

If you have multiple GPUs, you can control which GPUs your program can access
by using the
L<C<CUDA_VISIBLE_DEVICES> environment variable|https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars>
provided by the underlying CUDA library. This is typically
done by setting the variable in a C<BEGIN> block before loading
L<AI::TensorFlow::Libtensorflow>:

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

        handle => 'https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1',
        image_size => [ 512, 512 ],
    },
);

my $model_name = 'centernet_hourglass_512x512';

say "Selected model: $model_name : $model_name_to_params{$model_name}{handle}";

my $model_uri = URI->new( $model_name_to_params{$model_name}{handle} );
$model_uri->query_form( 'tf-hub-format' => 'compressed' );
my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
my $model_archive_path = "${model_base}.tar.gz";

my $http = HTTP::Tiny->new;

for my $download ( [ $model_uri  => $model_archive_path ],) {
    my ($uri, $path) = @$download;
    say "Downloading $uri to $path";
    next if -e $path;
    $http->mirror( $uri, $path );
}

use Archive::Extract;
my $ae = Archive::Extract->new( archive => $model_archive_path );
die "Could not extract archive" unless $ae->extract( to => $model_base );

my $saved_model = path($model_base)->child('saved_model.pb');
say "Saved model is in $saved_model" if -f $saved_model;

# Get the labels
my $response = $http->get('https://raw.githubusercontent.com/tensorflow/models/a4944a57ad2811e1f6a7a87589a9fc8a776e8d3c/object_detection/data/mscoco_label_map.pbtxt');

my %labels_map = $response->{content} =~ m<
(?:item \s+ \{  \s+
  \Qname:\E \s+ "[^"]+" \s+
  \Qid:\E   \s+ (\d+) \s+
  \Qdisplay_name:\E \s+ "([^"]+)" \s+
})+
>sgx;

my $label_count = List::Util::max keys %labels_map;

say "We have a label count of $label_count. These labels include: ",

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

        op   =>  $graph->OperationByName('serving_default_input_tensor'),
        dict => {
            input_tensor => 0,
        }
    },
    out => {
        op => $graph->OperationByName('StatefulPartitionedCall'),
        dict => {
            detection_boxes   => 0,
            detection_classes => 1,
            detection_scores  => 2,
            num_detections    => 3,
        }
    },
);

my %outputs;

%outputs = map {
    my $put_type = $_;
    my $op = $ops{$put_type}{op};

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

            });
        } keys %$port_dict
     }
} keys %ops;

p %outputs;

use HTML::Tiny;

my %images_for_test_to_uri = (
    "beach_scene" => 'https://github.com/tensorflow/models/blob/master/research/object_detection/test_images/image2.jpg?raw=true',
);

my @image_names = sort keys %images_for_test_to_uri;
my $h = HTML::Tiny->new;

my $image_name = 'beach_scene';
if( IN_IPERL ) {
    IPerl->html(
        $h->a( { href => $images_for_test_to_uri{$image_name} },
            $h->img({

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

                width => '100%',
            })
        ),
    );
}

sub load_image_to_pdl {
    my ($uri, $image_size) = @_;

    my $http = HTTP::Tiny->new;
    my $response = $http->get( $uri );
    die "Could not fetch image from $uri" unless $response->{success};
    say "Downloaded $uri";

    my $img = Imager->new;
    $img->read( data => $response->{content} );

    # Create PDL ndarray from Imager data in-memory.
    my $data;
    $img->write( data => \$data, type => 'raw' )
        or die "could not write ". $img->errstr;

    die "Image does not have 3 channels, it has @{[ $img->getchannels ]} channels"
        if $img->getchannels != 3;

    # $data is packed as PDL->dims == [w,h] with RGB pixels

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

undef;

my $tftensor_output_by_name = $RunSession->($session, $t);

my %pdl_output_by_name = map {
    $_ => FloatTFTensorToPDL( $tftensor_output_by_name->{$_} )
} keys $tftensor_output_by_name->%*;

undef;

my $min_score_thresh = 0.30;

my $which_detect = which( $pdl_output_by_name{detection_scores} > $min_score_thresh );

my %subset;

$subset{detection_boxes}   = $pdl_output_by_name{detection_boxes}->dice('X', $which_detect);
$subset{detection_classes} = $pdl_output_by_name{detection_classes}->dice($which_detect);
$subset{detection_scores}  = $pdl_output_by_name{detection_scores}->dice($which_detect);

$subset{detection_class_labels}->@* = map { $labels_map{$_} } $subset{detection_classes}->list;

p %subset;

use PDL::Graphics::Gnuplot;

my $plot_output_path = 'objects-detected.png';
my $gp = gpwin('pngcairo', font => ",12", output => $plot_output_path, aa => 2, size => [10] );

my @qual_cmap = ('#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6');

$gp->options(
    map {
        my $idx = $_;
        my $lc_rgb = $qual_cmap[ $subset{detection_classes}->slice("($idx)")->squeeze % @qual_cmap ];

        my $box_corners_yx_norm = $subset{detection_boxes}->slice([],$idx,[0,0,0]);
        $box_corners_yx_norm->reshape(2,2);

        my $box_corners_yx_img = $box_corners_yx_norm * $pdl_images[0]->shape->slice('-1:-2');

        my $from_xy = join ",", $box_corners_yx_img->slice('-1:0,(0)')->list;
        my $to_xy   = join ",", $box_corners_yx_img->slice('-1:0,(1)')->list;
        my $label_xy = join ",", $box_corners_yx_img->at(1,1), $box_corners_yx_img->at(0,1);

        (
            [ object => [ "rect" =>
                from => $from_xy, to => $to_xy,
                qq{front fs empty border lc rgb "$lc_rgb" lw 5} ], ],
            [ label => [
                sprintf("%s: %.1f",
                    $subset{detection_class_labels}[$idx],
                    100*$subset{detection_scores}->at($idx,0) ) =>
                at => $label_xy, 'left',
                offset => 'character 0,-0.25',
                qq{font ",12" boxed front tc rgb "#ffffff"} ], ],
        )
    } 0..$subset{detection_boxes}->dim(1)-1
);

$gp->plot(
    topcmds => q{set style textbox opaque fc "#505050f0" noborder},
    square => 1,

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

=pod

=encoding UTF-8

=head1 NAME

AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubCenterNetObjDetect - Using TensorFlow to do object detection using a pre-trained model

=head1 SYNOPSIS

The following tutorial is based on the L<TensorFlow Hub Object Detection Colab notebook|https://www.tensorflow.org/hub/tutorials/tf2_object_detection>. It uses a pre-trained model based on the I<CenterNet> architecture trained on the I<COCO 2017> dat...

Some of this code is identical to that of C<InferenceUsingTFHubMobileNetV2Model> notebook. Please look there for an explanation for that code. As stated there, this will later be wrapped up into a high-level library to hide the details behind an API.

=head1 COLOPHON

The following document is either a POD file which can additionally be run as a Perl script or a Jupyter Notebook which can be run in L<IPerl|https://p3rl.org/Devel::IPerl> (viewable online at L<nbviewer|https://nbviewer.org/github/EntropyOrg/perl-AI-...

=over

=item *

C<PDL::Graphics::Gnuplot> requires C<gnuplot>.

=back

If you are running the code, you may optionally install the L<C<tensorflow> Python package|https://www.tensorflow.org/install/pip> in order to access the C<saved_model_cli> command, but this is only used for informational purposes.

=head1 TUTORIAL

=head2 Load the library

First, we need to load the C<AI::TensorFlow::Libtensorflow> library and more helpers. We then create an C<AI::TensorFlow::Libtensorflow::Status> object and helper function to make sure that the calls to the C<libtensorflow> C library are working prop...

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

      },
  );
  
  my $model_name = 'centernet_hourglass_512x512';
  
  say "Selected model: $model_name : $model_name_to_params{$model_name}{handle}";

We download the model to the current directory and then extract the model to a folder with the name given in C<$model_base>.

  my $model_uri = URI->new( $model_name_to_params{$model_name}{handle} );
  $model_uri->query_form( 'tf-hub-format' => 'compressed' );
  my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
  my $model_archive_path = "${model_base}.tar.gz";
  
  my $http = HTTP::Tiny->new;
  
  for my $download ( [ $model_uri  => $model_archive_path ],) {
      my ($uri, $path) = @$download;
      say "Downloading $uri to $path";
      next if -e $path;
      $http->mirror( $uri, $path );

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

  use Archive::Extract;
  my $ae = Archive::Extract->new( archive => $model_archive_path );
  die "Could not extract archive" unless $ae->extract( to => $model_base );
  
  my $saved_model = path($model_base)->child('saved_model.pb');
  say "Saved model is in $saved_model" if -f $saved_model;

We need to download the COCO 2017 classification labels and parse out the mapping from the numeric index to the textual descriptions.

