Algorithm-Bertsekas

 view release on metacpan or  search on metacpan

README  view on Meta::CPAN

 column index = [  9   8  10   1   5  11   7   4   6   2   0   3 ]
 matrix value = [             17               8      40  36  52 ]

 modified matrix 5 x 9:
 [ 516   341   150   671   453   719   710   720** 387  ]
 [ 598   739** 548   273   661   321   404   322   727  ]
 [ 602   427   236   585   539   633   716** 634   473  ]
 [ 679   658   467   354   742   402   485   403   704**]
 [ 701   636   445   376   748** 424   507   425   682  ]

 original matrix 12 x 5 with solution:
 [ 732   334   646   415   437  ]
 [ 240   158   154    77    55  ]
 [ 741   343   655   424   446  ]
 [ 415    17** 329    98   120  ]
 [ 606   208   520   289   311  ]
 [ 756   358   670   439   461  ]
 [  85   483   171   402   380  ]
 [ 303    95   217    14     8**]
 [  37   435   123   354   332  ]
 [  46   352    40** 271   249  ]

README  view on Meta::CPAN


 Solution:
 Optimal assignment: sum of values = 893
 Feasible assignment condition: stepsize = 0.09091 < 1/10 = 0.1
 Number of iterations: 27

 row index    = [  0   1   2   3   4   5   6   7   8   9 ]
 column index = [  5   0   1   8   9   6   2   4   7   3 ]
 matrix value = [ 95  76 100  90  81  99  99  88  75  90 ]

 original matrix 10 x 10 with solution:
 [  84    94    75    56    66    95**  39    53    73     4  ]
 [  76**  71    56    49    29     1    40    40    72    72  ]
 [  85   100**  71    23    47    18    82    70    30    71  ]
 [   2    95    71    89    73    73    48    52    90**  51  ]
 [  65    28    77    73    24    28    75    48     8    81**]
 [  25    27    35    89    98    10    99**   3    27     4  ]
 [  58    15    99**  37    92    55    52    82    73    96  ]
 [  11    75     2     1    88**  43     8    28    98    20  ]
 [  52    95    10    38    41    64    20    75**   1    47  ]
 [  50    80    31    90**  10    83    51    55    57    40  ]

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN


require Exporter;
our @ISA = qw(Exporter);
our @EXPORT = qw( auction );
our $VERSION = '0.87';

#Variables global to the package	
my $maximize_total_benefit;
my $matrix_spaces;     # used to print messages on the screen
my $decimals;          # the number of digits after the decimal point
my ( $array1_size, $array2_size, $min_size, $max_size, $original_max_size );
my ( $need_transpose, $inicial_price, $iter_count_global, $iter_count_local );
my ( $epsilon_scaling, $max_epsilon_scaling, $max_matrix_value, $target, $output );
my ( %index_correlation, %assignned_object, %assignned_person, %price_object );
my ( %objects_desired_by_this, %locked_list, %seen_person, %seen_assignned_objects );

sub auction { #						=> default values
	my %args = ( matrix_ref				=> undef,     # reference to array: matrix N x M			                                     
				maximize_total_benefit  => 0,         # 0: minimize_total_benefit ; 1: maximize_total_benefit
				inicial_stepsize        => undef,     # auction algorithm terminates with a feasible assignment if the problem data are integer and stepsize < 1/min(N,M)				
				inicial_price           => 0,

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN

	%locked_list = ();
	%seen_person = ();
	
	my @matrix_input = @{$args{matrix_ref}};          # Input: Reference to the input matrix (NxM) = $min_size x $max_size
   
	$array1_size = $#matrix_input + 1;
	$array2_size = $#{$matrix_input[0]} + 1;
 
	$min_size = $array1_size < $array2_size ? $array1_size : $array2_size ; # square matrix --> $min_size = $max_size and $array1_size = $array2_size
	$max_size = $array1_size < $array2_size ? $array2_size : $array1_size ;
	$original_max_size = $max_size;

	$target = 'auction-' . $array1_size . 'x' . $array2_size . '-output.txt' ;
	
	if ( $args{verbose} >= 8 ){
		print "\n verbose = $args{verbose} ---> print the verbose messages to <$target> file \n";
		if ( open ( $output, '>', $target ) ) {
			print "\n *** Open <$target> for writing. *** \n";
		} else {
			$args{verbose} = 7;
			warn "\n *** Could not open <$target> for writing: $! *** \n";			

