AI-Genetic-Pro

 view release on metacpan or  search on metacpan

README  view on Meta::CPAN

            return $result == 4294967295 ? 1 : 0;
        }
        
        my $ga = AI::Genetic::Pro->new(        
            -fitness         => \&fitness,        # fitness function
            -terminate       => \&terminate,      # terminate function
            -type            => 'bitvector',      # type of chromosomes
            -population      => 1000,             # population
            -crossover       => 0.9,              # probab. of crossover
            -mutation        => 0.01,             # probab. of mutation
            -parents         => 2,                # number  of parents
            -selection       => [ 'Roulette' ],   # selection strategy
            -strategy        => [ 'Points', 2 ],  # crossover strategy
            -cache           => 0,                # cache results
            -history         => 1,                # remember best results
            -preserve        => 3,                # remember the bests
            -variable_length => 1,                # turn variable length ON
            -mce             => 1,                # optional MCE support
            -workers         => 3,                # number of workers (MCE)
        );
            

README  view on Meta::CPAN

              # where 'x' means 'undef'
              # ...and so on

	  In this situation returned chromosomes in an array context
	  ($ga->as_array($chromosome)) can have undef values on the left
	  side (only). In a scalar context each undefined value is replaced
	  with a single space. If You don't want to see any undef or space,
	  just use as_array_def_only and as_string_def_only instead of
	  as_array and as_string.

      -parents

	This defines how many parents should be used in a crossover.

      -selection

	This defines how individuals/chromosomes are selected to crossover.
	It expects an array reference listed below:

            -selection => [ $type, @params ]

	where type is one of:

	RouletteBasic

	  Each individual/chromosome can be selected with probability
	  proportional to its fitness.

	Roulette

	  First the best individuals/chromosomes are selected. From this
	  collection parents are selected with probability poportional to
	  their fitness.

	RouletteDistribution

	  Each individual/chromosome has a portion of roulette wheel
	  proportional to its fitness. Selection is done with the specified
	  distribution. Supported distributions and parameters are listed
	  below.

	  -selection => [ 'RouletteDistribution', 'uniform' ]

README  view on Meta::CPAN

	    Normal distribution, where $av is average (default: size of
	    population /2) and $$sd is standard deviation (default: size of
	    population).

	  -selection => [ 'RouletteDistribution', 'beta', $aa, $bb ]

	    Beta distribution. The density of the beta is:

                X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

	    $aa and $bb are set by default to number of parents.

	    Argument restrictions: Both $aa and $bb must not be less than
	    1.0E-37.

	  -selection => [ 'RouletteDistribution', 'binomial' ]

	    Binomial distribution. No additional parameters are needed.

	  -selection => [ 'RouletteDistribution', 'chi_square', $df ]

README  view on Meta::CPAN

	    Normal distribution, where $av is average (default: size of
	    population /2) and $$sd is standard deviation (default: size of
	    population).

	  -selection => [ 'Distribution', 'beta', $aa, $bb ]

	    Beta distribution. The density of the beta is:

                X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

	    $aa and $bb are set by default to number of parents.

	    Argument restrictions: Both $aa and $bb must not be less than
	    1.0E-37.

	  -selection => [ 'Distribution', 'binomial' ]

	    Binomial distribution. No additional parameters are needed.

	  -selection => [ 'Distribution', 'chi_square', $df ]

README  view on Meta::CPAN

	  chromosomes/individuals are selected for the new generation. For
	  example:

              -strategy => [ 'PointsSimple', $n ]

	  where $n is the number of points for crossing.

	PointsBasic

	  Crossover in one or many points. In basic crossover selected
	  parents are crossed and one (randomly-chosen) child is moved to
	  the new generation. For example:

              -strategy => [ 'PointsBasic', $n ]

	  where $n is the number of points for crossing.

	Points

	  Crossover in one or many points. In normal crossover selected
	  parents are crossed and the best child is moved to the new
	  generation. For example:

              -strategy => [ 'Points', $n ]

	  where $n is number of points for crossing.

