Encode-Guess-Educated
view release on metacpan or search on metacpan
t/data/cp1252/10329150.cp1252 view on Meta::CPAN
Crystal structure of cyanovirin-N, a potent HIV-inactivating protein,
shows unexpected domain swapping [73]^1
Fan Yang [74]^1, Carole A. Bewley [75]^2, John M. Louis [76]^2, Kirk R.
Gustafson [77]^3, Michael R. Boyd [78]^3, Angela M. Gronenborn [79]^2,
G. Marius Clore [80]^2 and Alexander Wlodawer [81]^1^,
[82]^Corresponding Author Contact Information ^, [83]^E-mail The
Corresponding Author
^1 Macromolecular Structure Laboratory, ABL-Basic Research Program,
NCI-Frederick Cancer Research and Development Center, Frederick, MD
21702-1201, USA
^2 Laboratory of Chemical Physics, National Institute of Diabetes and
Digestive and Kidney Diseases, National Institutes of Health, Bethesda
MD 20892-0520, USA
^3 Laboratory of Drug Discovery Research and Development DTP,
NCI-Frederick Cancer Research and Development Center, Frederick, MD
21702-1201, USA
t/data/cp1252/10677497.cp1252 view on Meta::CPAN
21. [215]↵
1. Isaacson R A ,
2. Lendzian F ,
3. Abresch E C ,
4. Lubitz W ,
5. Feher G
(1995) Biophys J 69:311322, pmid:8527644.
[216]Abstract/FREE Full Text
22. [217]↵
1. McPherson A
(1999) Crystallization of Biological Macromolecules (Cold Spring
Harbor Lab. Press, Plainview, NY).
23. [218]↵
1. Allen J P
(1994) Proteins Struct Funct Genet 20:283286, pmid:7892177.
[219]CrossRef[220]Medline
24. [221]↵
1. Rodgers D W
(1997) Methods Enzymol 276:183203.
25. [222]↵
1. Leslie A G W
t/data/demos/14751857.cp1252 view on Meta::CPAN
View larger version (20K): [in this window] [in a new window] Fig. 7. N -acetyl-l-cysteine (NAC) in vivo alleviates RBC deformability decrease in septic G-6-PDH-deficient animals. Sham-operated or septic animals were treated by subcutane...
DISCUSSION TOP ABSTRACT MATERIALS AND METHODS RESULTS DISCUSSION GRANTS REFERENCES This study demonstrates for the first time that G-6-PDH deficiency exacerbates the magnitude of decreased RBC deformability after pol...
It is well known that the life span of circulating erythrocytes is 60 days (half of normal) in the class III human deficiencies, even in otherwise healthy individuals ( 34 ). In mice, the life span of circulating erythrocytes is 40 days, and it is ...
The more pronounced decrease in erythrocyte deformability in septic deficient vs. WT animals was readily detectible in whole blood ( Fig. 3 ) as well as after comparing erythrocyte subpopulations ( Fig. 4 H ). However, the differences in decreased ...
Elevated membrane abundance of band 3 tetramers is accompanied by increased associations between band 3 and the cytoskeleton. Elevated band 3 association with the cytoskeleton has been shown to parallel the decrease in RBC deformability ( 21, 39 ) ...
The role of oxidative stress in causing decreased RBC deformability during the physiological aging process of erythrocytes is well documented ( 5, 13 ). In fact, during the normal process of oxygen exchange, erythrocytes are exposed to oxidative st...
The notion that oxidative stress is greater in G-6-PDH-deficient animals is further supported by our findings that NAC alleviated the decrease in erythrocyte deformability in septic deficient animals. However, this observation must be interpreted w...
It is evident from our findings that polymicrobial sepsis resulted in a similar decrease in the number of circulating neutrophils, lymphocytes, and platelets in deficient and WT animals at 24 h after CLP, although the G-6-PDH-deficient animals deve...
Infection-induced anemia in critically ill patients is a common occurrence with important clinical implications ( 37, 45, 48, 50 ). In previous studies using the CLP septic model, anemia was observed in BALB/c mice ( 20 ) and young (45 wk old) C57...
Previous investigations on severely injured G-6-PDH-deficient trauma patients indicated that these patients had an increased incidence of sepsis, a longer duration of the systemic inflammatory response syndrome, augmented monocyte activation, blunt...
The role of G-6-PDH deficiency in the protection against malaria is well accepted; however, the mechanism of protection remains only partially elucidated ( 10, 12, 42 ). Our current observations may have potential implications in this context as we...
t/data/good/10398587.utf8 view on Meta::CPAN
[141]Bhargava and Leonard 1995. H.N. Bhargava and P.A. Leonard,
Triclosan: applications and safety. Am. J. Infect. Control 24 (1995),
pp. 209â218.
[142]Brunger 1992. A.T. Brünger. X-PLOR version 3.1 - A System for
X-ray Crystallography and NMR, Yale University Press, New Haven, CT
(1992).
[143]Christopher 1998. J.A. Christopher. SPOCK: The Structural
Properties Observation and Calculation Kit (Program Manual) The Center
for Macromolecular Design, Texas A&M University, Texas, USA, College
Station (1998).
[144]Heath et al 1998. R.J. Heath, Y.-T. Yu, M.A. Shapiro, E. Olson and
C.O. Rock, Broad spectrum antimicrobial biocides target the FabI
component of fatty acid synthesis. J. Biol. Chem. 273 (1998), pp.
