Alien-XGBoost
view release on metacpan or search on metacpan
xgboost/cub/test/test_device_histogram.cu view on Meta::CPAN
typeid(CounterT).name(),
NUM_ACTIVE_CHANNELS,
NUM_CHANNELS);
std::cout << CoutCast(max_level) << "\n";
for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel)
std::cout << "\n\tChannel " << channel << ": " << num_levels[channel] - 1 << " bins [" << lower_level[channel] << ", " << upper_level[channel] << ")\n";
fflush(stdout);
// Allocate and initialize host and device data
typedef SampleT Foo; // rename type to quelch gcc warnings (bug?)
SampleT* h_samples = new Foo[total_samples];
CounterT* h_histogram[NUM_ACTIVE_CHANNELS];
ScaleTransform<LevelT> transform_op[NUM_ACTIVE_CHANNELS];
for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel)
{
int bins = num_levels[channel] - 1;
h_histogram[channel] = new CounterT[bins];
transform_op[channel].Init(
xgboost/cub/test/test_device_histogram.cu view on Meta::CPAN
{
printf("Channel %d: %d bins [", channel, num_levels[channel] - 1);
std::cout << levels[channel][0];
for (int level = 1; level < num_levels[channel]; ++level)
std::cout << ", " << levels[channel][level];
printf("]\n");
}
fflush(stdout);
// Allocate and initialize host and device data
typedef SampleT Foo; // rename type to quelch gcc warnings (bug?)
SampleT* h_samples = new Foo[total_samples];
CounterT* h_histogram[NUM_ACTIVE_CHANNELS];
SearchTransform<LevelT> transform_op[NUM_ACTIVE_CHANNELS];
for (int channel = 0; channel < NUM_ACTIVE_CHANNELS; ++channel)
{
transform_op[channel].levels = levels[channel];
transform_op[channel].num_levels = num_levels[channel];
int bins = num_levels[channel] - 1;
xgboost/demo/binary_classification/README.md view on Meta::CPAN
#### Dump Model
This is a preliminary feature, so far only tree model support text dump. XGBoost can display the tree models in text files and we can scan the model in an easy way:
```
../../xgboost mushroom.conf task=dump model_in=0002.model name_dump=dump.raw.txt
../../xgboost mushroom.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
```
In this demo, the tree boosters obtained will be printed in dump.raw.txt and dump.nice.txt, and the latter one is easier to understand because of usage of feature mapping featmap.txt
Format of ```featmap.txt: <featureid> <featurename> <q or i or int>\n ```:
- Feature id must be from 0 to number of features, in sorted order.
- i means this feature is binary indicator feature
- q means this feature is a quantitative value, such as age, time, can be missing
- int means this feature is integer value (when int is hinted, the decision boundary will be integer)
#### Monitoring Progress
When you run training we can find there are messages displayed on screen
```
tree train end, 1 roots, 12 extra nodes, 0 pruned nodes ,max_depth=3
[0] test-error:0.016139
( run in 1.138 second using v1.01-cache-2.11-cpan-131fc08a04b )