	PointsAdvenced

	  Crossover in one or many points. After crossover the best
	  chromosomes/individuals from all parents and chidren are selected
	  for the new generation. For example:

              -strategy => [ 'PointsAdvanced', $n ]

	  where $n is the number of points for crossing.

	Distribution

	  In distribution crossover parents are crossed in points selected
	  with the specified distribution. See below.

	  -strategy => [ 'Distribution', 'uniform' ]

	    Standard uniform distribution. No additional parameters are
	    needed.

	  -strategy => [ 'Distribution', 'normal', $av, $sd ]

	    Normal distribution, where $av is average (default: number of
	    parents/2) and $sd is standard deviation (default: number of
	    parents).

	  -strategy => [ 'Distribution', 'beta', $aa, $bb ]

	    Beta distribution. The density of the beta is:

                X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

	    $aa and $bb are set by default to the number of parents.

	    Argument restrictions: Both $aa and $bb must not be less than
	    1.0E-37.

	  -strategy => [ 'Distribution', 'binomial' ]

	    Binomial distribution. No additional parameters are needed.

	  -strategy => [ 'Distribution', 'chi_square', $df ]

	    Chi-squared distribution with $df degrees of freedom. $df by
	    default is set to the number of parents.

	  -strategy => [ 'Distribution', 'exponential', $av ]

	    Exponential distribution, where $av is average . $av by default
	    is set to the number of parents.

	  -strategy => [ 'Distribution', 'poisson', $mu ]

	    Poisson distribution, where $mu is mean. $mu by default is set
	    to the number of parents.

	PMX

	  PMX method defined by Goldberg and Lingle in 1985. Parameters:
	  none.

	OX

	  OX method defined by Davis (?) in 1985. Parameters: none.

README  view on Meta::CPAN

      Alias for crossProb.

    $ga->mutProb()

      This method is used to query and set the mutation rate.

    $ga->mutation()

      Alias for mutProb.

    $ga->parents($parents)

      Set/get number of parents in a crossover.

    $ga->init($args)

      This method initializes the population with random
      individuals/chromosomes. It MUST be called before any call to
      evolve(). It expects one argument, which depends on the type of
      individuals/chromosomes:

      bitvector

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

use AI::Genetic::Pro::Chromosome;
#-----------------------------------------------------------------------
__PACKAGE__->mk_accessors(qw(
	mce
	type
	population
	terminate
	chromosomes 
	crossover 
	native
	parents 		_parents 
	history 		_history
	fitness 		_fitness 		_fitness_real
	cache
	mutation 		_mutator
	strategy 		_strategist
	selection 		_selector 
	_translations
	generation
	preserve		
	variable_length

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

        values_vertical     => 1,
        values_format       => ($params{-format} || '%.2f'),

        zero_axis           => 1,
        #interlaced          => 1,
        logo_position       => 'BR',
        legend_placement    => 'RT',

        bgclr               => 'white',
        boxclr              => '#FFFFAA',
        transparent         => 0,

        title       		=> ($params{'-title'}   || q/Evolution/ ),
        x_label     		=> ($params{'-x_label'} || q/Generation/),
        y_label     		=> ($params{'-y_label'} || q/Value/     ),
        
        ( $params{-logo} && -f $params{-logo} ? ( logo => $params{-logo} ) : ( ) )
    );
	
	
    my $gd = $graph->plot( [ [ 0..$#{$data->[0]} ], @$data ] ) or croak($@);

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

#		delete $self->_fitness->{$idx};
#		delete $self->chromosomes->[$idx];
#	}
#	
#	$self->_fitness(\%fitness);
#	$self->chromosomes(\@chromosomes);

	return;
}
#=======================================================================
sub _select_parents {
	my ($self) = @_;
	unless($self->_selector){
		croak "You must specify a selection strategy!"
			unless defined $self->selection;
		my @tmp = @{$self->selection};
		my $selector = q/AI::Genetic::Pro::Selection::/ . shift @tmp;
		$selector->require or die $!;
		$self->_selector($selector->new(@tmp));
	}
	
	$self->_parents($self->_selector->run($self));
	
	return;
}
#=======================================================================
sub _crossover {
	my ($self) = @_;
	
	unless($self->_strategist){
		my @tmp = @{$self->strategy};
		my $strategist = q/AI::Genetic::Pro::Crossover::/ . shift @tmp;