  # Get the labels
  my $response = $http->get('https://raw.githubusercontent.com/tensorflow/models/a4944a57ad2811e1f6a7a87589a9fc8a776e8d3c/object_detection/data/mscoco_label_map.pbtxt');
  
  my %labels_map = $response->{content} =~ m<
  (?:item \s+ \{  \s+
    \Qname:\E \s+ "[^"]+" \s+
    \Qid:\E   \s+ (\d+) \s+
    \Qdisplay_name:\E \s+ "([^"]+)" \s+
  })+
  >sgx;
  
  my $label_count = List::Util::max keys %labels_map;
  
  say "We have a label count of $label_count. These labels include: ",

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

=item -

C<detection_boxes>: a C<tf.float32> tensor of shape [N, 4] containing bounding box coordinates in the following order: [ymin, xmin, ymax, xmax].

=item -

C<detection_classes>: a C<tf.int> tensor of shape [N] containing detection class index from the label file.

=item -

C<detection_scores>: a C<tf.float32> tensor of shape [N] containing detection scores.

=back

=back

Note that the above documentation has two errors: both C<num_detections> and C<detection_classes> are not of type C<tf.int>, but are actually C<tf.float32>.

Now we can load the model from that folder with the tag set C<[ 'serve' ]> by using the C<LoadFromSavedModel> constructor to create a C<::Graph> and a C<::Session> for that graph.

  my $opt = AI::TensorFlow::Libtensorflow::SessionOptions->New;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

          op   =>  $graph->OperationByName('serving_default_input_tensor'),
          dict => {
              input_tensor => 0,
          }
      },
      out => {
          op => $graph->OperationByName('StatefulPartitionedCall'),
          dict => {
              detection_boxes   => 0,
              detection_classes => 1,
              detection_scores  => 2,
              num_detections    => 3,
          }
      },
  );
  
  my %outputs;
  
  %outputs = map {
      my $put_type = $_;
      my $op = $ops{$put_type}{op};

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

       }
  } keys %ops;
  
  p %outputs;

Now we can get the following testing image from GitHub.

  use HTML::Tiny;
  
  my %images_for_test_to_uri = (
      "beach_scene" => 'https://github.com/tensorflow/models/blob/master/research/object_detection/test_images/image2.jpg?raw=true',
  );
  
  my @image_names = sort keys %images_for_test_to_uri;
  my $h = HTML::Tiny->new;
  
  my $image_name = 'beach_scene';
  if( IN_IPERL ) {
      IPerl->html(
          $h->a( { href => $images_for_test_to_uri{$image_name} },
              $h->img({
                  src => $images_for_test_to_uri{$image_name},
                  alt => $image_name,
                  width => '100%',
              })
          ),
      );
  }

=head2 Download the test image and transform it into suitable input data

We now fetch the image and prepare it to be in the needed format by using C<Imager>. Note that this model does not need the input image to be of a certain size so no resizing or padding is required.

Then we turn the C<Imager> data into a C<PDL> ndarray. Since we just need the 3 channels of the image as they are, they can be stored directly in a C<PDL> ndarray of type C<byte>.

The reason why we need to concatenate the C<PDL> ndarrays here despite the model only taking a single image at a time is to get an ndarray with four (4) dimensions with the last C<PDL> dimension of size one (1).

  sub load_image_to_pdl {
      my ($uri, $image_size) = @_;
  
      my $http = HTTP::Tiny->new;
      my $response = $http->get( $uri );
      die "Could not fetch image from $uri" unless $response->{success};
      say "Downloaded $uri";
  
      my $img = Imager->new;
      $img->read( data => $response->{content} );
  
      # Create PDL ndarray from Imager data in-memory.
      my $data;
      $img->write( data => \$data, type => 'raw' )
          or die "could not write ". $img->errstr;
  
      die "Image does not have 3 channels, it has @{[ $img->getchannels ]} channels"
          if $img->getchannels != 3;
  
      # $data is packed as PDL->dims == [w,h] with RGB pixels

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

  my $tftensor_output_by_name = $RunSession->($session, $t);
  
  my %pdl_output_by_name = map {
      $_ => FloatTFTensorToPDL( $tftensor_output_by_name->{$_} )
  } keys $tftensor_output_by_name->%*;
  
  undef;

=head2 Results summary

Then we use a score threshold to select the objects of interest.

  my $min_score_thresh = 0.30;
  
  my $which_detect = which( $pdl_output_by_name{detection_scores} > $min_score_thresh );
  
  my %subset;
  
  $subset{detection_boxes}   = $pdl_output_by_name{detection_boxes}->dice('X', $which_detect);
  $subset{detection_classes} = $pdl_output_by_name{detection_classes}->dice($which_detect);
  $subset{detection_scores}  = $pdl_output_by_name{detection_scores}->dice($which_detect);
  
  $subset{detection_class_labels}->@* = map { $labels_map{$_} } $subset{detection_classes}->list;
  
  p %subset;

The following uses the bounding boxes and class label information to draw boxes and labels on top of the image using Gnuplot.

  use PDL::Graphics::Gnuplot;
  
  my $plot_output_path = 'objects-detected.png';
  my $gp = gpwin('pngcairo', font => ",12", output => $plot_output_path, aa => 2, size => [10] );
  
  my @qual_cmap = ('#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6');
  
  $gp->options(
      map {
          my $idx = $_;
          my $lc_rgb = $qual_cmap[ $subset{detection_classes}->slice("($idx)")->squeeze % @qual_cmap ];
  
          my $box_corners_yx_norm = $subset{detection_boxes}->slice([],$idx,[0,0,0]);
          $box_corners_yx_norm->reshape(2,2);
  
          my $box_corners_yx_img = $box_corners_yx_norm * $pdl_images[0]->shape->slice('-1:-2');
  
          my $from_xy = join ",", $box_corners_yx_img->slice('-1:0,(0)')->list;
          my $to_xy   = join ",", $box_corners_yx_img->slice('-1:0,(1)')->list;
          my $label_xy = join ",", $box_corners_yx_img->at(1,1), $box_corners_yx_img->at(0,1);
  
          (
              [ object => [ "rect" =>
                  from => $from_xy, to => $to_xy,
                  qq{front fs empty border lc rgb "$lc_rgb" lw 5} ], ],
              [ label => [
                  sprintf("%s: %.1f",
                      $subset{detection_class_labels}[$idx],
                      100*$subset{detection_scores}->at($idx,0) ) =>
                  at => $label_xy, 'left',
                  offset => 'character 0,-0.25',
                  qq{font ",12" boxed front tc rgb "#ffffff"} ], ],
          )
      } 0..$subset{detection_boxes}->dim(1)-1
  );
  
  $gp->plot(
      topcmds => q{set style textbox opaque fc "#505050f0" noborder},
      square => 1,

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN


  use Filesys::DiskUsage qw/du/;
  
  my $total = du( { 'human-readable' => 1, dereference => 1 },
      $model_archive_path, $model_base );
  
  say "Disk space usage: $total"; undef;

=head1 CPANFILE

  requires 'AI::TensorFlow::Libtensorflow';
  requires 'AI::TensorFlow::Libtensorflow::DataType';
  requires 'Archive::Extract';
  requires 'Data::Printer';
  requires 'Data::Printer::Filter::PDL';
  requires 'FFI::Platypus::Buffer';
  requires 'FFI::Platypus::Memory';
  requires 'File::Which';
  requires 'Filesys::DiskUsage';
  requires 'HTML::Tiny';
  requires 'HTTP::Tiny';
  requires 'Imager';
  requires 'List::Util', '1.56';
  requires 'PDL';
  requires 'PDL::Graphics::Gnuplot';
  requires 'Path::Tiny';
  requires 'Syntax::Construct';
  requires 'Text::Table::Tiny';
  requires 'URI';
  requires 'constant';
  requires 'feature';
  requires 'lib::projectroot';
  requires 'strict';
  requires 'utf8';
  requires 'warnings';

=head1 AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

=head1 COPYRIGHT AND LICENSE

This software is Copyright (c) 2022-2023 by Auto-Parallel Technologies, Inc.

This is free software, licensed under:

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

    memcpy scalar_to_pointer( ${$pdl->get_dataref} ),
        scalar_to_pointer( ${$t->Data} ),
        $t->ByteSize;
    $pdl->upd_data;

    $pdl;
}

# Model handle
my $model_uri = URI->new( 'https://tfhub.dev/deepmind/enformer/1' );
$model_uri->query_form( 'tf-hub-format' => 'compressed' );
my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
my $model_archive_path = "${model_base}.tar.gz";
my $model_sequence_length = 393_216; # bp

# Human targets from Basenji2 dataset
my $targets_uri  = URI->new('https://raw.githubusercontent.com/calico/basenji/master/manuscripts/cross2020/targets_human.txt');
my $targets_path = 'targets_human.txt';

# Human reference genome
my $hg_uri    = URI->new("http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz");

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

    die "Could not extract archive" unless $ae->extract( to => $model_base );
}

use Digest::file qw(digest_file_hex);
if( digest_file_hex( $hg_gz_path, "MD5" ) eq $hg_md5_digest ) {
    say "MD5 sum for $hg_gz_path OK";
} else {
    die "Digest for $hg_gz_path failed";
}

(my $hg_uncompressed_path = $hg_gz_path) =~ s/\.gz$//;
my $hg_bgz_path = "${hg_uncompressed_path}.bgz";

use IPC::Run;

if( ! -e $hg_bgz_path ) {
    IPC::Run::run(
        [ qw(gunzip -c) ], '<', $hg_gz_path,
        '|',
        [ qw(bgzip -c)  ], '>', $hg_bgz_path
    );
}

