Boost-Geometry-Utils

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

src/boost/math/special_functions/expm1.hpp
src/boost/math/special_functions/factorials.hpp
src/boost/math/special_functions/fpclassify.hpp
src/boost/math/special_functions/gamma.hpp
src/boost/math/special_functions/hankel.hpp
src/boost/math/special_functions/hermite.hpp
src/boost/math/special_functions/hypot.hpp
src/boost/math/special_functions/jacobi_elliptic.hpp
src/boost/math/special_functions/laguerre.hpp
src/boost/math/special_functions/lanczos.hpp
src/boost/math/special_functions/legendre.hpp
src/boost/math/special_functions/log1p.hpp
src/boost/math/special_functions/math_fwd.hpp
src/boost/math/special_functions/modf.hpp
src/boost/math/special_functions/next.hpp
src/boost/math/special_functions/owens_t.hpp
src/boost/math/special_functions/pow.hpp
src/boost/math/special_functions/powm1.hpp
src/boost/math/special_functions/round.hpp
src/boost/math/special_functions/sign.hpp
src/boost/math/special_functions/sin_pi.hpp

src/boost/math/special_functions.hpp  view on Meta::CPAN

#include <boost/math/special_functions/expint.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/hermite.hpp>
#include <boost/math/special_functions/hypot.hpp>
#include <boost/math/special_functions/jacobi_elliptic.hpp>
#include <boost/math/special_functions/laguerre.hpp>
#include <boost/math/special_functions/lanczos.hpp>
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/special_functions/owens_t.hpp>
#include <boost/math/special_functions/powm1.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/math/special_functions/sinhc.hpp>
#include <boost/math/special_functions/spherical_harmonic.hpp>

src/boost/math/special_functions/legendre.hpp  view on Meta::CPAN

#pragma once
#endif

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/tools/config.hpp>

namespace boost{
namespace math{

// Recurrance relation for legendre P and Q polynomials:
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type
   legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   return ((2 * l + 1) * result_type(x) * result_type(Pl) - l * result_type(Plm1)) / (l + 1);
}

namespace detail{

// Implement Legendre P and Q polynomials via recurrance:
template <class T, class Policy>
T legendre_imp(unsigned l, T x, const Policy& pol, bool second = false)
{
   static const char* function = "boost::math::legrendre_p<%1%>(unsigned, %1%)";
   // Error handling:
   if((x < -1) || (x > 1))
      return policies::raise_domain_error<T>(
         function,
         "The Legendre Polynomial is defined for"
         " -1 <= x <= 1, but got x = %1%.", x, pol);

   T p0, p1;

src/boost/math/special_functions/legendre.hpp  view on Meta::CPAN

      p1 = x;
   }
   if(l == 0)
      return p0;

   unsigned n = 1;

   while(n < l)
   {
      std::swap(p0, p1);
      p1 = boost::math::legendre_next(n, x, p0, p1);
      ++n;
   }
   return p1;
}

} // namespace detail

template <class T, class Policy>
inline typename tools::promote_args<T>::type 
   legendre_p(int l, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   static const char* function = "boost::math::legendre_p<%1%>(unsigned, %1%)";
   if(l < 0)
      return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(-l-1, static_cast<value_type>(x), pol, false), function);
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, false), function);
}

template <class T>
inline typename tools::promote_args<T>::type 
   legendre_p(int l, T x)
{
   return boost::math::legendre_p(l, x, policies::policy<>());
}

template <class T, class Policy>
inline typename tools::promote_args<T>::type 
   legendre_q(unsigned l, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, true), "boost::math::legendre_q<%1%>(unsigned, %1%)");
}

template <class T>
inline typename tools::promote_args<T>::type 
   legendre_q(unsigned l, T x)
{
   return boost::math::legendre_q(l, x, policies::policy<>());
}

// Recurrence for associated polynomials:
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type 
   legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   return ((2 * l + 1) * result_type(x) * result_type(Pl) - (l + m) * result_type(Plm1)) / (l + 1 - m);
}

namespace detail{
// Legendre P associated polynomial:
template <class T, class Policy>
T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol)
{
   // Error handling:
   if((x < -1) || (x > 1))
      return policies::raise_domain_error<T>(
      "boost::math::legendre_p<%1%>(int, int, %1%)",
         "The associated Legendre Polynomial is defined for"
         " -1 <= x <= 1, but got x = %1%.", x, pol);
   // Handle negative arguments first:
   if(l < 0)
      return legendre_p_imp(-l-1, m, x, sin_theta_power, pol);
   if(m < 0)
   {
      int sign = (m&1) ? -1 : 1;
      return sign * boost::math::tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
   }
   // Special cases:
   if(m > l)
      return 0;
   if(m == 0)
      return boost::math::legendre_p(l, x, pol);

   T p0 = boost::math::double_factorial<T>(2 * m - 1, pol) * sin_theta_power;

   if(m&1)
      p0 *= -1;
   if(m == l)
      return p0;