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

	# split into two loops just for speed
	unless($self->preserve){
		for(my $i = 0; $i != $generations; $i++){
			# terminate ----------------------------------------------------
			last if $self->terminate and $self->terminate->($self);
			# update generation --------------------------------------------
			$self->generation($self->generation + 1);
			# update history -----------------------------------------------
			$self->_save_history;
			# selection ----------------------------------------------------
			$self->_select_parents();
			# crossover ----------------------------------------------------
			$self->_crossover();
			# mutation -----------------------------------------------------
			$self->_mutation();
		}
	}else{
		croak('You cannot preserve more chromosomes than is in population!') if $self->preserve > $self->population;
		my @preserved;
		for(my $i = 0; $i != $generations; $i++){
			# terminate ----------------------------------------------------
			last if $self->terminate and $self->terminate->($self);
			# update generation --------------------------------------------
			$self->generation($self->generation + 1);
			# update history -----------------------------------------------
			$self->_save_history;
			#---------------------------------------------------------------
			# preservation of N unique chromosomes
			@preserved = map { clone($_) } @{ $self->getFittest_as_arrayref($self->preserve - 1, 1) };
			# selection ----------------------------------------------------
			$self->_select_parents();
			# crossover ----------------------------------------------------
			$self->_crossover();
			# mutation -----------------------------------------------------
			$self->_mutation();
			#---------------------------------------------------------------
			for(@preserved){
				my $idx = int rand @{$self->chromosomes};
				$self->chromosomes->[$idx] = $_;
				$self->_fitness->{$idx} = $self->fitness()->($self, $_);
			}

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

        return $result == 4294967295 ? 1 : 0;
    }
    
    my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 1000,             # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.01,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 1,                # remember best results
        -preserve        => 3,                # remember the bests
        -variable_length => 1,                # turn variable length ON
        -mce             => 1,                # optional MCE support
        -workers         => 3,                # number of workers (MCE)
    );
	

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

    # ...and so on

In this situation returned chromosomes in an array context ($ga-E<gt>as_array($chromosome)) 
can have B<undef> values on the left side (only). In a scalar context each 
undefined value is replaced with a single space. If You don't want to see
any C<undef> or space, just use C<as_array_def_only> and C<as_string_def_only> 
instead of C<as_array> and C<as_string>.

=back

=item -parents  

This defines how many parents should be used in a crossover.

=item -selection

This defines how individuals/chromosomes are selected to crossover. It expects an array reference listed below:

    -selection => [ $type, @params ]

where type is one of:

=over 8

=item B<RouletteBasic>

Each individual/chromosome can be selected with probability proportional to its fitness.

=item B<Roulette>

First the best individuals/chromosomes are selected. From this collection
parents are selected with probability poportional to their fitness.

=item B<RouletteDistribution>

Each individual/chromosome has a portion of roulette wheel proportional to its
fitness. Selection is done with the specified distribution. Supported
distributions and parameters are listed below.

=over 12

=item C<-selection =E<gt> [ 'RouletteDistribution', 'uniform' ]>

lib/AI/Genetic/Pro.pm  view on Meta::CPAN


Normal distribution, where C<$av> is average (default: size of population /2) and $C<$sd> is standard deviation (default: size of population).


=item C<-selection =E<gt> [ 'RouletteDistribution', 'beta', $aa, $bb ]>

I<Beta> distribution.  The density of the beta is:

    X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

C<$aa> and C<$bb> are set by default to number of parents.

B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'binomial' ]>

Binomial distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'chi_square', $df ]>

Chi-square distribution with C<$df> degrees of freedom. C<$df> by default is set to size of population.

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

=item C<-selection =E<gt> [ 'Distribution', 'normal', $av, $sd ]>

Normal distribution, where C<$av> is average (default: size of population /2) and $C<$sd> is standard deviation (default: size of population).

=item C<-selection =E<gt> [ 'Distribution', 'beta', $aa, $bb ]>

I<Beta> distribution.  The density of the beta is:

    X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

C<$aa> and C<$bb> are set by default to number of parents.