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

use Bio::Tools::Run::Samtools;

my $hg_bgz_fai_path = "${hg_bgz_path}.fai";
if( ! -e $hg_bgz_fai_path ) {
    my $faidx_tool = Bio::Tools::Run::Samtools->new( -command => 'faidx' );
    $faidx_tool->run( -fas => $hg_bgz_path )
        or die "Could not index FASTA file $hg_bgz_path: " . $faidx_tool->error_string;
}

sub saved_model_cli {
    my (@rest) = @_;
    if( File::Which::which('saved_model_cli')) {
        system(qw(saved_model_cli), @rest ) == 0
            or die "Could not run saved_model_cli";
    } else {
        warn "saved_model_cli(): Install the tensorflow Python package to get the `saved_model_cli` command.\n";
        return -1;
    }
}

say "Checking with saved_model_cli scan:";
saved_model_cli( qw(scan),
    qw(--dir) => $model_base,

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN


    use parent qw(Bio::Location::Simple);

    sub center {
        my $self = shift;
        my $center = int( ($self->start + $self->end ) / 2 );
        my $delta = ($self->start + $self->end ) % 2;
        return $center + $delta;
    }

    sub resize {
        my ($self, $width) = @_;
        my $new_interval = $self->clone;

        my $center = $self->center;
        my $half   = int( ($width-1) / 2 );
        my $offset = ($width-1) % 2;

        $new_interval->start( $center - $half - $offset );
        $new_interval->end(   $center + $half  );

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN


    use overload '""' => \&_op_stringify;

    sub _op_stringify { sprintf "%s:%s", $_[0]->seq_id // "(no sequence)", $_[0]->to_FTstring }
}

#####

{

say "Testing interval resizing:\n";
sub _debug_resize {
    my ($interval, $to, $msg) = @_;

    my $resized_interval = $interval->resize($to);

    die "Wrong interval size for $interval --($to)--> $resized_interval"
        unless $resized_interval->length == $to;

    say sprintf "Interval: %s -> %s, length %2d : %s",
        $interval,
        $resized_interval, $resized_interval->length,
        $msg;
}

for my $interval_spec ( [4, 8], [5, 8], [5, 9], [6, 9]) {
    my ($start, $end) = @$interval_spec;
    my $test_interval = Interval->new( -seq_id => 'chr11', -start => $start, -end => $end );
    say sprintf "Testing interval %s with length %d", $test_interval, $test_interval->length;
    say "-----";
    for(0..5) {
        my $base = $test_interval->length;
        my $to = $base + $_;
        _debug_resize $test_interval, $to, "$base -> $to (+ $_)";
    }
    say "";
}

}

undef;

use Bio::DB::HTS::Faidx;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

say "1 base: ",   seq_info
    extract_sequence( $hg_db,
        Interval->new( -seq_id => 'chr11',
            -start => 35_082_742 + 1,
            -end   => 35_082_742 + 1 ) );

say "3 bases: ",  seq_info
    extract_sequence( $hg_db,
        Interval->new( -seq_id => 'chr11',
            -start => 1,
            -end   => 1 )->resize(3) );

say "5 bases: ", seq_info
    extract_sequence( $hg_db,
        Interval->new( -seq_id => 'chr11',
            -start => $hg_db->length('chr11'),
            -end   => $hg_db->length('chr11') )->resize(5) );

say "chr11 is of length ", $hg_db->length('chr11');
say "chr11 bases: ", seq_info
    extract_sequence( $hg_db,
        Interval->new( -seq_id => 'chr11',
            -start => 1,
            -end   => $hg_db->length('chr11') )->resize( $hg_db->length('chr11') ) );
}

my $target_interval = Interval->new( -seq_id => 'chr11',
    -start => 35_082_742 +  1, # BioPerl is 1-based
    -end   => 35_197_430 );

say "Target interval: $target_interval with length @{[ $target_interval->length ]}";

die "Target interval is not $model_central_base_pairs_length bp long"
    unless $target_interval->length == $model_central_base_pairs_length;

say "Target sequence is ", seq_info extract_sequence( $hg_db, $target_interval );


say "";


my $resized_interval = $target_interval->resize( $model_sequence_length );
say "Resized interval: $resized_interval with length @{[ $resized_interval->length ]}";

die "resize() is not working properly!" unless $resized_interval->length == $model_sequence_length;

my $seq = extract_sequence( $hg_db, $resized_interval );

say "Resized sequence is ", seq_info($seq);

my $sequence_one_hot = one_hot_dna( $seq )->dummy(-1);

say $sequence_one_hot->info; undef;

use Devel::Timer;
my $t = Devel::Timer->new;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

say "Disk space usage: $total"; undef;

__END__

=pod

=encoding UTF-8

=head1 NAME

AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubEnformerGeneExprPredModel - Using TensorFlow to do gene expression prediction using a pre-trained model

=head1 SYNOPSIS

The following tutorial is based on the L<Enformer usage notebook|https://github.com/deepmind/deepmind-research/blob/master/enformer/enformer-usage.ipynb>. It uses a pre-trained model based on a transformer architecture trained as described in Avsec e...

Running the code requires an Internet connection to download the model (from Google servers) and datasets (from GitHub, UCSC, and NIH).

Some of this code is identical to that of C<InferenceUsingTFHubMobileNetV2Model> notebook. Please look there for explanation for that code. As stated there, this will later be wrapped up into a high-level library to hide the details behind an API.

B<NOTE>: If running this model, please be aware that

=over

=item *

the Docker image takes 3 GB or more of disk space;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

=head1 COLOPHON

The following document is either a POD file which can additionally be run as a Perl script or a Jupyter Notebook which can be run in L<IPerl|https://p3rl.org/Devel::IPerl> (viewable online at L<nbviewer|https://nbviewer.org/github/EntropyOrg/perl-AI-...

You will also need the executables C<gunzip>, C<bgzip>, and C<samtools>. Furthermore,

=over

=item *

C<Bio::DB::HTS> requires C<libhts> and

=item *

C<PDL::Graphics::Gnuplot> requires C<gnuplot>.

=back

If you are running the code, you may optionally install the L<C<tensorflow> Python package|https://www.tensorflow.org/install/pip> in order to access the C<saved_model_cli> command, but this is only used for informational purposes.

=head1 TUTORIAL

=head2 Load the library

First, we need to load the C<AI::TensorFlow::Libtensorflow> library and more helpers. We then create an C<AI::TensorFlow::Libtensorflow::Status> object and helper function to make sure that the calls to the C<libtensorflow> C library are working prop...

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  }

=head2 Download model and data

=over

=item *

L<Enformer model|https://tfhub.dev/deepmind/enformer/1> from

  > Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley DR. Effective gene expression prediction from sequence by integrating long-range interactions. I<Nat Methods>. 2021 Oct;B<18(10)>:1196...

=item *

L<Human target dataset|https://github.com/calico/basenji/tree/master/manuscripts/cross2020> from

  > Kelley DR. Cross-species regulatory sequence activity prediction. I<PLoS Comput Biol>. 2020 Jul 20;B<16(7)>:e1008050. doi: L<10.1371/journal.pcbi.1008050|https://doi.org/10.1371/journal.pcbi.1008050>. PMID: L<32687525|https://pubmed.ncbi.nlm.nih....

=item *

L<UCSC hg38 genome|https://www.ncbi.nlm.nih.gov/assembly/GCA_000001405.15>. More info at L<http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/>; L<Genome Reference Consortium Human Build 38|https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/>...

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

=item *

L<ClinVar|https://www.ncbi.nlm.nih.gov/clinvar/> file

  > Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR. ClinVar: improving ...

=back

  # Model handle
  my $model_uri = URI->new( 'https://tfhub.dev/deepmind/enformer/1' );
  $model_uri->query_form( 'tf-hub-format' => 'compressed' );
  my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
  my $model_archive_path = "${model_base}.tar.gz";
  my $model_sequence_length = 393_216; # bp
  
  # Human targets from Basenji2 dataset
  my $targets_uri  = URI->new('https://raw.githubusercontent.com/calico/basenji/master/manuscripts/cross2020/targets_human.txt');
  my $targets_path = 'targets_human.txt';
  
  # Human reference genome
  my $hg_uri    = URI->new("http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz");

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

                     [ $hg_uri      => $hg_gz_path            ],
                     [ $clinvar_uri => $clinvar_path       ],) {
      my ($uri, $path) = @$download;
      say "Downloading $uri to $path";
      next if -e $path;
      $http->mirror( $uri, $path );
  }

B<STREAM (STDOUT)>:

  Downloading https://tfhub.dev/deepmind/enformer/1?tf-hub-format=compressed to deepmind_enformer_1.tar.gz
  Downloading https://raw.githubusercontent.com/calico/basenji/master/manuscripts/cross2020/targets_human.txt to targets_human.txt
  Downloading http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz to hg38.fa.gz
  Downloading https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz to clinvar.vcf.gz

Now we

=over

=item 1.

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

=item 1.

convert the gzip'd file into a block gzip'd file and

=item 2.

index that C<.bgz> file using C<faidx> from C<samtools>.

