AI-MXNet

 view release on metacpan or  search on metacpan

MANIFEST  view on Meta::CPAN

META.yml
MANIFEST
examples/calculator.pl
examples/plot_network.pl
examples/char_lstm.pl
examples/get_ptb_data.sh
examples/lstm_bucketing.pl
examples/mnist.pl
examples/cudnn_lstm_bucketing.pl
Makefile.PL
Changes
META.json
t/test_recordio.t
t/test_random.t
t/test_init.t
t/test_model_parallel.t

examples/calculator.pl  view on Meta::CPAN

use AI::MXNet ('mx');

## preparing the samples
## to train our network
sub samples {
    my($batch_size, $func) = @_;
    # get samples
    my $n = 16384;
    ## creates a pdl with $n rows and two columns with random
    ## floats in the range between 0 and 1
    my $data = PDL->random(2, $n);
    ## creates the pdl with $n rows and one column with labels
    ## labels are floats that either sum or product, etc of
    ## two random values in each corresponding row of the data pdl
    my $label = $func->($data->slice('0,:'), $data->slice('1,:'));
    # partition into train/eval sets
    my $edge = int($n / 8);
    my $validation_data = $data->slice(":,0:@{[ $edge - 1 ]}");
    my $validation_label = $label->slice(":,0:@{[ $edge - 1 ]}");
    my $train_data = $data->slice(":,$edge:");
    my $train_label = $label->slice(":,$edge:");
    # build iterators around the sets
    return(mx->io->NDArrayIter(
        batch_size => $batch_size,
        data => $train_data,
        label => $train_label,
    ), mx->io->NDArrayIter(
        batch_size => $batch_size,
        data => $validation_data,
        label => $validation_label,
    ));
}

## the network model
sub nn_fc {
    my $data = mx->sym->Variable('data');
    my $ln = mx->sym->exp(mx->sym->FullyConnected(
        data => mx->sym->log($data),
        num_hidden => 1,
    ));
    my $wide = mx->sym->Concat($data, $ln);
    my $fc = mx->sym->FullyConnected(
	$wide,
	num_hidden => 1
    );
    return mx->sym->MAERegressionOutput(data => $fc, name => 'softmax');
}

sub learn_function {
    my(%args) = @_;
    my $func = $args{func};
    my $batch_size = $args{batch_size}//128;
    my($train_iter, $eval_iter) = samples($batch_size, $func);
    my $sym = nn_fc();

    ## call as ./calculator.pl 1 to just print model and exit
    if($ARGV[0]) {
        my @dsz = @{$train_iter->data->[0][1]->shape};
        my @lsz = @{$train_iter->label->[0][1]->shape};
        my $shape = {
            data          => [ $batch_size, splice @dsz,  1 ],
            softmax_label => [ $batch_size, splice @lsz, 1 ],
        };
        print mx->viz->plot_network($sym, shape => $shape)->graph->as_png;
        exit;
    }

    my $model = mx->mod->Module(
        symbol => $sym,
        context => mx->cpu(),
    );
    $model->fit($train_iter,
        eval_data => $eval_iter,
        optimizer => 'adam',
        optimizer_params => {
            learning_rate => $args{lr}//0.01,
            rescale_grad => 1/$batch_size,
            lr_scheduler  => AI::MXNet::FactorScheduler->new(
        	step => 100,
        	factor => 0.99
            )
        },
        eval_metric => 'mse',
        num_epoch => $args{epoch}//25,
    );

    # refit the model for calling on 1 sample at a time
    my $iter = mx->io->NDArrayIter(
        batch_size => 1,
        data => PDL->pdl([[ 0, 0 ]]),
        label => PDL->pdl([[ 0 ]]),
    );
    $model->reshape(
        data_shapes => $iter->provide_data,
        label_shapes => $iter->provide_label,
    );

