Boost-Geometry-Utils

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
src/boost/math/special_functions/expm1.hpp
src/boost/math/special_functions/factorials.hpp
src/boost/math/special_functions/fpclassify.hpp
src/boost/math/special_functions/gamma.hpp
src/boost/math/special_functions/hankel.hpp
src/boost/math/special_functions/hermite.hpp
src/boost/math/special_functions/hypot.hpp
src/boost/math/special_functions/jacobi_elliptic.hpp
src/boost/math/special_functions/laguerre.hpp
src/boost/math/special_functions/lanczos.hpp
src/boost/math/special_functions/legendre.hpp
src/boost/math/special_functions/log1p.hpp
src/boost/math/special_functions/math_fwd.hpp
src/boost/math/special_functions/modf.hpp
src/boost/math/special_functions/next.hpp
src/boost/math/special_functions/owens_t.hpp
src/boost/math/special_functions/pow.hpp
src/boost/math/special_functions/powm1.hpp
src/boost/math/special_functions/round.hpp
src/boost/math/special_functions/sign.hpp
src/boost/math/special_functions/sin_pi.hpp

src/boost/math/special_functions.hpp  view on Meta::CPAN

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <boost/math/special_functions/expint.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/hermite.hpp>
#include <boost/math/special_functions/hypot.hpp>
#include <boost/math/special_functions/jacobi_elliptic.hpp>
#include <boost/math/special_functions/laguerre.hpp>
#include <boost/math/special_functions/lanczos.hpp>
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/special_functions/owens_t.hpp>
#include <boost/math/special_functions/powm1.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/math/special_functions/sinhc.hpp>
#include <boost/math/special_functions/spherical_harmonic.hpp>

src/boost/math/special_functions/legendre.hpp  view on Meta::CPAN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#pragma once
#endif
 
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/tools/config.hpp>
 
namespace boost{
namespace math{
 
// Recurrance relation for legendre P and Q polynomials:
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type
   legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   return ((2 * l + 1) * result_type(x) * result_type(Pl) - l * result_type(Plm1)) / (l + 1);
}
 
namespace detail{
 
// Implement Legendre P and Q polynomials via recurrance:
template <class T, class Policy>
T legendre_imp(unsigned l, T x, const Policy& pol, bool second = false)
{
   static const char* function = "boost::math::legrendre_p<%1%>(unsigned, %1%)";
   // Error handling:
   if((x < -1) || (x > 1))
      return policies::raise_domain_error<T>(
         function,
         "The Legendre Polynomial is defined for"
         " -1 <= x <= 1, but got x = %1%.", x, pol);
 
   T p0, p1;

src/boost/math/special_functions/legendre.hpp  view on Meta::CPAN

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
      p1 = x;
   }
   if(l == 0)
      return p0;
 
   unsigned n = 1;
 
   while(n < l)
   {
      std::swap(p0, p1);
      p1 = boost::math::legendre_next(n, x, p0, p1);
      ++n;
   }
   return p1;
}
 
} // namespace detail
 
template <class T, class Policy>
inline typename tools::promote_args<T>::type
   legendre_p(int l, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   static const char* function = "boost::math::legendre_p<%1%>(unsigned, %1%)";
   if(l < 0)
      return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(-l-1, static_cast<value_type>(x), pol, false), function);
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, false), function);
}
 
template <class T>
inline typename tools::promote_args<T>::type
   legendre_p(int l, T x)
{
   return boost::math::legendre_p(l, x, policies::policy<>());
}
 
template <class T, class Policy>
inline typename tools::promote_args<T>::type
   legendre_q(unsigned l, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, true), "boost::math::legendre_q<%1%>(unsigned, %1%)");
}
 
template <class T>
inline typename tools::promote_args<T>::type
   legendre_q(unsigned l, T x)
{
   return boost::math::legendre_q(l, x, policies::policy<>());
}
 
// Recurrence for associated polynomials:
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type
   legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   return ((2 * l + 1) * result_type(x) * result_type(Pl) - (l + m) * result_type(Plm1)) / (l + 1 - m);
}
 
namespace detail{
// Legendre P associated polynomial:
template <class T, class Policy>
T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol)
{
   // Error handling:
   if((x < -1) || (x > 1))
      return policies::raise_domain_error<T>(
      "boost::math::legendre_p<%1%>(int, int, %1%)",
         "The associated Legendre Polynomial is defined for"
         " -1 <= x <= 1, but got x = %1%.", x, pol);
   // Handle negative arguments first:
   if(l < 0)
      return legendre_p_imp(-l-1, m, x, sin_theta_power, pol);
   if(m < 0)
   {
      int sign = (m&1) ? -1 : 1;
      return sign * boost::math::tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
   }
   // Special cases:
   if(m > l)
      return 0;
   if(m == 0)
      return boost::math::legendre_p(l, x, pol);
 
   T p0 = boost::math::double_factorial<T>(2 * m - 1, pol) * sin_theta_power;
 
   if(m&1)
      p0 *= -1;
   if(m == l)
      return p0;
 