=back

  (my $hg_uncompressed_path = $hg_gz_path) =~ s/\.gz$//;
  my $hg_bgz_path = "${hg_uncompressed_path}.bgz";
  
  use IPC::Run;
  
  if( ! -e $hg_bgz_path ) {
      IPC::Run::run(
          [ qw(gunzip -c) ], '<', $hg_gz_path,
          '|',
          [ qw(bgzip -c)  ], '>', $hg_bgz_path
      );
  }

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

      my $faidx_tool = Bio::Tools::Run::Samtools->new( -command => 'faidx' );
      $faidx_tool->run( -fas => $hg_bgz_path )
          or die "Could not index FASTA file $hg_bgz_path: " . $faidx_tool->error_string;
  }

=head2 Model input and output specification

Now we create a helper to call C<saved_model_cli> and called C<saved_model_cli scan> to ensure that the model is I/O-free for security reasons.

  sub saved_model_cli {
      my (@rest) = @_;
      if( File::Which::which('saved_model_cli')) {
          system(qw(saved_model_cli), @rest ) == 0
              or die "Could not run saved_model_cli";
      } else {
          warn "saved_model_cli(): Install the tensorflow Python package to get the `saved_model_cli` command.\n";
          return -1;
      }
  }
  
  say "Checking with saved_model_cli scan:";
  saved_model_cli( qw(scan),
      qw(--dir) => $model_base,

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

the output C<human> which has the name C<StatefulPartitionedCall:0>.

=back

all of which are C<DT_FLOAT>.

Make note of the shapes that those take. Per the L<model description|https://tfhub.dev/deepmind/enformer/1> at TensorFlow Hub:

=over 2

The input sequence length is 393,216 with the prediction corresponding to 128 base pair windows for the center 114,688 base pairs. The input sequence is one hot encoded using the order of indices corresponding to 'ACGT' with N values being all zeros.

=back

The input shape C<(-1, 393216, 4)> thus represents dimensions C<[batch size] x [sequence length] x [one-hot encoding of ACGT]>.

The output shape C<(-1, 896, 5313)> represents dimensions C<[batch size] x [ predictions along 114,688 base pairs / 128 base pair windows ] x [ human target by index ]>. We can confirm this by doing some calculations:

  my $model_central_base_pairs_length     = 114_688; # bp
  my $model_central_base_pair_window_size = 128;     # bp / prediction
  
  say "Number of predictions: ", $model_central_base_pairs_length / $model_central_base_pair_window_size;

B<STREAM (STDOUT)>:

  Number of predictions: 896

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  
      return $outputs_t[0];
  };
  
  undef;

=head2 Encoding the data

The model specifies that the way to get a sequence of DNA bases into a C<TFTensor> is to use L<one-hot encoding|https://en.wikipedia.org/wiki/One-hot#Machine_learning_and_statistics> in the order C<ACGT>.

This means that the bases are represented as vectors of length 4:

| base | vector encoding |
|------|-----------------|
| A    | C<[1 0 0 0]>     |
| C    | C<[0 1 0 0]>     |
| G    | C<[0 0 1 0]>     |
| T    | C<[0 0 0 1]>     |
| N    | C<[0 0 0 0]>     |

We can achieve this encoding by creating a lookup table with a PDL ndarray. This could be done by creating a byte PDL ndarray of dimensions C<[ 256 4 ]> to directly look up the the numeric value of characters 0-255, but here we'll go with a smaller C...

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  
      use parent qw(Bio::Location::Simple);
  
      sub center {
          my $self = shift;
          my $center = int( ($self->start + $self->end ) / 2 );
          my $delta = ($self->start + $self->end ) % 2;
          return $center + $delta;
      }
  
      sub resize {
          my ($self, $width) = @_;
          my $new_interval = $self->clone;
  
          my $center = $self->center;
          my $half   = int( ($width-1) / 2 );
          my $offset = ($width-1) % 2;
  
          $new_interval->start( $center - $half - $offset );
          $new_interval->end(   $center + $half  );
  

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  
      use overload '""' => \&_op_stringify;
  
      sub _op_stringify { sprintf "%s:%s", $_[0]->seq_id // "(no sequence)", $_[0]->to_FTstring }
  }
  
  #####
  
  {
  
  say "Testing interval resizing:\n";
  sub _debug_resize {
      my ($interval, $to, $msg) = @_;
  
      my $resized_interval = $interval->resize($to);
  
      die "Wrong interval size for $interval --($to)--> $resized_interval"
          unless $resized_interval->length == $to;
  
      say sprintf "Interval: %s -> %s, length %2d : %s",
          $interval,
          $resized_interval, $resized_interval->length,
          $msg;
  }
  
  for my $interval_spec ( [4, 8], [5, 8], [5, 9], [6, 9]) {
      my ($start, $end) = @$interval_spec;
      my $test_interval = Interval->new( -seq_id => 'chr11', -start => $start, -end => $end );
      say sprintf "Testing interval %s with length %d", $test_interval, $test_interval->length;
      say "-----";
      for(0..5) {
          my $base = $test_interval->length;
          my $to = $base + $_;
          _debug_resize $test_interval, $to, "$base -> $to (+ $_)";
      }
      say "";
  }
  
  }
  
  undef;

B<STREAM (STDOUT)>:

  Testing interval resizing:
  
  Testing interval chr11:4..8 with length 5
  -----
  Interval: chr11:4..8 -> chr11:4..8, length  5 : 5 -> 5 (+ 0)
  Interval: chr11:4..8 -> chr11:3..8, length  6 : 5 -> 6 (+ 1)
  Interval: chr11:4..8 -> chr11:3..9, length  7 : 5 -> 7 (+ 2)
  Interval: chr11:4..8 -> chr11:2..9, length  8 : 5 -> 8 (+ 3)
  Interval: chr11:4..8 -> chr11:2..10, length  9 : 5 -> 9 (+ 4)
  Interval: chr11:4..8 -> chr11:1..10, length 10 : 5 -> 10 (+ 5)
  

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  say "1 base: ",   seq_info
      extract_sequence( $hg_db,
          Interval->new( -seq_id => 'chr11',
              -start => 35_082_742 + 1,
              -end   => 35_082_742 + 1 ) );
  
  say "3 bases: ",  seq_info
      extract_sequence( $hg_db,
          Interval->new( -seq_id => 'chr11',
              -start => 1,
              -end   => 1 )->resize(3) );
  
  say "5 bases: ", seq_info
      extract_sequence( $hg_db,
          Interval->new( -seq_id => 'chr11',
              -start => $hg_db->length('chr11'),
              -end   => $hg_db->length('chr11') )->resize(5) );
  
  say "chr11 is of length ", $hg_db->length('chr11');
  say "chr11 bases: ", seq_info
      extract_sequence( $hg_db,
          Interval->new( -seq_id => 'chr11',
              -start => 1,
              -end   => $hg_db->length('chr11') )->resize( $hg_db->length('chr11') ) );
  }

B<STREAM (STDOUT)>:

  Testing sequence extraction:
  1 base: G (length 1)
  3 bases: NNN (length 3)
  5 bases: NNNNN (length 5)
  chr11 is of length 135086622
  chr11 bases: NNNNNNNNNN...NNNNNNNNNN (length 135086622)

B<RESULT>:

  1

Now we can use the same target interval that is used in the example notebook which recreates part of L<figure 1|https://www.nature.com/articles/s41592-021-01252-x/figures/1> from the Enformer paper.

  my $target_interval = Interval->new( -seq_id => 'chr11',
      -start => 35_082_742 +  1, # BioPerl is 1-based
      -end   => 35_197_430 );
  
  say "Target interval: $target_interval with length @{[ $target_interval->length ]}";
  
  die "Target interval is not $model_central_base_pairs_length bp long"
      unless $target_interval->length == $model_central_base_pairs_length;
  
  say "Target sequence is ", seq_info extract_sequence( $hg_db, $target_interval );
  
  
  say "";
  
  
  my $resized_interval = $target_interval->resize( $model_sequence_length );
  say "Resized interval: $resized_interval with length @{[ $resized_interval->length ]}";
  
  die "resize() is not working properly!" unless $resized_interval->length == $model_sequence_length;
  
  my $seq = extract_sequence( $hg_db, $resized_interval );
  
  say "Resized sequence is ", seq_info($seq);

B<STREAM (STDOUT)>:

  Target interval: chr11:35082743..35197430 with length 114688
  Target sequence is GGTGGCAGCC...ATCTCCTTTT (length 114688)
  
  Resized interval: chr11:34943479..35336694 with length 393216
  Resized sequence is ACTAGTTCTA...GGCCCAAATC (length 393216)

B<RESULT>:

  1

To prepare the input we have to one-hot encode this resized sequence and give it a dummy dimension at the end to indicate that it is is a batch with a single sequence. Then we can turn the PDL ndarray into a C<TFTensor> and pass it to our prediction ...

  my $sequence_one_hot = one_hot_dna( $seq )->dummy(-1);
  
  say $sequence_one_hot->info; undef;

B<STREAM (STDOUT)>:

  PDL: Float D [4,393216,1]


lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  $gp->end_multi;
  
  $gp->close;
  
  if( IN_IPERL ) {
      IPerl->png( bytestream => path($plot_output_path)->slurp_raw );
  }

B<DISPLAY>:

=for html <span style="display:inline-block;margin-left:1em;"><p><img						src="...