    # wrap a helper around making predictions
    my ($arg_params) = $model->get_params;
    for my $k (sort keys %$arg_params)
    {
	print "$k -> ". $arg_params->{$k}->aspdl."\n";
    }
    return sub {
        my($n, $m) = @_;
        return $model->predict(mx->io->NDArrayIter(
            batch_size => 1,
            data => PDL->new([[ $n, $m ]]),
        ))->aspdl->list;
    };
}

my $add = learn_function(func => sub {
    my($n, $m) = @_;
    return $n + $m;
});
my $sub = learn_function(func => sub {
    my($n, $m) = @_;

examples/char_lstm.pl  view on Meta::CPAN

    --chkp-prefix    prefix for checkpoint files, default='lstm_'
    --cell-mode      RNN cell mode (LSTM, GRU, RNN, default=LSTM)
    --sample-size    a size of inferred sample text (default=10000) after each epoch
    --chkp-epoch     save checkpoint after this many epoch, default=1 (saving every checkpoint)

=cut

package AI::MXNet::RNN::IO::ASCIIIterator;
use Mouse;
extends AI::MXNet::DataIter;
has 'data'          => (is => 'ro',  isa => 'PDL',   required => 1);
has 'seq_size'      => (is => 'ro',  isa => 'Int',   required => 1);
has '+batch_size'   => (is => 'ro',  isa => 'Int',   required => 1);
has 'data_name'     => (is => 'ro',  isa => 'Str',   default => 'data');
has 'label_name'    => (is => 'ro',  isa => 'Str',   default => 'softmax_label');
has 'dtype'         => (is => 'ro',  isa => 'Dtype', default => 'float32');
has [qw/nd counter seq_counter vocab_size
    data_size provide_data provide_label idx/] => (is => 'rw', init_arg => undef);

sub BUILD
{
    my $self = shift;
    $self->data_size($self->data->nelem);
    my $segments = int(($self->data_size-$self->seq_size)/($self->batch_size*$self->seq_size));
    $self->idx([0..$segments-1]);
    $self->vocab_size($self->data->uniq->shape->at(0));
    $self->counter(0);
    $self->seq_counter(0);
    $self->nd(mx->nd->array($self->data, dtype => $self->dtype));
    my $shape = [$self->batch_size, $self->seq_size];
    $self->provide_data([
        AI::MXNet::DataDesc->new(
            name  => $self->data_name,
            shape => $shape,
            dtype => $self->dtype
        )
    ]);
    $self->provide_label([
        AI::MXNet::DataDesc->new(
            name  => $self->label_name,
            shape => $shape,
            dtype => $self->dtype
        )

examples/cudnn_lstm_bucketing.pl  view on Meta::CPAN

        invalid_label => $invalid_label,
        start_label   => $start_label
    );
    return ($sentences, $vocab);
}

my $buckets = [10, 20, 30, 40, 50, 60];
my $start_label   = 1;
my $invalid_label = 0;

func get_data($layout)
{
    my ($train_sentences, $vocabulary) = tokenize_text(
        './data/ptb.train.txt', start_label => $start_label,
        invalid_label => $invalid_label
    );
    my ($validation_sentences) = tokenize_text(
        './data/ptb.test.txt', vocab => $vocabulary,
        start_label => $start_label, invalid_label => $invalid_label
    );
    my $data_train  = mx->rnn->BucketSentenceIter(
        $train_sentences, $batch_size, buckets => $buckets,
        invalid_label => $invalid_label,
        layout        => $layout
    );
    my $data_val    = mx->rnn->BucketSentenceIter(
        $validation_sentences, $batch_size, buckets => $buckets,
        invalid_label => $invalid_label,
        layout        => $layout
    );
    return ($data_train, $data_val, $vocabulary);
}

my $train = sub
{
    my ($data_train, $data_val, $vocab) = get_data('TN');
    my $cell;
    if($stack_rnn)
    {
        my $stack = mx->rnn->SequentialRNNCell();
        for my $i (0..$num_layers-1)
        {
            my $dropout_rate = 0;
            if($i < $num_layers-1)
            {
                $dropout_rate = $dropout;

