AI-NeuralNet-Kohonen-Visual

 view release on metacpan or  search on metacpan

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN


=head1 SYNOPSIS

Test the test file in this distribution, or:

	package YourClass;
	use base "AI::NeuralNet::Kohonen::Visual";

	sub get_colour_for { my ($self,$x,$y) = (shift,shift,shift);
		# From here you return a TK colour name.
		# Get it as you please; for example, values of a 3D map:
		return sprintf("#%02x%02x%02x",
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[0])),
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[1])),
			(int (255 * $self->{map}->[$x]->[$y]->{weight}->[2])),
		);
	}

	exit;
	1;

And then:

	use YourClass;
	my $net = AI::NeuralNet::Kohonen::Visual->new(
		display          => 'hex',
		map_dim          => 39,
		epochs           => 19,
		neighbour_factor => 2,
		targeting        => 1,
		table            => "3
			1 0 0 red
			0 1 0 yellow
			0 0 1 blue
			0 1 1 cyan
			1 1 0 yellow
			1 .5 0 orange
			1 .5 1 pink",
	);
	$net->train;
	$net->plot_map;
	$net->main_loop;

	exit;


=head1 DESCRIPTION

Provides TK-based visualisation routines for C<AI::NueralNet::Kohonen>.
Replaces the earlier C<AI::NeuralNet::Kohonen::Demo::RGB>.

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN


use Tk;
use Tk::Canvas;
use Tk::Label;
use Tk qw/DoOneEvent DONT_WAIT/;



=head1 METHOD train

Over-rides the base class to provide TK displays of the map.

=cut

sub train { my ($self,$epochs) = (shift,shift);
	$epochs = $self->{epochs} unless defined $epochs;
	$self->{display_scale} = 10 if not defined 	$self->{display_scale};

	&{$self->{train_start}} if exists $self->{train_start};

	$self->prepare_display if not defined $self->{_mw} or ref $self->{_mw} ne 'MainWindow';

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

		&{$self->{epoch_start}} if exists $self->{epoch_start};

		for (0..$#{$self->{input}}){
			my $target = $self->_select_target;
			my $bmu = $self->find_bmu($target);

			$self->_adjust_neighbours_of($bmu,$target);

			if (exists $self->{show_training}){
				if ($self->{show_bmu}){
					$self->plot_map(bmu_x=>$bmu->[1],bmu_y=>$bmu->[2]);
				} else {
					$self->plot_map;
				}
				$self->{_label_txt} = sprintf("Epoch: %04d",$self->{t})."  "
				. "Learning: $self->{l}  "
				. sprintf("BMU: %02d,%02d",$bmu->[1],$bmu->[2])."  "
				.( exists $target->{class}? "Target: [$target->{class}]  " : "")
				;
				$self->{_canvas}->update;
				$self->{_label}->update;
				DoOneEvent(DONT_WAIT);		# be kind and process XEvents if they arise
			}
		}

		$self->_decay_learning_rate;
 		&{$self->{epoch_end}} if exists $self->{epoch_end};
	}

	$self->{_label_txt} = "Did $self->{t} epochs: ";
	$self->{_label_txt} .= "now smoothed." if $self->{smoothing};
	$_->smooth if $self->{smooth};
	$self->plot_map if $self->{MainLoop};
	&{$self->{train_end}} if exists $self->{train_end};
	MainLoop if $self->{MainLoop};

	return 1;
}

=head1 METHOD get_colour_for

This method is intended to be sub-classed.

Currently it only operates on the first three elements
of a weight vector, turning them into RGB values.

It returns the a TK colour for a node at position C<x>,C<y> in the
C<map> paramter.

Accepts: C<x> and C<y> co-ordinates in the map.