   T p1 = x * (2 * m + 1) * p0;
 
   int n = m + 1;
 
   while(n < l)
   {
      std::swap(p0, p1);
      p1 = boost::math::legendre_next(n, m, x, p0, p1);
      ++n;
   }
   return p1;
}
 
template <class T, class Policy>
inline T legendre_p_imp(int l, int m, T x, const Policy& pol)
{
   BOOST_MATH_STD_USING
   // TODO: we really could use that mythical "pow1p" function here:
   return legendre_p_imp(l, m, x, static_cast<T>(pow(1 - x*x, T(abs(m))/2)), pol);
}
 
}
 
template <class T, class Policy>
inline typename tools::promote_args<T>::type
   legendre_p(int l, int m, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_imp(l, m, static_cast<value_type>(x), pol), "bost::math::legendre_p<%1%>(int, int, %1%)");
}
 
template <class T>
inline typename tools::promote_args<T>::type
   legendre_p(int l, int m, T x)
{
   return boost::math::legendre_p(l, m, x, policies::policy<>());
}
 
} // namespace math
} // namespace boost
 
#endif // BOOST_MATH_SPECIAL_LEGENDRE_HPP

src/boost/math/special_functions/math_fwd.hpp  view on Meta::CPAN

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
typename tools::promote_args<RT>::type erf_inv(RT z, const Policy& pol);
 
template <class RT>// Error function complement inverse.
typename tools::promote_args<RT>::type erfc_inv(RT z);
template <class RT, class Policy>// Error function complement inverse.
typename tools::promote_args<RT>::type erfc_inv(RT z, const Policy& pol);
 
// Polynomials:
template <class T1, class T2, class T3>
typename tools::promote_args<T1, T2, T3>::type
      legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);
 
template <class T>
typename tools::promote_args<T>::type
      legendre_p(int l, T x);
 
template <class T, class Policy>
typename tools::promote_args<T>::type
      legendre_p(int l, T x, const Policy& pol);
 
template <class T>
typename tools::promote_args<T>::type
      legendre_q(unsigned l, T x);
 
template <class T, class Policy>
typename tools::promote_args<T>::type
      legendre_q(unsigned l, T x, const Policy& pol);
 
template <class T1, class T2, class T3>
typename tools::promote_args<T1, T2, T3>::type
      legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);
 
template <class T>
typename tools::promote_args<T>::type
      legendre_p(int l, int m, T x);
 
template <class T, class Policy>
typename tools::promote_args<T>::type
      legendre_p(int l, int m, T x, const Policy& pol);
 
template <class T1, class T2, class T3>
typename tools::promote_args<T1, T2, T3>::type 
      laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);
 
template <class T1, class T2, class T3>
typename tools::promote_args<T1, T2, T3>::type 
   laguerre_next(unsigned n, unsigned l, T1 x, T2 Pl, T3 Plm1);
 
template <class T>

src/boost/math/special_functions/math_fwd.hpp  view on Meta::CPAN

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erfc(RT z){ return ::boost::math::erfc(z, Policy()); }\
\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erf_inv(RT z) { return ::boost::math::erf_inv(z, Policy()); }\
\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erfc_inv(RT z){ return ::boost::math::erfc_inv(z, Policy()); }\
\
   using boost::math::legendre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_p(int l, T x){ return ::boost::math::legendre_p(l, x, Policy()); }\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_q(unsigned l, T x){ return ::boost::math::legendre_q(l, x, Policy()); }\
\
   using ::boost::math::legendre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_p(int l, int m, T x){ return ::boost::math::legendre_p(l, m, x, Policy()); }\
\
   using ::boost::math::laguerre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   laguerre(unsigned n, T x){ return ::boost::math::laguerre(n, x, Policy()); }\
\
   template <class T1, class T2>\
   inline typename boost::math::laguerre_result<T1, T2>::type \
   laguerre(unsigned n, T1 m, T2 x) { return ::boost::math::laguerre(n, m, x, Policy()); }\

src/boost/math/special_functions/spherical_harmonic.hpp  view on Meta::CPAN

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 
#ifndef BOOST_MATH_SPECIAL_SPHERICAL_HARMONIC_HPP
#define BOOST_MATH_SPECIAL_SPHERICAL_HARMONIC_HPP
 
#ifdef _MSC_VER
#pragma once
#endif
 
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/tools/workaround.hpp>
#include <complex>
 
namespace boost{
namespace math{
 
namespace detail{
 
//
// Calculates the prefix term that's common to the real

src/boost/math/special_functions/spherical_harmonic.hpp  view on Meta::CPAN

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
inline T spherical_harmonic_prefix(unsigned n, unsigned m, T theta, const Policy& pol)
{
   BOOST_MATH_STD_USING
 
   if(m > n)
      return 0;
 
   T sin_theta = sin(theta);
   T x = cos(theta);
 
   T leg = detail::legendre_p_imp(n, m, x, static_cast<T>(pow(fabs(sin_theta), T(m))), pol);
    
   T prefix = boost::math::tgamma_delta_ratio(static_cast<T>(n - m + 1), static_cast<T>(2 * m), pol);
   prefix *= (2 * n + 1) / (4 * constants::pi<T>());
   prefix = sqrt(prefix);
   return prefix * leg;
}
//
// Real Part:
//
template <class T, class Policy>



( run in 0.374 second using v1.01-cache-2.11-cpan-eab888a1d7d )