examples/get_ptb_data.sh  view on Meta::CPAN

#!/usr/bin/env bash

RNN_DIR=$(cd `dirname $0`; pwd)
DATA_DIR="${RNN_DIR}/data/"

if [[ ! -d "${DATA_DIR}" ]]; then
  echo "${DATA_DIR} doesn't exist, will create one";
  mkdir -p ${DATA_DIR}
fi

wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.train.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.valid.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.test.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/tinyshakespeare/input.txt;

examples/lstm_bucketing.pl  view on Meta::CPAN

    'wd=f'           => \(my $wd           = 0.00001 ),
    'batch-size=i'   => \(my $batch_size   = 32      ),
    'disp-batches=i' => \(my $disp_batches = 50      ),
    'chkp-prefix=s'  => \(my $chkp_prefix  = 'lstm_' ),
    'chkp-epoch=i'   => \(my $chkp_epoch   = 0       ),
    'help'           => sub { HelpMessage(0) },
) or HelpMessage(1);

=head1 NAME

    lstm_bucketing.pl - Example of training LSTM RNN on Penn Tree Bank data using high level RNN interface

=head1 SYNOPSIS

    --num-layers     number of stacked RNN layers, default=2
    --num-hidden     hidden layer size, default=200
    --num-embed      embedding layer size, default=200
    --gpus           list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
                     Increase batch size when using multiple gpus for best performance.
    --kv-store       key-value store type, default='device'
    --num-epochs     max num of epochs, default=25

lib/AI/MXNet.pm  view on Meta::CPAN

__END__

=encoding UTF-8

=head1 NAME

AI::MXNet - Perl interface to MXNet machine learning library

=head1 SYNOPSIS

    ## Convolutional NN for recognizing hand-written digits in MNIST dataset
    ## It's considered "Hello, World" for Neural Networks
    ## For more info about the MNIST problem please refer to http://neuralnetworksanddeeplearning.com/chap1.html

    use strict;
    use warnings;
    use AI::MXNet qw(mx);
    use AI::MXNet::TestUtils qw(GetMNIST_ubyte);
    use Test::More tests => 1;

    # symbol net
    my $batch_size = 100;

    ### model
    my $data = mx->symbol->Variable('data');
    my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 32, kernel => [3,3], stride => [2,2]);
    my $bn1  = mx->symbol->BatchNorm(data => $conv1, name => "bn1");
    my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu");
    my $mp1  = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[2,2], pool_type=>'max');

    my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 32, kernel=>[3,3], stride=>[2,2]);
    my $bn2  = mx->symbol->BatchNorm(data => $conv2, name=>"bn2");
    my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu");
    my $mp2  = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[2,2], pool_type=>'max');


    my $fl   = mx->symbol->Flatten(data => $mp2, name=>"flatten");
    my $fc1  = mx->symbol->FullyConnected(data => $fl,  name=>"fc1", num_hidden=>30);
    my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu");
    my $fc2  = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>10);
    my $softmax = mx->symbol->SoftmaxOutput(data => $fc2, name => 'softmax');

    # check data
    GetMNIST_ubyte();

    my $train_dataiter = mx->io->MNISTIter({
        image=>"data/train-images-idx3-ubyte",
        label=>"data/train-labels-idx1-ubyte",
        data_shape=>[1, 28, 28],
        batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0, seed=>10});
    my $val_dataiter = mx->io->MNISTIter({
        image=>"data/t10k-images-idx3-ubyte",
        label=>"data/t10k-labels-idx1-ubyte",
        data_shape=>[1, 28, 28],
        batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0});

    my $n_epoch = 1;
    my $mod = mx->mod->new(symbol => $softmax);
    $mod->fit(
        $train_dataiter,
        eval_data => $val_dataiter,
        optimizer_params=>{learning_rate=>0.01, momentum=> 0.9},
        num_epoch=>$n_epoch
    );
    my $res = $mod->score($val_dataiter, mx->metric->create('acc'));
    ok($res->{accuracy} > 0.8);

=head1 DESCRIPTION

    Perl interface to MXNet machine learning library.