=head2 Parts of the original notebook that fall outside the scope

In the orignal notebook, there are several more steps that have not been ported here:

=over

=item 1.

"Compute contribution scores":

This task requires implementing C<@tf.function> to compile gradients.

=item 2.

"Predict the effect of a genetic variant" and "Score multiple variants":

The first task is possible, but the second task requires loading a pre-processing pipeline for scikit-learn and unfortunately this pipeline is stored as a pickle file that is valid for an older version of scikit-learn (version 0.23.2) and as such its...

=back

  # Some code that could be used for working with variants.
  1 if <<'COMMENT';
  
  use Bio::DB::HTS::VCF;
  
  my $clinvar_tbi_path = "${clinvar_path}.tbi";
  unless( -f $clinvar_tbi_path ) {

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubEnformerGeneExprPredModel.pod  view on Meta::CPAN

  );
  
  say "Disk space usage: $total"; undef;

B<STREAM (STDOUT)>:

  Disk space usage: 4.66G

=head1 CPANFILE

  requires 'AI::TensorFlow::Libtensorflow';
  requires 'AI::TensorFlow::Libtensorflow::DataType';
  requires 'Archive::Extract';
  requires 'Bio::DB::HTS::Faidx';
  requires 'Bio::Location::Simple';
  requires 'Bio::Tools::Run::Samtools';
  requires 'Data::Frame';
  requires 'Data::Printer';
  requires 'Data::Printer::Filter::PDL';
  requires 'Devel::Timer';
  requires 'Digest::file';
  requires 'FFI::Platypus::Buffer';
  requires 'FFI::Platypus::Memory';
  requires 'File::Which';
  requires 'Filesys::DiskUsage';
  requires 'HTTP::Tiny';
  requires 'IPC::Run';
  requires 'List::Util';
  requires 'PDL';
  requires 'PDL::Graphics::Gnuplot';
  requires 'Path::Tiny';
  requires 'Syntax::Construct';
  requires 'Text::Table::Tiny';
  requires 'URI';
  requires 'constant';
  requires 'feature';
  requires 'lib::projectroot';
  requires 'overload';
  requires 'parent';
  requires 'strict';
  requires 'utf8';
  requires 'warnings';

=head1 AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

=head1 COPYRIGHT AND LICENSE

This software is Copyright (c) 2022-2023 by Auto-Parallel Technologies, Inc.

This is free software, licensed under:

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

        handle => "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/5",
        image_size => [ 224, 224 ],
    },
);

my $model_name = 'mobilenet_v2_100_224';

say "Selected model: $model_name : $model_name_to_params{$model_name}{handle}";

my $model_uri = URI->new( $model_name_to_params{$model_name}{handle} );
$model_uri->query_form( 'tf-hub-format' => 'compressed' );
my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
my $model_archive_path = "${model_base}.tar.gz";

use constant IMAGENET_LABEL_COUNT_WITH_BG => 1001;
my $labels_uri = URI->new('https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt');
my $labels_path = ($labels_uri->path_segments)[-1];

my $http = HTTP::Tiny->new;

for my $download ( [ $model_uri  => $model_archive_path ],

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

                        alt => $image_name,
                        width => '50%',
                    })
                ),
            )
        })
    );
}

sub imager_paste_center_pad {
    my ($inner, $padded_sz, @rest) = @_;

    my $outer = Imager->new( List::Util::mesh( [qw(xsize ysize)], $padded_sz ),
        @rest
    );

    $outer->paste(
        left => int( ($outer->getwidth  - $inner->getwidth ) / 2 ),
        top  => int( ($outer->getheight - $inner->getheight) / 2 ),
        src  => $inner,
    );

    $outer;
}

sub imager_scale_to {
    my ($img, $image_size) = @_;
    my $rescaled = $img->scale(
        List::Util::mesh( [qw(xpixels ypixels)], $image_size ),
        type => 'min',
        qtype => 'mixing', # 'mixing' seems to work better than 'normal'
    );
}

sub load_image_to_pdl {
    my ($uri, $image_size) = @_;

    my $http = HTTP::Tiny->new;
    my $response = $http->get( $uri );
    die "Could not fetch image from $uri" unless $response->{success};
    say "Downloaded $uri";

    my $img = Imager->new;
    $img->read( data => $response->{content} );

    my $rescaled = imager_scale_to($img, $image_size);

    say sprintf "Rescaled image from [ %d x %d ] to [ %d x %d ]",
        $img->getwidth, $img->getheight,
        $rescaled->getwidth, $rescaled->getheight;

    my $padded = imager_paste_center_pad($rescaled, $image_size,
        # ARGB fits in 32-bits (uint32_t)
        channels => 4
    );

    say sprintf "Padded to [ %d x %d ]", $padded->getwidth, $padded->getheight;

    # Create PDL ndarray from Imager data in-memory.
    my $data;
    $padded->write( data => \$data, type => 'raw' )
        or die "could not write ". $padded->errstr;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

=pod

=encoding UTF-8

=head1 NAME

AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubMobileNetV2Model - Using TensorFlow to do image classification using a pre-trained model

=head1 SYNOPSIS

The following tutorial is based on the L<Image Classification with TensorFlow Hub notebook|https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/image_classification.ipynb>. It uses a pre-trained model based on the I<MobileNet V2> arch...

Please look at the L<SECURITY note|https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md> regarding running models as models are programs. You can also used C<saved_model_cli scan> to check for L<security-sensitive "denylisted ops"|https:/...

If you would like to visualise a model, you can use L<Netron|https://github.com/lutzroeder/netron> on the C<.pb> file.

=head1 COLOPHON

The following document is either a POD file which can additionally be run as a Perl script or a Jupyter Notebook which can be run in L<IPerl|https://p3rl.org/Devel::IPerl> (viewable online at L<nbviewer|https://nbviewer.org/github/EntropyOrg/perl-AI-...

If you are running the code, you may optionally install the L<C<tensorflow> Python package|https://www.tensorflow.org/install/pip> in order to access the C<saved_model_cli> command, but this is only used for informational purposes.

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN


  Selected model: mobilenet_v2_100_224 : https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5

B<RESULT>:

  1

We download the model and labels to the current directory then extract the model to a folder with the name given in C<$model_base>.

  my $model_uri = URI->new( $model_name_to_params{$model_name}{handle} );
  $model_uri->query_form( 'tf-hub-format' => 'compressed' );
  my $model_base = substr( $model_uri->path, 1 ) =~ s,/,_,gr;
  my $model_archive_path = "${model_base}.tar.gz";
  
  use constant IMAGENET_LABEL_COUNT_WITH_BG => 1001;
  my $labels_uri = URI->new('https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt');
  my $labels_path = ($labels_uri->path_segments)[-1];
  
  my $http = HTTP::Tiny->new;
  
  for my $download ( [ $model_uri  => $model_archive_path ],

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

  my $saved_model = path($model_base)->child('saved_model.pb');
  say "Saved model is in $saved_model" if -f $saved_model;
  
  my @labels = path($labels_path)->lines( { chomp => 1 });
  die "Labels should have @{[ IMAGENET_LABEL_COUNT_WITH_BG ]} items"
      unless @labels == IMAGENET_LABEL_COUNT_WITH_BG;
  say "Got labels: ", join( ", ", List::Util::head(5, @labels) ), ", etc.";

B<STREAM (STDOUT)>:

  Downloading https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5?tf-hub-format=compressed to google_imagenet_mobilenet_v2_100_224_classification_5.tar.gz
  Downloading https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt to ImageNetLabels.txt
  Saved model is in google_imagenet_mobilenet_v2_100_224_classification_5/saved_model.pb
  Got labels: background, tench, goldfish, great white shark, tiger shark, etc.

B<RESULT>:

  1

=head2 Load the model and session

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

  Method name is: tensorflow/serving/predict

B<RESULT>:

  1

The above C<saved_model_cli> output shows that the model input is at C<serving_default_inputs:0> which means the operation named C<serving_default_inputs> at index C<0> and the output is at C<StatefulPartitionedCall:0> which means the operation named...

It also shows the type and shape of the C<TFTensor>s for those inputs and outputs. Together this is known as a signature.

For the C<input>, we have C<(-1, 224, 224, 3)> which is a L<common input image specification for TensorFlow Hub|https://www.tensorflow.org/hub/common_signatures/images#input>. This is known as C<channels_last> (or C<NHWC>) layout where the TensorFlow...

For the C<output>, we have C<(-1, 1001)> which is C<[batch_size, num_classes]> where the elements are scores that the image received for that ImageNet class.