=cut

sub get_colour_for { my ($self,$x,$y) = (shift,shift,shift);
	my $_0 = $self->{map}->[$x]->[$y]->{weight}->[0];
	$_0 = $self->{missing_colour} || 0 if $_0 eq $self->{missing_mask};
	my $_1 = $self->{map}->[$x]->[$y]->{weight}->[1];
	$_1 = $self->{missing_colour} || 0 if $_1 eq $self->{missing_mask};
	my $_2 = $self->{map}->[$x]->[$y]->{weight}->[2];
	$_2 = $self->{missing_colour} || 0 if $_2 eq $self->{missing_mask};
	return sprintf("#%02x%02x%02x",
		(int (255 * $_0)),
		(int (255 * $_1)),
		(int (255 * $_2)),
	);
}


=head1 METHOD prepare_display

Depracated: see L<METHOD create_empty_map>.

=cut

sub prepare_display {
	return $_[0]->create_empty_map;
}

=head1 METHOD create_empty_map

Sets up a TK C<MainWindow> and C<Canvas> to
act as an empty map.

=cut

sub create_empty_map { my $self = shift;
	my ($w,$h);
	if ($self->{display} and $self->{display} eq 'hex'){
		$w = ($self->{map_dim_x}+1) * ($self->{display_scale}+2);
		$h = ($self->{map_dim_y}+1) * ($self->{display_scale}+2);
	} else {
		$w = ($self->{map_dim_x}+1) * ($self->{display_scale});
		$h = ($self->{map_dim_y}+1) * ($self->{display_scale});
	}
	$self->{_mw} = MainWindow->new(
		-width	=> $w + 20,
		-height	=> $h + 20,
	);
	$self->{_mw}->fontCreate(qw/TAG -family verdana -size 8 -weight bold/);
	$self->{_mw}->resizable( 0, 0);
    $self->{_quit_flag} = 0;
    $self->{_mw}->protocol('WM_DELETE_WINDOW' => sub {$self->{_quit_flag}=1});
	$self->{_canvas} = $self->{_mw}->Canvas(

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

		-relief       => 'groove',
		-text         => ' ',
		-wraplength   => $w,
		-textvariable => \$self->{_label_txt}
	);
	$self->{_label}->pack(-side=>'top');
	return 1;
}


=head1 METHOD plot_map

Plots the map on the existing canvas. Arguments are supplied
in a hash with the following keys as options:

The values of C<bmu_x> and C<bmu_y> represent The I<x> and I<y>
co-ordinates of unit to highlight using the value in the
C<hicol> to highlight it with colour. If no C<hicolo> is provided,
it default to red.

When called, this method also sets the object field flag C<plotted>:
currently, this prevents C<main_loop> from calling this routine.

See also L<METHOD get_colour_for>.

=cut

sub plot_map { my ($self,$args) = (shift,{@_});
	$self->{plotted} = 1;
	# MW may have been destroyed
	$self->prepare_display if not defined $self->{_mw};
	my $yo = 5+($self->{display_scale}/2);
	for my $x (0..$self->{map_dim_x}){
		for my $y (0..$self->{map_dim_y}){
			my $colour;
			if ($args->{bmu_x} and $args->{bmu_x}==$x and $args->{bmu_y}==$y){
				$colour = $args->{hicol} || 'red';
			} else {
				$colour = $self->get_colour_for ($x,$y);
			}
			if ($self->{display} and $self->{display} eq 'hex'){
				my $xo = 5+($y % 2) * ($self->{display_scale}/2);

				$self->{_canvas}->create(

lib/AI/NeuralNet/Kohonen/Visual.pm  view on Meta::CPAN

						$y*($self->{display_scale})+$self->{display_scale} +1
					],
					-outline	=> "black",
					-fill 		=> $colour,
				);
			}

			# Label
			if ($self->{label_all}){
				my $txt;
				unless ( $txt = $self->{map}->[$x]->[$y]->{class}){
					$txt = "";
				}
				$self->label_map($x,$y,"+$txt");
			}

		}
	}
	if ($self->{label_bmu}){
		my $txt;
		unless ( $txt = $self->{map}->[$args->{bmu_x}]->[$args->{bmu_y}]->{class}){
			$txt = "";
		}
		$self->label_map(
			$args->{bmu_x}, $args->{bmu_y}, "+$txt"
		);
	}

	$self->{_canvas}->update;
	$self->{_label}->update;

	return 1;
}

=head1 METHOD label_map

Put a text label on the map for the node at the I<x,y> co-ordinates
supplied in the first two paramters, using the text supplied in the
third.