=head1 BUGS AND INCOMPATIBILITIES

    Parity with Python inteface is mostly achieved, few deprecated
    and not often used features left unported for now.

lib/AI/MXNet/Callback.pm  view on Meta::CPAN

    AI::MXNet::Speedometer - A callback that logs training speed 
=cut

=head1 DESCRIPTION

    Calculate and log training speed periodically.

    Parameters
    ----------
    batch_size: int
        batch_size of data
    frequent: int
        How many batches between calculations.
        Defaults to calculating & logging every 50 batches.
    auto_reset: Bool
        Reset the metric after each log, defaults to true.
=cut

has 'batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'frequent'   => (is => 'ro', isa => 'Int', default  => 50);
has 'init'       => (is => 'rw', isa => 'Int', default  => 0);

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

    $is_train=0: bool, optional
        whether this forward is for evaluation purpose. If True,
        a backward call is expected to follow. Otherwise following
        backward is invalid.

    %kwargs
        Additional specification of input arguments.

    Examples
    --------
        >>> # doing forward by specifying data
        >>> $texec->forward(1, data => $mydata);
        >>> # doing forward by not specifying things, but copy to the executor before hand
        >>> $mydata->copyto($texec->arg_dict->{'data'});
        >>> $texec->forward(1);
        >>> # doing forward by specifying data and get outputs
        >>> my $outputs = $texec->forward(1, data => $mydata);
        >>> print $outputs->[0]->aspdl;
=cut

method forward(Int $is_train=0, %kwargs)
{
    if(%kwargs)
    {
        my $arg_dict = $self->arg_dict;
        while (my ($name, $array) = each %kwargs)
        {

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

        if($begin >= $end)
        {
            confess('Too many slices such that some splits are empty');
        }
        push @slices, [$begin, $end];
    }
    return \@slices;
}

# Load a array ref of arrays into a array ref of arrays specified by slices
func _load_general($data, $targets, $major_axis)
{
    zip(sub {
        my ($d_src, $d_targets, $axis) = @_;
        if(blessed($d_targets) and $d_targets->isa('AI::MXNet::NDarray'))
        {
            $d_src->copyto($d_targets);
        }
        elsif(ref $d_targets eq 'ARRAY' and blessed $d_targets->[0])
        {
            zip(sub {

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    AI::MXNet:Image - Read individual image files and perform augmentations.
=cut

=head2 imdecode

    Decode an image from string. Requires OpenCV to work.

    Parameters
    ----------
    $buf : str, array ref, pdl, ndarray
        Binary image data.
    :$flag : int
        0 for grayscale. 1 for colored.
    :$to_rgb : int
        0 for BGR format (OpenCV default). 1 for RGB format (MXNet default).
    :$out : NDArray
        Output buffer. Do not specify for automatic allocation.
=cut

method imdecode(Str|PDL $buf, Int :$flag=1, Int :$to_rgb=1, Maybe[AI::MXNet::NDArray] :$out=)
{
    if(not ref $buf)
    {
        my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{'uint8'});
        my $len; { use bytes; $len = length $buf; }
        my $pdl = PDL->new_from_specification($pdl_type, $len);
        ${$pdl->get_dataref} = $buf;
        $pdl->upd_data;
        $buf = $pdl;
    }
    if(not (blessed $buf and $buf->isa('AI::MXNet::NDArray')))
    {
        $buf = AI::MXNet::NDArray->array($buf, dtype=>'uint8');
    }
    return AI::MXNet::NDArray->_cvimdecode($buf, { flag => $flag, to_rgb => $to_rgb, ($out ? (out => $out) : ()) });
}

=head2 scale_down

lib/AI/MXNet/KVStore.pm  view on Meta::CPAN


sub DEMOLISH
{
    check_call(AI::MXNetCAPI::KVStoreFree(shift->handle));
}

=head2  init

    Initialize a single or a sequence of key-value pairs into the store.
    For each key, one must init it before push and pull.
    Only worker 0's (rank == 0) data are used.
    This function returns after data have been initialized successfully

    Parameters
    ----------
    key : str or an array ref of str
        The keys.
    value : NDArray or an array ref of NDArray objects
        The values.