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN

		$output_index[$index_i] = $index_j; 
		$seeN{$index_i}++;
		$seeM{$index_j}++;
		#print " \$output_index[$index_i] = $index_j \n"; 	  
	  
		next unless ( defined $matrix_input[$index_i] and defined $matrix_input[$index_i]->[$index_j] );
		$assignment_hash{ $index_i } = $index_j;	  
		$optimal_benefit += $matrix_input[$index_i]->[$index_j];
	}

	for my $i ( 0 .. $original_max_size - 1 ) {
	for my $j ( 0 .. $original_max_size - 1 ) {
		next if ($seeN{$i} or $seeM{$j});  
		$output_index[$i] = $j;
		$seeN{$i}++;
		$seeM{$j}++;
		last;
	}}   
   
	if ( $args{verbose} >= 8 ){
		printf $output "\n\$optimal_benefit = $optimal_benefit ; \$iter_count_global = $iter_count_global ; \$epsilon = %.4g ; \@output_index = (@output_index) \n", $epsilon; 
	}   

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN

		 my $weight;
		    $weight = ( defined $matrix_input[$i] and defined $matrix_input[$i]->[$j] ) ? sprintf( "%${matrix_spaces}.${decimals}f ", $matrix_input[$i]->[$j] ) : ' ' x ($matrix_spaces+1) ;	 
		 
         print $weight;
      }
      print "]\n\n";
   }
   
   if ( $verbose >= 2 ){
   
      my $index_length = length($original_max_size);   

	  if ( $verbose >= 3 ){
      printf " modified matrix %d x %d:\n", $#matrix + 1, $#{$matrix[0]} + 1;
      for my $i ( 0 .. $#matrix ) {
         print " [";
         for my $j ( 0 .. $#{$matrix[$i]} ) {
            printf(" %${matrix_spaces}.${decimals}f", $matrix[$i]->[$j] );
            if ( $j == $matrix_index[$i] ){ print "**"; } else{ print "  "; }
         }
         print "]\n";
      }
	  print "\n";
	  }
	  
	  print " original matrix $array1_size x $array2_size with solution:\n";

      for my $i ( 0 .. $#matrix_input ) {
         print " [";
         for my $j ( 0 .. $#{$matrix_input[$i]} ) {
            printf(" %${matrix_spaces}.${decimals}f", $matrix_input[$i]->[$j] );			
			if ( $j == $output_index[$i] ){ print "**"; } else{ print "  "; }		
         }
         print "]\n";
      }
	  
      my %orderly_solution;
      for my $i ( 0 .. $original_max_size - 1 ){
		my $j = $output_index[$i];
		my $weight = $max_matrix_value;
		$weight = $matrix_input[$i]->[$j] if ( defined $matrix_input[$i] and defined $matrix_input[$i]->[$j] ); # condition for valid solution
         
		$orderly_solution{ $weight } { $i } { 'index_array1' } = $i;
		$orderly_solution{ $weight } { $i } { 'index_array2' } = $j;		 
      }

      print "\n Pairs (in ascending order of matrix values):\n"; 

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN

 column index = [  9   8  10   1   5  11   7   4   6   2   0   3 ]
 matrix value = [             17               8      40  36  52 ]

 modified matrix 5 x 9:
 [ 516   341   150   671   453   719   710   720** 387  ]
 [ 598   739** 548   273   661   321   404   322   727  ]
 [ 602   427   236   585   539   633   716** 634   473  ]
 [ 679   658   467   354   742   402   485   403   704**]
 [ 701   636   445   376   748** 424   507   425   682  ]

 original matrix 12 x 5 with solution:
 [ 732   334   646   415   437  ]
 [ 240   158   154    77    55  ]
 [ 741   343   655   424   446  ]
 [ 415    17** 329    98   120  ]
 [ 606   208   520   289   311  ]
 [ 756   358   670   439   461  ]
 [  85   483   171   402   380  ]
 [ 303    95   217    14     8**]
 [  37   435   123   354   332  ]
 [  46   352    40** 271   249  ]

lib/Algorithm/Bertsekas.pm  view on Meta::CPAN


 Solution:
 Optimal assignment: sum of values = 893
 Feasible assignment condition: stepsize = 0.09091 < 1/10 = 0.1
 Number of iterations: 27

 row index    = [  0   1   2   3   4   5   6   7   8   9 ]
 column index = [  5   0   1   8   9   6   2   4   7   3 ]
 matrix value = [ 95  76 100  90  81  99  99  88  75  90 ]

 original matrix 10 x 10 with solution:
 [  84    94    75    56    66    95**  39    53    73     4  ]
 [  76**  71    56    49    29     1    40    40    72    72  ]
 [  85   100**  71    23    47    18    82    70    30    71  ]
 [   2    95    71    89    73    73    48    52    90**  51  ]
 [  65    28    77    73    24    28    75    48     8    81**]
 [  25    27    35    89    98    10    99**   3    27     4  ]
 [  58    15    99**  37    92    55    52    82    73    96  ]
 [  11    75     2     1    88**  43     8    28    98    20  ]
 [  52    95    10    38    41    64    20    75**   1    47  ]
 [  50    80    31    90**  10    83    51    55    57    40  ]



( run in 0.224 second using v1.01-cache-2.11-cpan-069f9db706d )