B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.

=item C<-selection =E<gt> [ 'Distribution', 'binomial' ]>

Binomial distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'Distribution', 'chi_square', $df ]>

Chi-square distribution with C<$df> degrees of freedom. C<$df> by default is set to size of population.

lib/AI/Genetic/Pro.pm  view on Meta::CPAN


Simple crossover in one or many points. The best chromosomes/individuals are
selected for the new generation. For example:

    -strategy => [ 'PointsSimple', $n ]

where C<$n> is the number of points for crossing.

=item PointsBasic

Crossover in one or many points. In basic crossover selected parents are
crossed and one (randomly-chosen) child is moved to the new generation. For
example:

    -strategy => [ 'PointsBasic', $n ]

where C<$n> is the number of points for crossing.

=item Points

Crossover in one or many points. In normal crossover selected parents are crossed and the best child is moved to the new generation. For example:

    -strategy => [ 'Points', $n ]

where C<$n> is number of points for crossing.

=item PointsAdvenced

Crossover in one or many points. After crossover the best
chromosomes/individuals from all parents and chidren are selected for the  new
generation. For example:

    -strategy => [ 'PointsAdvanced', $n ]

where C<$n> is the number of points for crossing.

=item Distribution

In I<distribution> crossover parents are crossed in points selected with the
specified distribution. See below.

=over 8

=item C<-strategy =E<gt> [ 'Distribution', 'uniform' ]>

Standard uniform distribution. No additional parameters are needed.

=item C<-strategy =E<gt> [ 'Distribution', 'normal', $av, $sd ]>

Normal distribution, where C<$av> is average (default: number of parents/2) and C<$sd> is standard deviation (default: number of parents).

=item C<-strategy =E<gt> [ 'Distribution', 'beta', $aa, $bb ]>

I<Beta> distribution.  The density of the beta is:

    X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

C<$aa> and C<$bb> are set by default to the number of parents.

B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.

=item C<-strategy =E<gt> [ 'Distribution', 'binomial' ]>

Binomial distribution. No additional parameters are needed.

=item C<-strategy =E<gt> [ 'Distribution', 'chi_square', $df ]>

Chi-squared distribution with C<$df> degrees of freedom. C<$df> by default is set to the number of parents.

=item C<-strategy =E<gt> [ 'Distribution', 'exponential', $av ]>

Exponential distribution, where C<$av> is average . C<$av> by default is set to the number of parents.

=item C<-strategy =E<gt> [ 'Distribution', 'poisson', $mu ]>

Poisson distribution, where C<$mu> is mean. C<$mu> by default is set to the number of parents.

=back

=item PMX

PMX method defined by Goldberg and Lingle in 1985. Parameters: I<none>.

=item OX

OX method defined by Davis (?) in 1985. Parameters: I<none>.

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

Alias for C<crossProb>.

=item I<$ga>-E<gt>B<mutProb>()

This method is used to query and set the mutation rate.

=item I<$ga>-E<gt>B<mutation>()

Alias for C<mutProb>.

=item I<$ga>-E<gt>B<parents>($parents)

Set/get number of parents in a crossover.

=item I<$ga>-E<gt>B<init>($args)

This method initializes the population with random individuals/chromosomes. It MUST be called before any call to C<evolve()>. It expects one argument, which depends on the type of individuals/chromosomes:

=over 4

=item B<bitvector>

For bitvectors, the argument is simply the length of the bitvector.

lib/AI/Genetic/Pro/Crossover/Distribution.pm  view on Meta::CPAN

	my ($class, $type, @params) = @_;
	bless { 
			type 	=> $type,
			params	=> \@params,
		}, $class; 
}
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my $high  = scalar @{$chromosomes->[0]};
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;
		
		unless(scalar @elders){
			$_fitness->{scalar(@children)} = $fitness->($ga, $chromosomes->[$elders[0]]);
			push @children, $chromosomes->[$elders[0]];
			next;
		}
		