Now we can load the model from that folder with the tag set C<[ 'serve' ]> by using the C<LoadFromSavedModel> constructor to create a C<::Graph> and a C<::Session> for that graph.

  my $opt = AI::TensorFlow::Libtensorflow::SessionOptions->New;
  
  my $graph = AI::TensorFlow::Libtensorflow::Graph->New;
  my $session = AI::TensorFlow::Libtensorflow::Session->LoadFromSavedModel(
      $opt, undef, $model_base, \@tags, $graph, undef, $s
  );
  AssertOK($s);

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

          })
      );
  }

B<DISPLAY>:

=for html <span style="display:inline-block;margin-left:1em;"><p><table style="width: 100%"><tr><td><tt>apple</tt></td><td><a href="https://upload.wikimedia.org/wikipedia/commons/1/15/Red_Apple.jpg"><img alt="apple" src="https://upload.wikimedia.org/...

=head2 Download the test images and transform them into suitable input data

We now fetch these images and prepare them to be the in the needed format by using C<Imager> to resize and add padding. Then we turn the C<Imager> data into a C<PDL> ndarray. Since the C<Imager> data is stored as 32-bits with 4 channels in the order ...

We then take all the PDL ndarrays and concatenate them. Again, note that the dimension lists for the PDL ndarray and the TFTensor are reversed.

  sub imager_paste_center_pad {
      my ($inner, $padded_sz, @rest) = @_;
  
      my $outer = Imager->new( List::Util::mesh( [qw(xsize ysize)], $padded_sz ),
          @rest
      );
  
      $outer->paste(
          left => int( ($outer->getwidth  - $inner->getwidth ) / 2 ),
          top  => int( ($outer->getheight - $inner->getheight) / 2 ),
          src  => $inner,
      );
  
      $outer;
  }
  
  sub imager_scale_to {
      my ($img, $image_size) = @_;
      my $rescaled = $img->scale(
          List::Util::mesh( [qw(xpixels ypixels)], $image_size ),
          type => 'min',
          qtype => 'mixing', # 'mixing' seems to work better than 'normal'
      );
  }
  
  sub load_image_to_pdl {
      my ($uri, $image_size) = @_;
  
      my $http = HTTP::Tiny->new;
      my $response = $http->get( $uri );
      die "Could not fetch image from $uri" unless $response->{success};
      say "Downloaded $uri";
  
      my $img = Imager->new;
      $img->read( data => $response->{content} );
  
      my $rescaled = imager_scale_to($img, $image_size);
  
      say sprintf "Rescaled image from [ %d x %d ] to [ %d x %d ]",
          $img->getwidth, $img->getheight,
          $rescaled->getwidth, $rescaled->getheight;
  
      my $padded = imager_paste_center_pad($rescaled, $image_size,
          # ARGB fits in 32-bits (uint32_t)
          channels => 4
      );
  
      say sprintf "Padded to [ %d x %d ]", $padded->getwidth, $padded->getheight;
  
      # Create PDL ndarray from Imager data in-memory.
      my $data;
      $padded->write( data => \$data, type => 'raw' )
          or die "could not write ". $padded->errstr;

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

B<STREAM (STDERR)>:

=for html <span style="display:inline-block;margin-left:1em;"><pre style="display: block"><code><span style="color: #cc66cc;">AI::TensorFlow::Libtensorflow::Tensor</span><span style=""> </span><span style="color: #33ccff;">{</span><span style="">
    </span><span style="color: #6666cc;">Type           </span><span style=""> </span><span style="color: #cc66cc;">FLOAT</span><span style="">
    </span><span style="color: #6666cc;">Dims           </span><span style=""> </span><span style="color: #33ccff;">[</span><span style=""> </span><span style="color: #ff6633;">1</span><span style=""> </span><span style="color: #ff6633;">1001</span><...
    </span><span style="color: #6666cc;">NumDims        </span><span style=""> </span><span style="color: #ff6633;">2</span><span style="">
    </span><span style="color: #6666cc;">ElementCount   </span><span style=""> </span><span style="color: #ff6633;">1001</span><span style="">
</span><span style="color: #33ccff;">}</span><span style="">
</span></code></pre></span>

Then we send the batched image data. The returned scores need to by normalised using the L<softmax function|https://en.wikipedia.org/wiki/Softmax_function> with the following formula (taken from Wikipedia):

$$ {\displaystyle \sigma (\mathbf {z} )I<{i}={\frac {e^{z>{i}}}{\sum I<{j=1}^{K}e^{z>{j}}}}\ \ {\text{ for }}i=1,\dotsc ,K{\text{ and }}\mathbf {z} =(zI<{1},\dotsc ,z>{K})\in \mathbb {R} ^{K}.} $$

  my $output_pdl_batched = FloatTFTensorToPDL($RunSession->($session, $t));
  my $softmax = sub { ( map $_/sumover($_)->dummy(0), exp($_[0]) )[0] };
  my $probabilities_batched = $softmax->($output_pdl_batched);
  p $probabilities_batched;

B<STREAM (STDERR)>:

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN

                      $probabilities_batched->at($label_index,$batch_idx),
              ) ];
          }
          say generate_table( rows => [ $header, @rows ], header_row => 1 );
          print "\n";
      }
  }

B<DISPLAY>:

=for html <span style="display:inline-block;margin-left:1em;"><p><table style="width: 100%"><tr><td><tt>apple</tt></td><td><a href="https://upload.wikimedia.org/wikipedia/commons/1/15/Red_Apple.jpg"><img alt="apple" src="https://upload.wikimedia.org/...

  my $p_approx_batched = $probabilities_batched->sumover->approx(1, 1e-5);
  p $p_approx_batched;
  say "All probabilities sum up to approximately 1" if $p_approx_batched->all->sclr;

B<STREAM (STDOUT)>:

  All probabilities sum up to approximately 1

B<STREAM (STDERR)>:

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubMobileNetV2Model.pod  view on Meta::CPAN


  my @solid_channel_uris = (
      'https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/Solid_red.svg/480px-Solid_red.svg.png',
      'https://upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Green_00FF00_9x9.svg/480px-Green_00FF00_9x9.svg.png',
      'https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Solid_blue.svg/480px-Solid_blue.svg.png',
  );
  undef;

=head1 CPANFILE

  requires 'AI::TensorFlow::Libtensorflow';
  requires 'AI::TensorFlow::Libtensorflow::DataType';
  requires 'Archive::Extract';
  requires 'Data::Printer';
  requires 'Data::Printer::Filter::PDL';
  requires 'FFI::Platypus::Buffer';
  requires 'FFI::Platypus::Memory';
  requires 'File::Which';
  requires 'Filesys::DiskUsage';
  requires 'HTML::Tiny';
  requires 'HTTP::Tiny';
  requires 'Imager';
  requires 'List::Util';
  requires 'PDL';
  requires 'PDL::GSL::RNG';
  requires 'Path::Tiny';
  requires 'Syntax::Construct';
  requires 'Text::Table::Tiny';
  requires 'URI';
  requires 'constant';
  requires 'feature';
  requires 'lib::projectroot';
  requires 'strict';
  requires 'utf8';
  requires 'warnings';

=head1 AUTHOR

Zakariyya Mughal <zmughal@cpan.org>

=head1 COPYRIGHT AND LICENSE

This software is Copyright (c) 2022-2023 by Auto-Parallel Technologies, Inc.

This is free software, licensed under:

lib/AI/TensorFlow/Libtensorflow/Manual/Quickstart.pod  view on Meta::CPAN


This provides a tour of C<libtensorflow> to help get started with using the
library.

=head1 CONVENTIONS

The library uses UpperCamelCase naming convention for method names in order to
match the underlying C library (for compatibility with future API changes) and
to make translating code from C easier as this is a low-level API.

As such, constructors for objects that correspond to C<libtensorflow> data
structures are typically called C<New>. For example, a new
L<AI::TensorFlow::Libtensorflow::Status> object can be created as follows

  use AI::TensorFlow::Libtensorflow::Status;
  my $status = AI::TensorFlow::Libtensorflow::Status->New;

  ok defined $status, 'Created new Status';

These C<libtensorflow> data structures use L<destructors|perlobj/Destructors> where necessary.

=head1 OBJECT TYPES

=over 4

=item L<AI::TensorFlow::Libtensorflow::Status>

Used for error-handling. Many methods take this as the final argument which is
then checked after the method call to ensure that it completed successfully.

=item L<AI::TensorFlow::Libtensorflow::Tensor>, L<AI::TensorFlow::Libtensorflow::DataType>

A C<TFTensor> is a multi-dimensional data structure that stores the data for inputs and outputs.
Each element has the same data type
which is defined by L<AI::TensorFlow::Libtensorflow::DataType>
thus a C<TFTensor> is considered to be "homogeneous data structure".
See L<Introduction to Tensors|https://www.tensorflow.org/guide/tensor> for more.

=item L<AI::TensorFlow::Libtensorflow::OperationDescription>, L<AI::TensorFlow::Libtensorflow::Operation>

An operation is a function that has inputs and outputs. It has a user-defined
name (such as C<MyAdder>) and library-defined type (such as C<AddN>).
L<AI::TensorFlow::Libtensorflow::OperationDescription> is used to build an

lib/AI/TensorFlow/Libtensorflow/Manual/Quickstart.pod  view on Meta::CPAN

The object types in L</OBJECT TYPES> are used in the following tutorials:

=over 4

=item L<InferenceUsingTFHubMobileNetV2Model|AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubMobileNetV2Model>: image classification tutorial

This tutorial demonstrates using a pre-trained SavedModel and creating a L<AI::TensorFlow::Libtensorflow::Session> with the
L<LoadFromSavedModel|AI::TensorFlow::Libtensorflow::Session/LoadFromSavedModel>
method. It also demonstrates how to prepare image data for use as an input C<TFTensor>.