    Examples
    --------

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

                confess($msg);
            }
            else
            {
                AI::MXNet::Logging->warning($msg);
            }
        }
    }
}

# Check that input names matches input data descriptors
method _check_names_match(
    ArrayRef[Str]                  $data_names,
    ArrayRef[NameShapeOrDataDesc]  $data_shapes,
    Str                            $name,
    Bool                           $throw
)
{
    return if (not @$data_shapes and @$data_names == 1 and  $data_names->[0] eq 'softmax_label');
    my @actual = map { @{$_}[0] } @{ $data_shapes };
    if("@$data_names" ne "@actual")
    {
        my $msg = sprintf(
            "Data provided by %s_shapes don't match names specified by %s_names (%s vs. %s)",
            $name, $name, "@$data_shapes", "@$data_names"
        );
        if($throw)
        {
            confess($msg);
        }
        else
        {
            AI::MXNet::Logging->warning($msg);
        }
    }
}

method _parse_data_desc(
    ArrayRef[Str]                                  $data_names,
    Maybe[ArrayRef[Str]]                           $label_names,
    ArrayRef[NameShapeOrDataDesc]                  $data_shapes,
    Maybe[ArrayRef[NameShapeOrDataDesc]]           $label_shapes
)
{
    $data_shapes = [map { blessed $_ ? $_ : AI::MXNet::DataDesc->new(@$_) } @$data_shapes];
    $self->_check_names_match($data_names, $data_shapes, 'data', 1);
    if($label_shapes)
    {
        $label_shapes = [map { blessed $_ ? $_ : AI::MXNet::DataDesc->new(@$_) } @$label_shapes];
        $self->_check_names_match($label_names, $label_shapes, 'label', 0);
    }
    else
    {
        $self->_check_names_match($label_names, [], 'label', 0);
    }
    return ($data_shapes, $label_shapes);
}

=head1 DESCRIPTION

    The base class of a modules. A module represents a computation component. The design
    purpose of a module is that it abstract a computation "machine", that one can run forward,
    backward, update parameters, etc. We aim to make the APIs easy to use, especially in the
    case when we need to use imperative API to work with multiple modules (e.g. stochastic
    depth network).

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

    Str                                                  :$input_prefix='',
    Str                                                  :$layout='NTC',
    Maybe[Bool]                                          :$merge_outputs=
)
{
    $self->reset;
    my $axis = index($layout, 'T');
    if(not defined $inputs)
    {
        $inputs = [
            map { AI::MXNet::Symbol->Variable("${input_prefix}t${_}_data") } (0..$length-1)
        ];
    }
    elsif(blessed($inputs))
    {
        assert(
            (@{ $inputs->list_outputs() } == 1),
            "unroll doesn't allow grouped symbol as input. Please "
            ."convert to list first or let unroll handle slicing"
        );
        $inputs = AI::MXNet::Symbol->SliceChannel(

lib/AI/MXNet/RecordIO.pm  view on Meta::CPAN

package AI::MXNet::RecordIO;
use strict;
use warnings;
use AI::MXNet::Function::Parameters;
use AI::MXNet::Types;
use AI::MXNet::Base;
use Mouse;

=head1 NAME

    AI::MXNet::Function::Parameters - Read/write RecordIO format data
=cut

=head2 new

    Parameters
    ----------
    uri : Str
        uri path to recordIO file.
    flag: Str
        "r" for reading or "w" writing.