		#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		my $len = scalar @elders;

lib/AI/Genetic/Pro/Crossover/OX.pm  view on Meta::CPAN

#=======================================================================
sub save_fitness {
	my ($self, $ga, $idx) = @_;
	$ga->_fitness->{$idx} = $ga->fitness->($ga, $ga->chromosomes->[$idx]);
	return $ga->chromosomes->[$idx];
}
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;
		
		unless(scalar @elders){
			push @children, $chromosomes->[$elders[0]];
			next;
		}
		
		my @points = sort { $a <=> $b } map { 1 + int(rand $#{$chromosomes->[0]}) } 0..1;
		
		@elders = sort {

lib/AI/Genetic/Pro/Crossover/PMX.pm  view on Meta::CPAN


    my %seen;
    my @dup = grep { if($seen{$_}){ 1 }else{ $seen{$_} = 1; 0} } @$ar;
    return \@dup if @dup;
    return;
}
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;
		
		unless(scalar @elders){
			push @children, $chromosomes->[$elders[0]];
			next;
		}
		
		my @points = sort { $a <=> $b } map { 1 + int(rand $#{$chromosomes->[0]}) } 0..1;
		
		@elders = sort {

lib/AI/Genetic/Pro/Crossover/Points.pm  view on Meta::CPAN

use warnings;
use strict;
use List::MoreUtils qw(first_index);
#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
#=======================================================================
sub new { bless { points => $_[1] ? $_[1] : 1 }, $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;
		
		unless(scalar @elders){
			$_fitness->{scalar(@children)} = $fitness->($ga, $chromosomes->[$elders[0]]);
			push @children, $chromosomes->[$elders[0]];
			next;
		}

		my ($min, $max) = (0, $#{$chromosomes->[0]});
		if($ga->variable_length){

lib/AI/Genetic/Pro/Crossover/PointsAdvanced.pm  view on Meta::CPAN

use strict;
use List::MoreUtils qw(first_index);
#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
#use AI::Genetic::Pro::Array::PackTemplate;
#=======================================================================
sub new { bless { points => $_[1] ? $_[1] : 1 }, $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;

		unless(scalar @elders){
			push @$chromosomes, $chromosomes->[$elders[0]];
			next;
		}
	
		my ($min, $max) = (0, $#{$chromosomes->[0]} - 1);
		if($ga->variable_length){
			for my $el(@elders){

lib/AI/Genetic/Pro/Crossover/PointsBasic.pm  view on Meta::CPAN

use warnings;
use strict;
use List::MoreUtils qw(first_index);
#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
#=======================================================================
sub new { bless { points => $_[1] ? $_[1] : 1 }, $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;
		
		unless(scalar @elders){
			$_fitness->{scalar(@children)} = $fitness->($ga, $chromosomes->[$elders[0]]);
			push @children, $chromosomes->[$elders[0]];
			next;
		}
		
		my ($min, $max) = (0, $#{$chromosomes->[0]} - 1);
		if($ga->variable_length){

lib/AI/Genetic/Pro/Crossover/PointsSimple.pm  view on Meta::CPAN

use warnings;
use strict;
use List::MoreUtils qw(first_index);
#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
#=======================================================================
sub new { bless { points => $_[1] ? $_[1] : 1 }, $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($chromosomes, $parents, $crossover) = ($ga->chromosomes, $ga->_parents, $ga->crossover);
	my ($fitness, $_fitness) = ($ga->fitness, $ga->_fitness);
	my @children;
	#-------------------------------------------------------------------
	while(my $elders = shift @$parents){
		my @elders = unpack 'I*', $elders;

		unless(scalar @elders){
			push @children, $chromosomes->[$elders[0]];
			next;
		}
		
		my ($min, $max) = (0, $#{$chromosomes->[0]} - 1);
		if($ga->variable_length){
			for my $el(@elders){