=item L<InferenceUsingTFHubEnformerGeneExprPredModel|AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubEnformerGeneExprPredModel>: gene expression prediction tutorial

This tutorial builds on L<InferenceUsingTFHubMobileNetV2Model|AI::TensorFlow::Libtensorflow::Manual::Notebook::InferenceUsingTFHubMobileNetV2Model>.
It shows how to convert a pre-trained SavedModel from one that does not have a
usable signature to a new model that does. It also demonstrates how to prepare
genomic data for use as an input C<TFTensor>.

=back

=head1 DOCKER IMAGES

lib/AI/TensorFlow/Libtensorflow/OperationDescription.pm  view on Meta::CPAN

);
$ffi->load_custom_type(PackableArrayRef('BoolArrayRef', pack_type => 'C')
	=> 'tf_attr_bool_list',
);

$ffi->attach( [ 'NewOperation' => 'New' ] => [
	arg 'TF_Graph' => 'graph',
	arg 'string'   => 'op_type',
	arg 'string'   => 'oper_name',
] => 'TF_OperationDescription' => sub {
	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
});

$ffi->attach( [ 'NewOperationLocked' => 'NewLocked' ] => [
	arg 'TF_Graph' => 'graph',
	arg 'string'   => 'op_type',
	arg 'string'   => 'oper_name',
] => 'TF_OperationDescription' );

$ffi->attach( 'SetDevice' => [
	arg 'TF_OperationDescription' => 'desc',

lib/AI/TensorFlow/Libtensorflow/Session.pm  view on Meta::CPAN

my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
$ffi->mangler(AI::TensorFlow::Libtensorflow::Lib->mangler_default);

$ffi->attach( [ 'NewSession' => 'New' ] =>
	[
		arg 'TF_Graph' => 'graph',
		arg 'TF_SessionOptions' => 'opt',
		arg 'TF_Status' => 'status',
	],
	=> 'TF_Session' => sub {
		my ($xs, $class, @rest) = @_;
		return $xs->(@rest);
	});

$ffi->attach( [ 'LoadSessionFromSavedModel' => 'LoadFromSavedModel' ] => [
    arg TF_SessionOptions => 'session_options',
    arg opaque => { id => 'run_options', ffi_type => 'TF_Buffer', maybe => 1 },
    arg string => 'export_dir',
    arg 'string[]' => 'tags',
    arg int => 'tags_len',
    arg TF_Graph => 'graph',
    arg opaque => { id => 'meta_graph_def', ffi_type => 'TF_Buffer', maybe => 1 },
    arg TF_Status => 'status',
] => 'TF_Session' => sub {
	my ($xs, $class, @rest) = @_;
	my ( $session_options,
		$run_options,
		$export_dir, $tags,
		$graph, $meta_graph_def,
		$status) = @rest;


	$run_options = $ffi->cast('TF_Buffer', 'opaque', $run_options)
		if defined $run_options;
	$meta_graph_def = $ffi->cast('TF_Buffer', 'opaque', $meta_graph_def)
		if defined $meta_graph_def;

	my $tags_len = @$tags;

	$xs->(

lib/AI/TensorFlow/Libtensorflow/Session.pm  view on Meta::CPAN


=head2 LoadFromSavedModel

B<C API>: L<< C<TF_LoadSessionFromSavedModel>|AI::TensorFlow::Libtensorflow::Manual::CAPI/TF_LoadSessionFromSavedModel >>

=head1 METHODS

=head2 Run

Run the graph associated with the session starting with the supplied
C<$inputs> with corresponding values in C<$input_values>.

The values at the outputs given by C<$outputs> will be placed in
C<$output_values>.

B<Parameters>

=over 4

=item Maybe[TFBuffer] $run_options

Optional C<TFBuffer> containing serialized representation of a `RunOptions` protocol buffer.

=item ArrayRef[TFOutput] $inputs

Inputs to set.

=item ArrayRef[TFTensor] $input_values

Values to assign to the inputs given by C<$inputs>.

=item ArrayRef[TFOutput] $outputs

lib/AI/TensorFlow/Libtensorflow/Session.pm  view on Meta::CPAN


Reference to where the output values for C<$outputs> will be placed.

=item ArrayRef[TFOperation] $target_opers

TODO

=item Maybe[TFBuffer] $run_metadata

Optional empty C<TFBuffer> which will be updated to contain a serialized
representation of a `RunMetadata` protocol buffer.

=item L<TFStatus|AI::TensorFlow::Libtensorflow::Lib::Types/TFStatus> $status

Status

=back

B<C API>: L<< C<TF_SessionRun>|AI::TensorFlow::Libtensorflow::Manual::CAPI/TF_SessionRun >>

=head2 PRunSetup

lib/AI/TensorFlow/Libtensorflow/TFLibrary.pm  view on Meta::CPAN

use strict;
use warnings;

use AI::TensorFlow::Libtensorflow::Lib qw(arg);
my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;

$ffi->attach( [ 'LoadLibrary' => 'LoadLibrary' ] => [
	arg string => 'library_filename',
	arg TF_Status => 'status',
] => 'TF_Library' => sub {
	my ($xs, $class, @rest) = @_;
	$xs->(@rest);
} );

$ffi->attach( [ 'GetOpList' => 'GetOpList' ] => [
	arg TF_Library => 'lib_handle'
] => 'TF_Buffer' );

$ffi->attach( [ 'DeleteLibraryHandle' => 'DESTROY' ] => [
	arg TF_Library => 'lib_handle'
] => 'void' );

lib/AI/TensorFlow/Libtensorflow/TFLibrary.pm  view on Meta::CPAN


  my $buf = AI::TensorFlow::Libtensorflow::TFLibrary->GetAllOpList();
  cmp_ok $buf->length, '>', 0, 'Got OpList buffer';

B<Returns>

=over 4

=item L<TFBuffer|AI::TensorFlow::Libtensorflow::Lib::Types/TFBuffer>

Contains a serialized C<OpList> proto for ops registered in this address space.

=back

B<C API>: L<< C<TF_GetAllOpList>|AI::TensorFlow::Libtensorflow::Manual::CAPI/TF_GetAllOpList >>

=head1 METHODS

=head2 GetOpList

B<C API>: L<< C<TF_GetOpList>|AI::TensorFlow::Libtensorflow::Manual::CAPI/TF_GetOpList >>

lib/AI/TensorFlow/Libtensorflow/Tensor.pm  view on Meta::CPAN

# C: TF_AllocateTensor
#
# Constructor
$ffi->attach( [ 'AllocateTensor', 'Allocate' ],
	[
		arg 'TF_DataType'     => 'dtype',
		arg 'tf_dims_buffer'  => [ qw(dims num_dims) ],
		arg 'size_t'          => 'len',
	],
	=> 'TF_Tensor' => sub {
		my ($xs, $class, @rest) = @_;
		my ($dtype, $dims, $len) = @rest;
		if( ! defined $len ) {
			$len = product($dtype->Size, @$dims);
		}
		my $obj = $xs->($dtype, $dims, $len);
	}
);

$ffi->attach( [ 'DeleteTensor' => 'DESTROY' ],
	[ arg 'TF_Tensor' => 't' ]
	=> 'void'

lib/AI/TensorFlow/Libtensorflow/Tensor.pm  view on Meta::CPAN

		if( exists $self->{_deallocator_closure} ) {
			$self->{_deallocator_closure}->unstick;
		}
	}
);

$ffi->attach( [ 'TensorData' => 'Data' ],
	[ arg 'TF_Tensor' => 'self' ],
	=> 'opaque'
	=> sub {
		my ($xs, @rest) = @_;
		my ($self) = @rest;
		my $data_p = $xs->(@rest);
		window(my $buffer, $data_p, $self->ByteSize);
		\$buffer;
	}
);

$ffi->attach( [ 'TensorByteSize' => 'ByteSize' ],
	[ arg 'TF_Tensor' => 'self' ],
	=> 'size_t'
);

lib/AI/TensorFlow/Libtensorflow/Tensor.pm  view on Meta::CPAN


=head1 DESCRIPTION

A C<TFTensor> is an object that contains values of a
single type arranged in an n-dimensional array.

For types other than L<STRING|AI::TensorFlow::Libtensorflow::DataType/STRING>,
the data buffer is stored in L<row major order|https://en.wikipedia.org/wiki/Row-_and_column-major_order>.

Of note, this is different from the definition of I<tensor> used in
mathematics and physics which can also be represented as a
multi-dimensional array in some cases, but these tensors are
defined not by the representation but by how they transform. For
more on this see

=over 4

Lim, L.-H. (2021). L<Tensors in computations|https://galton.uchicago.edu/~lekheng/work/acta.pdf>.
Acta Numerica, 30, 555–764. Cambridge University Press.
DOI: L<https://doi.org/10.1017/S0962492921000076>.