Very naive: no attempt to check the text will appear on the map.

=cut

sub label_map { my ($self,$x,$y,$t) = (shift,shift,shift,shift);
	$self->{_canvas}->createText(
		$x*$self->{display_scale}+($self->{display_scale}),
		$y*$self->{display_scale}+($self->{display_scale}),
		-text	=> $t,
		-anchor => 'w',
		-fill 	=> 'white',
		-font	=> 'TAG',
	);
}


=head1 METHOD main_loop

Calls TK's C<MainLoop> to keep a window open until the user closes it.

=cut

sub main_loop { my $self = shift;
	$self->plot_map unless $self->{plotted};
	MainLoop;
}



1;

__END__

=head1 SEE ALSO

t/AI-NeuralNet-Kohonen-Visual.t  view on Meta::CPAN


my $delay = 1;

use_ok( "AI::NeuralNet::Kohonen" => 0.14 );
use_ok( "AI::NeuralNet::Kohonen::Visual" => 0.3);

diag "# Test 1 - basic confirmations that object-properties work correctly\n";

$net = AI::NeuralNet::Kohonen::Visual->new(
	display			=> 'hex',
	map_dim_x		=> 14,
	map_dim_y		=> 10,
	display_scale 	=> 20,
	epochs 			=> 49,
	show_bmu		=> 1,
	targeting		=> 1,
	table			=>
"3
1 0 0 red
0 1 0 yellow
0 0 1 green
0 1 1 cyan

t/AI-NeuralNet-Kohonen-Visual.t  view on Meta::CPAN

diag "Will automatically destroy this window in $delay seconds";
$net->{_mw}->after($delay*1000, sub{ $net->{_mw}->destroy } );

$net->main_loop;
pass;


diag "# Test 2 ... this is *slow*, sorry\n";
$net = AI::NeuralNet::Kohonen::Visual->new(
	display		=> 'hex',
	map_dim	=> 39,
	epochs => 19,
	neighbour_factor => 2,
	targeting	=> 1,
	table=>
"3
1 0 0 red
0 1 0 yellow
0 0 1 blue
0 1 1 cyan
1 1 0 yellow

t/AI-NeuralNet-Kohonen-Visual.t  view on Meta::CPAN

);
isa_ok( $net->{input}, 'ARRAY');
is( $net->{input}->[0]->{values}->[0],1);
is( $net->{input}->[0]->{values}->[1],0);
is( $net->{input}->[0]->{values}->[2],0);
is( $net->{weight_dim}, 2);

ok $net->train;


# Find red and display on the training map
diag "# Best matching unit for the colour blue (&#00F)\n";
my $targets = [[0, 0, 1]];
my $bmu = $net->get_results($targets);
$net->plot_map (bmu_x=>$bmu->[1],bmu_y=>$bmu->[2],hicol=>'white');

# $net->main_loop;

# Create an empty map
# and populate with training data

diag "# Plotting results\n";
foreach my $bmu ($net->get_results){
	$net->label_map(@$bmu->[1],@$bmu->[2],"+".@$bmu->[3]);
}


diag "Will automatically destroy this window in $delay seconds";
$net->{_mw}->after($delay*1000, sub{ $net->{_mw}->destroy } );

$net->plot_map;
$net->main_loop;

diag "# Done\n";

# $net->main_loop;

__END__





( run in 0.335 second using v1.01-cache-2.11-cpan-49f99fa48dc )