AI-MXNet
view release on metacpan or search on metacpan
examples/char_lstm.pl view on Meta::CPAN
char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
with optional inferred sampling (RNN generates Shakespeare like text)
=head1 SYNOPSIS
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=256
--num-embed embed size, default=10
--num-seq sequence size, default=60
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--bidirectional use bidirectional cell, default false (0)
--disp-batches show progress for every n batches, default=50
--chkp-prefix prefix for checkpoint files, default='lstm_'
examples/cudnn_lstm_bucketing.pl view on Meta::CPAN
char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
=head1 SYNOPSIS
--test Whether to test or train (default 0)
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=200
--num-seq sequence size, default=32
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--disp-batches show progress for every n batches, default=50
--model-prefix prefix for checkpoint files for loading/saving, default='lstm_'
--load-epoch load from epoch
examples/lstm_bucketing.pl view on Meta::CPAN
=head1 NAME
lstm_bucketing.pl - Example of training LSTM RNN on Penn Tree Bank data using high level RNN interface
=head1 SYNOPSIS
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=200
--num-embed embedding layer size, default=200
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='sgd'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--disp-batches show progress for every n batches, default=50
--chkp-prefix prefix for checkpoint files, default='lstm_'
--chkp-epoch save checkpoint after this many epoch, default=0 (saving checkpoints is disabled)
( run in 0.341 second using v1.01-cache-2.11-cpan-4e96b696675 )