lib/AI/MXNet/Symbol.pm  view on Meta::CPAN

            The order is in the same order as list_outputs()
        aux_types : array ref of Dtype or undef
            List of types of outputs.
            The order is in the same order as list_auxiliary()
=cut


method infer_type(Str|Undef @args)
{
    my ($positional_arguments, $kwargs, $kwargs_order) = _parse_arguments("Dtype", @args); 
    my $sdata = [];
    my $keys  = [];
    if(@$positional_arguments)
    {
        @{ $sdata } = map { defined($_) ? DTYPE_STR_TO_MX->{ $_ } : -1 } @{ $positional_arguments };
    }
    else
    {
        @{ $keys }  = @{ $kwargs_order };
        @{ $sdata } = map { DTYPE_STR_TO_MX->{ $_ } } @{ $kwargs }{ @{ $kwargs_order } };
    }
    my ($arg_type, $out_type, $aux_type, $complete) = check_call(AI::MXNetCAPI::SymbolInferType(
            $self->handle,
            scalar(@{ $sdata }),
            $keys,
            $sdata
        )
    );
    if($complete)
    {
        return (
            [ map { DTYPE_MX_TO_STR->{ $_ } } @{ $arg_type }],
            [ map { DTYPE_MX_TO_STR->{ $_ } } @{ $out_type }],
            [ map { DTYPE_MX_TO_STR->{ $_ } } @{ $aux_type }]
        );
    }

t/test_conv.t  view on Meta::CPAN

use AI::MXNet::TestUtils qw(GetMNIST_ubyte);
use Test::More tests => 1;

## speed up the tests when gpu present
my $gpu_present = (`perl -e 'use AI::MXNet qw(mx); print mx->nd->ones([1], ctx => mx->gpu(0))->asscalar' 2>/dev/null` eq '1');

# symbol net
my $batch_size = 100;

### model
my $data = mx->symbol->Variable('data');
my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 32, kernel => [3,3], stride => [2,2]);
my $bn1  = mx->symbol->BatchNorm(data => $conv1, name => "bn1");
my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu");
my $mp1  = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[2,2], pool_type=>'max');

my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 32, kernel=>[3,3], stride=>[2,2]);
my $bn2  = mx->symbol->BatchNorm(data => $conv2, name=>"bn2");
my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu");
my $mp2  = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[2,2], pool_type=>'max');


my $fl   = mx->symbol->Flatten(data => $mp2, name=>"flatten");
my $fc1  = mx->symbol->FullyConnected(data => $fl,  name=>"fc1", num_hidden=>30);
my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu");
my $fc2  = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>10);
my $softmax = mx->symbol->SoftmaxOutput(data => $fc2, name => 'softmax');

# check data
GetMNIST_ubyte();

my $train_dataiter = mx->io->MNISTIter({
        image=>"data/train-images-idx3-ubyte",
        label=>"data/train-labels-idx1-ubyte",
        data_shape=>[1, 28, 28],
        batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0, seed=>10});
my $val_dataiter = mx->io->MNISTIter({
        image=>"data/t10k-images-idx3-ubyte",
        label=>"data/t10k-labels-idx1-ubyte",
        data_shape=>[1, 28, 28],
        batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0});

my $n_epoch = 1;
my $mod = mx->mod->new(symbol => $softmax, ($gpu_present ? (context => mx->gpu(0)) : ()));
$mod->fit(
    $train_dataiter,
    eval_data => $val_dataiter,
    optimizer_params=>{learning_rate=>0.01, momentum=> 0.9},
    num_epoch=>$n_epoch
);
my $res = $mod->score($val_dataiter, mx->metric->create('acc'));
ok($res->{accuracy} > 0.8);

t/test_infer_shape.t  view on Meta::CPAN

    {
        is_deeply($arg_shape_dict{$k}, $v);
    }
}

sub test_mlp2_infer_shape
{
    # Build MLP
    my $out = mlp2();
    # infer shape
    my $data_shape = [100, 100];
    my($arg_shapes, $out_shapes, $aux_shapes) = $out->infer_shape(data=>$data_shape);
    ok(@$out_shapes == 1);
    is_deeply($out_shapes->[0], [100, 10]);
    my %true_shapes = (
        fc2_bias   => [10],
        fc2_weight => [10, 1000],
        fc1_bias   => [1000],
        fc1_weight => [1000,100]
    );
    _test_shapes($out, $arg_shapes, %true_shapes);
}