30316â30320. [145]Full Text via CrossRef | [146]View Record in Scopus |
[147]Cited By in Scopus (175)
[148]Kraulis 1991. P.J. Kraulis, MOLSCRIPT - a program to produce both
detailed and schematic plots of protein structures. J. Appl.
t/data/good/10737790.utf8 view on Meta::CPAN
[184]Web of Science
21. [185]âµ
1. Blessing R H
(1997) J Appl Crystallogr 30:421â426.
[186]CrossRef
22. [187]âµ
1. Blessing R H ,
2. Guo D Y ,
3. Langs D A
1. Fortier S
(1998) in Direct Methods for Solving Macromolecular Structures,
NATO ASI Series Volume, Series C: Mathematical and Physical
Sciences, ed Fortier S (Kluwer, Dordrecht, The Netherlands), 507,
pp 47â71.
23. [188]âµ
1. Brünger A T
(1992) Nature (London) 355:472â474.
[189]CrossRef
24. [190]âµ
1. Hansen N K ,
2. Coppens P
t/data/good/11118459.utf8 view on Meta::CPAN
1. Laskowski R.,
2. MacArthur M.,
3. Moss D.,
4. Thornton J.
(1993) J. Appl. Crystallogr. 26:91â97.
19. [146]âµ
1. Barton G. J.
(1993) Protein Eng. 6:37â40.
20. [147]âµ
1. Christopher J. A.
(1998) SPOCK . (The Center for Macromolecular Design, Texas A&M
University, College Station, TX).
21. [148]âµ
1. Merritt E. A.,
2. Murphy M. E. P.
(1994) Acta Crystallogr. Sect. D Biol. Crystallogr. 50:869â873.
22. [149]âµ
1. Sheu K. F.,
2. Frey P. A.
(1978) J. Biol. Chem. 253:3378â3780.
23. [150]âµ
t/data/good/11278591.utf8 view on Meta::CPAN
14. Warren G. L.
(1998) Acta Crystallogr. Sect. D Biol. Crystallogr. 54:905â921.
25. [181]âµ
1. Laskowski R.,
2. MacArthur M.,
3. Moss D.,
4. Thornton J.
(1993) J. Appl. Crystallogr. 26:91â97.
26. [182]âµ
1. Christopher J. A.
(1998) SPOCK (The Center for Macromolecular Design, Texas A&M
University, College Station, TX).
27. [183]âµ
1. Merritt E. A.,
2. Murphy M. E. P.
(1994) Acta Crystallogr. Sect. D Biol. Crystallogr. 50:869â873.
28. [184]âµ
1. Barton G. J.
(1993) Protein Eng. 6:37â40.
29. [185]âµ
1. Schlunegger M. P.,
t/data/good/11493601.utf8 view on Meta::CPAN
1. [16]Gurvan Michel[17]â¡[18]§,
2. [19]Laurent Chantalat[20]â¡,
3. [21]Eric Fanchon[22]â¡,
4. [23]Bernard Henrissat[24]¶,
5. [25]Bernard Kloareg[26]§ and
6. [27]Otto Dideberg[28]â¡[29]â
1.
From the ^â¡Laboratoire de Cristallographie Macromoléculaire, Institut
de Biologie Structurale Jean-Pierre Ebel, CNRS/Commissariat Ã
l'Energie Atomique, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1,
France, the ^§Station Biologique de Roscoff, UMR 1931 (CNRS and
Laboratoires Goëmar), Place Georges Teissier, BP 74, 29682 Roscoff
Cedex, France, and the ^¶Architecture et Fonction des Macromolécules
Biologiques, UMR 6098 (CNRS, Universités d'Aix-Marseille I et II), 31
Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
[30]Next Section
§2§ Abstract §2§
Carrageenans are gel-forming hydrocolloids extracted from the cell
walls of marine red algae. They consist ofd-galactose residues bound by
t/data/good/11493601.utf8 view on Meta::CPAN
4. [163]âµ
1. Morris E. R.,
2. Rees D. A.,
3. Robinson G.
(1980) J. Mol. Biol. 138:349â362.
[164]CrossRef[165]Medline[166]Web of Science
5. [167]âµ
1. Viebke C.,
2. Piculell L.,
3. Nilsson S.
(1994) Macromolecules 27:4160â4166.
[168]CrossRef
6. [169]âµ
1. Nishinari K.,
2. Doi E.
1. Piculell L.,
2. Svante N.,
3. Viebke C.,
4. Zhang W.
(1994) in Food Hydrocolloids: Structures, Properties and Functions,
eds Nishinari K., Doi E. (Plenum Press, New York), pp 35â44.
t/data/macroman/11042188.macroman view on Meta::CPAN
From the ^tOaSchool of Biosciences, Cardiff University, P. O. Box
911, Cardiff CF10 3US, Wales, United Kingdom, the^tOcDepartment of
Medicine, University of Wales College of Medicine, Cardiff CF14 4XN,
Wales, United Kingdom, ^tOdF. Hoffmann La Roche AG, CH-4070 Basel,
Switzerland, the ^tOeDepartment of Biochemistry & Molecular Biology,
University of Florida College of Medicine, Gainesville, Florida
32610, the ^tOfDepartment of Yeast Genetics, Carlsberg Laboratory,
DK-2500, Copenhagen Valby, Denmark, the^tOgProtein Structure Section,
Macromolecular Crystallography Laboratory, National Cancer Institute,
Frederick, Maryland 21702, the^tOhIntramural Research Support
Program, SAIC Frederick, National Cancer Institute, Frederick,
Maryland 21702, and the ^iProgram Core, DBS, National Cancer
Institute, Frederick, Maryland 21702
[41]Next Section
¤2¤ Abstract ¤2¤
( run in 0.650 second using v1.01-cache-2.11-cpan-e5176c747c2 )