   T p1 = x * (2 * m + 1) * p0;

   int n = m + 1;

   while(n < l)
   {
      std::swap(p0, p1);
      p1 = boost::math::legendre_next(n, m, x, p0, p1);
      ++n;
   }
   return p1;
}

template <class T, class Policy>
inline T legendre_p_imp(int l, int m, T x, const Policy& pol)
{
   BOOST_MATH_STD_USING
   // TODO: we really could use that mythical "pow1p" function here:
   return legendre_p_imp(l, m, x, static_cast<T>(pow(1 - x*x, T(abs(m))/2)), pol);
}

}

template <class T, class Policy>
inline typename tools::promote_args<T>::type
   legendre_p(int l, int m, T x, const Policy& pol)
{
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_imp(l, m, static_cast<value_type>(x), pol), "bost::math::legendre_p<%1%>(int, int, %1%)");
}

template <class T>
inline typename tools::promote_args<T>::type
   legendre_p(int l, int m, T x)
{
   return boost::math::legendre_p(l, m, x, policies::policy<>());
}

} // namespace math
} // namespace boost

#endif // BOOST_MATH_SPECIAL_LEGENDRE_HPP



src/boost/math/special_functions/math_fwd.hpp  view on Meta::CPAN

   typename tools::promote_args<RT>::type erf_inv(RT z, const Policy& pol);

   template <class RT>// Error function complement inverse.
   typename tools::promote_args<RT>::type erfc_inv(RT z);
   template <class RT, class Policy>// Error function complement inverse.
   typename tools::promote_args<RT>::type erfc_inv(RT z, const Policy& pol);

   // Polynomials:
   template <class T1, class T2, class T3>
   typename tools::promote_args<T1, T2, T3>::type 
         legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);

   template <class T>
   typename tools::promote_args<T>::type 
         legendre_p(int l, T x);

   template <class T, class Policy>
   typename tools::promote_args<T>::type 
         legendre_p(int l, T x, const Policy& pol);

   template <class T>
   typename tools::promote_args<T>::type 
         legendre_q(unsigned l, T x);

   template <class T, class Policy>
   typename tools::promote_args<T>::type 
         legendre_q(unsigned l, T x, const Policy& pol);

   template <class T1, class T2, class T3>
   typename tools::promote_args<T1, T2, T3>::type 
         legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);

   template <class T>
   typename tools::promote_args<T>::type 
         legendre_p(int l, int m, T x);

   template <class T, class Policy>
   typename tools::promote_args<T>::type 
         legendre_p(int l, int m, T x, const Policy& pol);

   template <class T1, class T2, class T3>
   typename tools::promote_args<T1, T2, T3>::type  
         laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);

   template <class T1, class T2, class T3>
   typename tools::promote_args<T1, T2, T3>::type  
      laguerre_next(unsigned n, unsigned l, T1 x, T2 Pl, T3 Plm1);

   template <class T>

src/boost/math/special_functions/math_fwd.hpp  view on Meta::CPAN

\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erfc(RT z){ return ::boost::math::erfc(z, Policy()); }\
\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erf_inv(RT z) { return ::boost::math::erf_inv(z, Policy()); }\
\
   template <class RT>\
   inline typename boost::math::tools::promote_args<RT>::type erfc_inv(RT z){ return ::boost::math::erfc_inv(z, Policy()); }\
\
   using boost::math::legendre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_p(int l, T x){ return ::boost::math::legendre_p(l, x, Policy()); }\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_q(unsigned l, T x){ return ::boost::math::legendre_q(l, x, Policy()); }\
\
   using ::boost::math::legendre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   legendre_p(int l, int m, T x){ return ::boost::math::legendre_p(l, m, x, Policy()); }\
\
   using ::boost::math::laguerre_next;\
\
   template <class T>\
   inline typename boost::math::tools::promote_args<T>::type \
   laguerre(unsigned n, T x){ return ::boost::math::laguerre(n, x, Policy()); }\
\
   template <class T1, class T2>\
   inline typename boost::math::laguerre_result<T1, T2>::type \
   laguerre(unsigned n, T1 m, T2 x) { return ::boost::math::laguerre(n, m, x, Policy()); }\

src/boost/math/special_functions/spherical_harmonic.hpp  view on Meta::CPAN

//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_SPECIAL_SPHERICAL_HARMONIC_HPP
#define BOOST_MATH_SPECIAL_SPHERICAL_HARMONIC_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/tools/workaround.hpp>
#include <complex>

namespace boost{
namespace math{

namespace detail{

//
// Calculates the prefix term that's common to the real

src/boost/math/special_functions/spherical_harmonic.hpp  view on Meta::CPAN

inline T spherical_harmonic_prefix(unsigned n, unsigned m, T theta, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(m > n)
      return 0;

   T sin_theta = sin(theta);
   T x = cos(theta);

   T leg = detail::legendre_p_imp(n, m, x, static_cast<T>(pow(fabs(sin_theta), T(m))), pol);
   
   T prefix = boost::math::tgamma_delta_ratio(static_cast<T>(n - m + 1), static_cast<T>(2 * m), pol);
   prefix *= (2 * n + 1) / (4 * constants::pi<T>());
   prefix = sqrt(prefix);
   return prefix * leg;
}
//
// Real Part:
//
template <class T, class Policy>



( run in 0.750 second using v1.01-cache-2.11-cpan-49f99fa48dc )