sub test_mlp2_infer_error
{
    # Test shape inconsistent case
    my $out = mlp2();
    my $weight_shape = [1, 100];
    my $data_shape   = [100, 100];
    eval { $out->infer_shape(data=>$data_shape, fc1_weight=>$weight_shape) };
    like($@, qr/Shape inconsistent/);
}

sub test_backward_infer
{
    my $w = mx->sym->Variable("weight");
    my $wshift = mx->sym->Variable("wshift", shape=>[1]);
    my $data = mx->sym->Variable("data");
    # broadcast add here, not being able to deduce shape correctly
    my $wt = mx->sym->broadcast_add($w, $wshift);
    # shape constraint, this is what enables backward shape inference
    $wt = mx->sym->_identity_with_attr_like_rhs($wt, $w);
    my $net = mx->sym->FullyConnected(data=>$data, weight=>$wt, num_hidden=>11, no_bias=>1);
    my $data_shape = [7, 100];
    my ($arg_shapes, $out_shapes, $aux_shapes) = $net->infer_shape(data=>$data_shape);
    _test_shapes($net, $arg_shapes, weight=>[11,100]);
}

sub test_incomplete_infer_elewise
{
    my $a = mx->sym->Variable('a', shape=>[0, 10]);
    my $b = mx->sym->Variable('b', shape=>[12, 0]);
    my $c = $a + $b;
    my ($arg_shapes) = $c->infer_shape();
    _test_shapes($c, $arg_shapes, a=>[12,10], b=>[12,10]);
}

sub test_incomplete_infer_mlp
{
    my $a = mx->sym->Variable('a', shape=>[0, 10]);
    my $b = mx->sym->FullyConnected(data=>$a, num_hidden=>21);
    my $c = mx->sym->Variable('c', shape=>[5, 0]);
    my $d = $b + $c;
    my ($arg_shapes) = $d->infer_shape();
    _test_shapes($d, $arg_shapes, a=>[5,10], c=>[5,21]);
}

sub test_incomplete_infer_slicechannel
{
    my $a = mx->sym->Variable('a', shape=>[0, 10]);
    my $b = mx->sym->SliceChannel(data=>$a, num_outputs=>10, axis=>1, squeeze_axis=>1);
    my $c = mx->sym->Variable('c', shape=>[5]);
    my $d = @{$b}[1] + $c;
    my ($arg_shapes) = $d->infer_shape();
    _test_shapes($d, $arg_shapes, a=>[5,10]);

    $a = mx->sym->Variable('a', shape=>[0, 15, 0]);
    $b = mx->sym->SliceChannel(data=>$a, num_outputs=>3, squeeze_axis=>0);
    $c = mx->sym->Variable('c', shape=>[3, 5, 2]);
    $d = @{$b}[1] + $c;
    ($arg_shapes) = $d->infer_shape();
    _test_shapes($d, $arg_shapes, a=>[3,15,2]);
}

sub test_incomplete_infer_convolution
{
    my $a = mx->sym->Variable('a', shape=>[0, 10, 0, 0]);
    my $b = mx->sym->Convolution(data=>$a, num_filter=>21, kernel=>[3, 3], dilate=>[1, 1], pad=>[1, 1]);
    my $c = mx->sym->Variable('c', shape=>[5, 21, 32, 32]);
    my $d = $b + $c;
    my ($arg_shapes) = $d->infer_shape();
    _test_shapes($d, $arg_shapes, a=>[5, 10, 32, 32]);
}

sub test_incomplete_infer_concat
{
    my $a = mx->sym->Variable('a', shape=>[0, 10]);
    my $b = mx->sym->Variable('b', shape=>[0, 5]);

t/test_init.t  view on Meta::CPAN

use strict;
use warnings;
use Test::More tests => 4;
use AI::MXNet qw(mx);