lib/AI/Genetic/Pro/Selection/Distribution.pm  view on Meta::CPAN

	bless { 
			type 	=> $type,
			params	=> \@params,
		}, $class; 
}
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($fitness, $chromosomes) = ($ga->_fitness, $ga->chromosomes);
	croak "You must set a number of parents to use the Distribution strategy"
		unless defined($ga->parents);
	my $parents = $ga->parents;
	my @parents;
	my $high = scalar @$chromosomes;
	#-------------------------------------------------------------------
	if($self->{type} eq q/uniform/){
		push @parents, 
			pack 'I*', random_uniform_integer($parents, 0, $#$chromosomes) 
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/normal/){
		my $av = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		my $sd = defined $self->{params}->[1] ? $self->{params}->[1] : $#$chromosomes;
		push @parents, 
			pack 'I*', map { int $_ % $high } random_normal($parents, $av, $sd)  
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/beta/){
		my $aa = defined $self->{params}->[0] ? $self->{params}->[0] : $parents;
		my $bb = defined $self->{params}->[1] ? $self->{params}->[1] : $parents;
		push @parents, 
			pack 'I*', map { int($_ * $high) } random_beta($parents, $aa, $bb)
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/binomial/){
		push @parents, 
			pack 'I*', random_binomial($parents, $#$chromosomes, rand) 
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/chi_square/){
		my $df = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes;
		push @parents,
			pack 'I*', map { int $_ % $high } random_chi_square($parents, $df)
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/exponential/){
		my $av = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents, 
			pack 'I*', map { int $_ % $high } random_exponential($parents, $av)  
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/poisson/){
		my $mu = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents,
			pack 'I*', map { int $_ % $high } random_poisson($parents, $mu)
				for 0..$#$chromosomes;
	}else{
		die qq/Unknown distribution "$self->{type}" in "selection"!\n/;
	}
	
	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

lib/AI/Genetic/Pro/Selection/Roulette.pm  view on Meta::CPAN

use List::MoreUtils qw(first_index);
use Carp 'croak';

#=======================================================================
sub new { bless \$_[0], $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($fitness) = ($ga->_fitness);
	my (@parents, @elders);
	#-------------------------------------------------------------------
	my $count = $#{$ga->chromosomes};
	my $const = min values %$fitness;
	$const = $const < 0 ? abs($const) : 0;
	my $total = sum( map { $_ < 0 ? $_ + $const : $_ } values %$fitness);
	$total ||= 1;
	
	# elders
	for my $idx (0..$count){
		push @elders, $idx for 1..int((($fitness->{$idx} + $const) / $total) * $count);
	}
	
	if((my $add = $count - scalar @elders) > 0){
		my $idx = $elders[rand @elders];
		push @elders, int rand($count) for 0..$add;
	}
	
	croak "You must set a crossover probability to use the Roulette strategy"
		unless defined($ga->crossover);
	croak "You must set a number of parents to use the Roulette strategy"
		unless defined($ga->parents);

	# parents
	for(0..$count){
		if(rand > $ga->crossover){
			push @parents, pack 'I*', $elders[ rand @elders ]
		}else{
			my @group;
			push @group, $elders[ rand @elders ] for 1..$ga->parents;
			push @parents, pack 'I*', @group;
		}
	}

	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

lib/AI/Genetic/Pro/Selection/RouletteBasic.pm  view on Meta::CPAN

#use Data::Dumper; $Data::Dumper::Sortkeys = 1;
use List::MoreUtils qw(first_index);
use Carp 'croak';
#=======================================================================
sub new { bless \$_[0], $_[0]; }
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($fitness, $chromosomes) = ($ga->_fitness, $ga->chromosomes);
	croak "You must set a number of parents to use the RouletteBasic strategy"
		unless defined($ga->parents);
	my $parents = $ga->parents;
	my (@parents, @wheel);
	my $const = min values %$fitness;
	$const = $const < 0 ? abs($const) : 0;
	my $total = 0;
	#-------------------------------------------------------------------
	foreach my $key (keys %$fitness){
		$total += $fitness->{$key} + $const;
		push @wheel, [ $key, $total ];
	}
	
	for(0..$#$chromosomes){
		my @group;
		for(1..$parents){
			my $rand = rand($total);
			my $idx = first_index { $_->[1] > $rand } @wheel;
			if($idx == 0){ $idx = 1 }
			elsif($idx == -1 ) { $idx = scalar @wheel; }
			push @group, $wheel[$idx-1]->[0];
		}
		push @parents, pack 'I*', @group;
	}
	