=back

=head1 CONSTRUCTORS

=head2 New

=over 2

maint/cpanfile-git  view on Meta::CPAN

requires 'Alien::Libtensorflow',
	git => 'https://github.com/EntropyOrg/perl-Alien-Libtensorflow.git',
	branch => 'master';
requires 'PDL',
	git => 'https://github.com/PDLPorters/pdl.git',
	branch => 'master';

maint/inc/Pod/Elemental/Transformer/TF_Sig.pm  view on Meta::CPAN

package Pod::Elemental::Transformer::TF_Sig;
# ABSTRACT: TensorFlow signatures

use Moose;
extends 'Pod::Elemental::Transformer::List';

use feature qw{ postderef };
use lib 'lib';
use AI::TensorFlow::Libtensorflow::Lib;
use AI::TensorFlow::Libtensorflow::Lib::Types qw(-all);
use Types::Standard qw(Maybe Str Int ArrayRef CodeRef ScalarRef Ref);
use Types::Encodings qw(Bytes);

maint/inc/Pod/Elemental/Transformer/TF_Sig.pm  view on Meta::CPAN


  unshift @replacements, $prefix if defined $prefix;

  @replacements;
};

sub __paras_for_num_marker { die "only support definition lists" }
sub __paras_for_bul_marker { die "only support definition lists" }

around __paras_for_def_marker => sub {
  my ($orig, $self, $rest) = @_;

  my $ffi = AI::TensorFlow::Libtensorflow::Lib->ffi;
  my $type_library = 'AI::TensorFlow::Libtensorflow::Lib::Types';
  my @types = ($rest);
  my $process_type = sub {
    my ($type) = @_;
    my $new_type_text = $type;
    my $info;
    if( eval { $info->{TT} = t($type); 1 }
      || eval { $info->{FFI} = $ffi->type_meta($type); 1 } ) {
      if( $info->{TT} && $info->{TT}->library eq $type_library ) {
        $new_type_text = "L<$type|$type_library/$type>";
      }
    } else {
      die "Could not find type constraint or FFI::Platypus type $type";
    }

    $new_type_text;
  };

  my $type_re = qr{
    \A (?<ws>\s*) (?<type> \w+)
  }xm;
  $rest =~ s[$type_re]{$+{ws} . $process_type->($+{type}) }ge;

  my @replacements = $orig->($self, $rest);

  @replacements;
};

1;

maint/process-notebook.pl  view on Meta::CPAN


## Edit to NAME
perl -0777 -pi -e 's/(=head1 NAME\n+)$ENV{SRC_BASENAME}/\1$ENV{PODNAME}/' $DST

## Edit to local section link (Markdown::Pod does not yet recognise this).
perl -pi -E 's,\QL<CPANFILE|#CPANFILE>\E,L<CPANFILE|/CPANFILE>,g' $DST

## Add
##   =head1 CPANFILE
##
##     requires '...';
##     requires '...';
scan-perl-prereqs-nqlite --cpanfile $DST | perl -M5';print qq|=head1 CPANFILE\n\n|' -plE '$_ = q|  | . $_;' | sponge -a $DST ;

## Check output (if on TTY)
if [ -t 0 ]; then
	perldoc $DST;
fi

## Check and run script in the directory of the original (e.g., to get data
## files).
perl -c $DST

t/05_session_run.t  view on Meta::CPAN

	die "Can not init input op" unless $input_op;

	use PDL;
	my $p_data = float(
		-0.4809832, -0.3770838, 0.1743573, 0.7720509, -0.4064746, 0.0116595, 0.0051413, 0.9135732, 0.7197526, -0.0400658, 0.1180671, -0.6829428,
		-0.4810135, -0.3772099, 0.1745346, 0.7719303, -0.4066443, 0.0114614, 0.0051195, 0.9135003, 0.7196983, -0.0400035, 0.1178188, -0.6830465,
		-0.4809143, -0.3773398, 0.1746384, 0.7719052, -0.4067171, 0.0111654, 0.0054433, 0.9134697, 0.7192584, -0.0399981, 0.1177435, -0.6835230,
		-0.4808300, -0.3774327, 0.1748246, 0.7718700, -0.4070232, 0.0109549, 0.0059128, 0.9133330, 0.7188759, -0.0398740, 0.1181437, -0.6838635,
		-0.4807833, -0.3775733, 0.1748378, 0.7718275, -0.4073670, 0.0107582, 0.0062978, 0.9131795, 0.7187147, -0.0394935, 0.1184392, -0.6840039,
	);
	$p_data->reshape(1,5,12);

	my $input_tensor = AI::TensorFlow::Libtensorflow::Tensor->New(
		FLOAT, [ $p_data->dims ], $p_data->get_dataref,
		sub { undef $p_data }
	);


	my $output_op = Output->New({
		oper => $graph->OperationByName( 'output_node0'),
		index => 0 } );

t/upstream/CAPI/003_Tensor.t  view on Meta::CPAN

	#
	# It should not be called in this case because aligned_alloc() is used.
	ok ! $deallocator_called, 'deallocator not called yet';

	is $t->Type, 'FLOAT', 'FLOAT TF_Tensor';
	is $t->NumDims, 2, '2D TF_Tensor';
	is $t->Dim(0), $dims[0], 'dim 0';
	is $t->Dim(1), $dims[1], 'dim 1';
	is $t->ByteSize, $num_bytes, 'bytes';
	is scalar_to_pointer(${$t->Data}), scalar_to_pointer($values),
		'data at same pointer address';
	undef $t;
	ok $deallocator_called, 'deallocated';
};

done_testing;

t/upstream/CAPI/018_ImportGraphDef.t  view on Meta::CPAN

	ok $graph->OperationByName( 'scalar' ), 'got scalar operation from graph';
	TF_Utils::Neg( $oper, $graph, $s );
	TF_Utils::AssertStatusOK($s);
	ok $graph->OperationByName( 'neg' ), 'got neg operation from graph';

	note 'Export to a GraphDef.';
	my $graph_def = AI::TensorFlow::Libtensorflow::Buffer->New;
	$graph->ToGraphDef( $graph_def, $s );
	TF_Utils::AssertStatusOK($s);

	note 'Import it, with a prefix, in a fresh graph.';
	undef $graph;
	$graph = AI::TensorFlow::Libtensorflow::Graph->New;
	my $opts = AI::TensorFlow::Libtensorflow::ImportGraphDefOptions->New;
	$opts->SetPrefix('imported');
	$graph->ImportGraphDef($graph_def, $opts, $s);
	TF_Utils::AssertStatusOK($s);

	ok my $scalar = $graph->OperationByName('imported/scalar'), 'imported/scalar';
	ok my $feed = $graph->OperationByName('imported/feed'), 'imported/feed';
	ok my $neg = $graph->OperationByName('imported/neg'), 'imported/neg';

t/upstream/CAPI/018_ImportGraphDef.t  view on Meta::CPAN

	operation, into the same graph.|;
	undef $opts;
	$opts = AI::TensorFlow::Libtensorflow::ImportGraphDefOptions->New;
	$opts->SetPrefix('imported2');
	$opts->AddInputMapping( 'scalar', 0, $TFOutput->coerce([$scalar=>0]));
	$opts->AddReturnOutput('feed', 0);
	$opts->AddReturnOutput('scalar', 0);
	is $opts->NumReturnOutputs, 2, 'num return outputs';
	$opts->AddReturnOperation('scalar');
	is $opts->NumReturnOperations, 1, 'num return operations';
	my $results = $graph->ImportGraphDefWithResults( $graph_def, $opts, $s );
	TF_Utils::AssertStatusOK($s);

	ok my $scalar2 = $graph->OperationByName("imported2/scalar"), "imported2/scalar";
	ok my $feed2 = $graph->OperationByName("imported2/feed"), "imported2/feed";
	ok my $neg2 = $graph->OperationByName("imported2/neg"), "imported2/neg";

	note 'Check input mapping';
	$neg_input = $neg->Input( $TFInput->coerce( [$neg => 0 ]) );
	is $neg_input, object {
		call sub { shift->oper->Name } => $scalar->Name;
		call index => 0;
	}, 'neg input';

	note 'Check return outputs';
	my $return_outputs = $results->ReturnOutputs;
	is $return_outputs, array {
		item 0 => object {
			call sub { shift->oper->Name } => $feed2->Name;
			call index => 0;
		};
		item 1 => object {
			# remapped
			call sub { shift->oper->Name } => $scalar->Name;
			call index => 0;
		};
		end;
	}, 'return outputs';

	note 'Check return operation';
	my $return_opers = $results->ReturnOperations;
	is $return_opers, array {
		item 0 => object {
			# not remapped
			call Name => $scalar2->Name;
		};
		end;
	}, 'return opers';

	undef $results;

	note 'Import again, with control dependencies, into the same graph.';
	undef $opts;
	$opts = AI::TensorFlow::Libtensorflow::ImportGraphDefOptions->New;
	$opts->SetPrefix("imported3");
	$opts->AddControlDependency($feed);
	$opts->AddControlDependency($feed2);
	$graph->ImportGraphDef($graph_def, $opts, $s);
	TF_Utils::AssertStatusOK($s);



( run in 0.826 second using v1.01-cache-2.11-cpan-95122f20152 )