sub test_default_init
{
    my $data = mx->sym->Variable('data');
    my $sym  = mx->sym->LeakyReLU(data => $data, act_type => 'prelu');
    my $mod  = mx->mod->Module($sym);
    $mod->bind(data_shapes=>[['data', [10,10]]]);
    $mod->init_params;
    ok((((values %{ ($mod->get_params)[0] }))[0]->aspdl == 0.25)->all);
}

sub test_variable_init
{
    my $data  = mx->sym->Variable('data');
    my $gamma = mx->sym->Variable('gamma', init => mx->init->One());
    my $sym   = mx->sym->LeakyReLU(data => $data, gamma => $gamma, act_type => 'prelu');
    my $mod   = mx->mod->Module($sym);
    $mod->bind(data_shapes=>[['data', [10,10]]]);
    $mod->init_params();
    ok((((values %{ ($mod->get_params)[0] }))[0]->aspdl == 1)->all);
}

sub test_aux_init
{
    my $data = mx->sym->Variable('data');
    my $sym  = mx->sym->BatchNorm(data => $data, name => 'bn');
    my $mod  = mx->mod->Module($sym);
    $mod->bind(data_shapes=>[['data', [10, 10, 3, 3]]]);
    $mod->init_params();
    ok((($mod->get_params)[1]->{bn_moving_var}->aspdl == 1)->all);
    ok((($mod->get_params)[1]->{bn_moving_mean}->aspdl == 0)->all);
}

test_default_init();
test_variable_init();
test_aux_init();

t/test_io.t  view on Meta::CPAN

use AI::MXNet::TestUtils qw(same reldiff GetMNIST_ubyte GetCifar10);
use PDL;
use PDL::Types;
use PDL::NiceSlice;
$|++;


sub test_Cifar10Rec()
{
    GetCifar10();
    my $dataiter = mx->io->ImageRecordIter({
            path_imgrec => "data/cifar/train.rec",
            mean_img => "data/cifar/cifar10_mean.bin",
            rand_crop => 0,
            and_mirror => 0,
            shuffle => 0,
            data_shape => [3,28,28],
            batch_size => 100,
            preprocess_threads => 4,
            prefetch_buffer => 1
    });
    my @labelcount;
    my $batchcount = 0;
    while(my $batch = <$dataiter>)
    {
        my $nplabel = $batch->label->[0];
        for my $i (0..$nplabel->shape->[0]-1)
        {
            $labelcount[int($nplabel->at($i)->asscalar)] += 1;
        }
    }
    for my $i (0..9)
    {
        ok($labelcount[$i] == 5000);
    }
}

sub test_NDArrayIter()
{
    my $datas  = ones(PDL::Type->new(6), 2, 2, 1000);
    my $labels = ones(PDL::Type->new(6), 1, 1000);
    for my $i (0..999)
    {
        $datas(:,:,$i) .= $i / 100;
        $labels(:,$i) .= $i / 100;
    }
    my $dataiter = mx->io->NDArrayIter(
        data => $datas,
        label => $labels,
        batch_size => 128,
        shuffle => 1,
        last_batch_handle => 'pad'
    );
    my $batchidx = 0;
    while(<$dataiter>)
    {
        $batchidx += 1;
    }
    is($batchidx, 8);
    $dataiter = mx->io->NDArrayIter(
        data => $datas,
        label => $labels,
        batch_size => 128,
        shuffle => 0,
        last_batch_handle => 'pad'
    );
    $batchidx = 0;
    my @labelcount;
    my $i = 0;
    for my $batch (@{ $dataiter })
    {
        my $label = $batch->label->[0];
        my $flabel = $label->aspdl->flat;
        ok($batch->data->[0]->aspdl->slice(0,0,'X')->flat->at(0) == $flabel->at(0));
        for my $i (0..$label->shape->[0]-1)
        {
            $labelcount[$flabel->at($i)] += 1;
        }
    }
    for my $i (0..9)
    {
        if($i == 0)
        {
            ok($labelcount[$i] == 124);

 view all matches for this distribution
 view release on metacpan -  search on metacpan

( run in 0.865 second using v1.00-cache-2.02-grep-82fe00e-cpan-4673cadbf75 )