	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

lib/AI/Genetic/Pro/Selection/RouletteDistribution.pm  view on Meta::CPAN

	my $idx = first_index { $_->[1] > $rand } @$wheel;
	if($idx == 0){ $idx = 1 }
	elsif($idx == -1 ) { $idx = scalar @$wheel; }
	return $wheel->[$idx-1]->[0];
}
#=======================================================================
sub run {
	my ($self, $ga) = @_;
	
	my ($fitness, $chromosomes) = ($ga->_fitness, $ga->chromosomes);
	croak "You must set a number of parents for the RouletteDistribution strategy"
		unless defined($ga->parents);
	my $parents = $ga->parents;
	my $high = scalar @$chromosomes;
	my (@parents, @wheel);
	my $const = min values %$fitness;
	$const = $const < 0 ? abs($const) : 0;
	my $total = 0;
	#-------------------------------------------------------------------
	foreach my $key (keys %$fitness){
		$total += $fitness->{$key} + $const;
		push @wheel, [ $key, $total ];
	}
	#-------------------------------------------------------------------
	if($self->{type} eq q/uniform/){
		push @parents, 
			pack 'I*', 
				map { roulette($total, \@wheel) }
				 	random_uniform($parents, 0, $total) 
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/normal/){
		my $av = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		my $sd = defined $self->{params}->[1] ? $self->{params}->[1] : $#$chromosomes;
		push @parents, 
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int $_ % $high } random_normal($parents, $av, $sd)  
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/beta/){
		my $aa = defined $self->{params}->[0] ? $self->{params}->[0] : $parents;
		my $bb = defined $self->{params}->[1] ? $self->{params}->[1] : $parents;
		push @parents, 
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int($_ * $high) } random_beta($parents, $aa, $bb)
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/binomial/){
		push @parents, 
			pack 'I*', 
				map { roulette($total, \@wheel) }
					random_binomial($parents, $#$chromosomes, rand) 
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/chi_square/){
		my $df = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes;
		push @parents,
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int $_ % $high } random_chi_square($parents, $df)
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/exponential/){
		my $av = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents, 
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int $_ % $high } random_exponential($parents, $av)  
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/poisson/){
		my $mu = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents,
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int $_ % $high } random_poisson($parents, $mu)
						for 0..$#$chromosomes;
	}else{
		die qq/Unknown distribution "$self->{type}" in "selection"!\n/;
	}
	
	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

t/01_inject.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/02_cache.t  view on Meta::CPAN

	return sum(scalar $ga->as_array($chromosome));
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => sub { return; },  # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 10,               # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/02_cache.t  view on Meta::CPAN

my $time0 =Time::HiRes::tv_interval($start);


$ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => sub { return; },  # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 10,               # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/03_bitvectors_constant_length.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/04_bitvectors_variable_length_I.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/05_bitvectors_variable_length_II.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/06_listvectors_constant_length.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


my @data;

t/07_listvectors_variable_length_I.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);


my @data;

t/08_listvectors_variable_length_II.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.01,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);


my @data;

t/09_rangevectors_constant_length.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


my @data;

t/10_rangevectors_variable_length_I.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);


my @data;

t/11_rangevectors_variable_length_II.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);


my @data;

t/12_combinations_constant_length.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'combination',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'PMX' ],        # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


$ga->init( [ 'a'..'h' ] );

t/13_preserve.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 4,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/14_getFittest.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 4,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/15_bitvectors_constant_length_MCE.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-mce			 => 1,                # turn ON Many-Core Engine
);

# init population of 32-bit vectors

t/16_bitvectors_constant_length_-_native_arrays.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-native			 => 1,				  # turn ON use of native arrays
);

# init population of 32-bit vectors

t/17_bitvectors_constant_length_MCE_-_native_arrays.t  view on Meta::CPAN

	return;
}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-mce			 => 1,                # turn ON Many-Core Engine
		-native			 => 1,				  # turn ON use of native arrays
);



( run in 0.398 second using v1.01-cache-2.11-cpan-4d50c553e7e )