view release on metacpan or search on metacpan
Revision history for Perl extension AI::MXNet
1.0102 Sun Aug 6 16:55:08 PDT 2017
- bugfixes in Image.pm, updated tests, added PearsonCorrelation metric, added Convolutional RNN modules.
1.0101 Sun Jul 2 17:16:01 PDT 2017
- reworked CachedOp, two new optimizers, auto module reshape, using strings to index the kvstore.
1.01 Sat Jun 10 23:57:27 PDT 2017
- sync with python.
0.9507 Thu May 11 17:04:44 PDT 2017
- added AutoGrad, bugfixes.
0.9506 Sat Apr 29 20:26:50 PDT 2017
- Ftrl optimizer, new tests, bugfixes.
0.9505 Sun Apr 23 21:26:04 PDT 2017
- Perplexity bugfix, two new examples.
0.9504 Wed Apr 19 18:59:45 PDT 2017
- LR Scheduler bugfix.
0.9503 Wed Apr 19 13:33:57 PDT 2017
- added an example of generation of inferred text via pre-trained RNN.
- bugfixes/tests.
0.9502 Sat Apr 15 17:18:21 PDT 2017
- optimizations/bugfixes.
0.9501 Sat Apr 8 13:01:00 PDT 2017
- ZoneoutCell, nd inferred reshape and moveaxis, cosmetic changes to Image iter,
pod reworked to be readable via metacpan.
0.95 Sun Mar 26 17:42:02 PDT 2017
- docs, bugfixes, tests in order to be visible on http://mxnet.io
0.03 Tue Feb 14 07:28:11 PST 2017
- sync up with current state of the Python inteface.
- high level RNN support.
0.02 Tue Feb 14 07:28:11 PST 2017
- prepared for inclusion to the mxnet code repository.
{
"abstract" : "Perl interface to MXNet machine learning library",
"author" : [
"Sergey Kolychev <sergeykolychev.github@gmail.com>"
],
"dynamic_config" : 0,
"generated_by" : "ExtUtils::MakeMaker version 7.24, CPAN::Meta::Converter version 2.143240",
"license" : [
"apache_2_0"
],
"meta-spec" : {
"url" : "http://search.cpan.org/perldoc?CPAN::Meta::Spec",
"version" : "2"
},
"name" : "AI-MXNet",
"no_index" : {
"directory" : [
"t",
"inc"
]
},
"prereqs" : {
"build" : {
"requires" : {}
},
"configure" : {
"requires" : {
"ExtUtils::MakeMaker" : "6.30"
}
},
"runtime" : {
"requires" : {
"AI::MXNetCAPI" : "1.0102",
"AI::NNVMCAPI" : "1.01",
"Function::Parameters" : "1.0705",
"GraphViz" : "2.14",
"Mouse" : "v2.1.0",
"PDL" : "2.007"
}
},
"test" : {
"requires" : {}
}
},
"release_status" : "stable",
"version" : "1.0102"
}
---
abstract: 'Perl interface to MXNet machine learning library'
author:
- 'Sergey Kolychev <sergeykolychev.github@gmail.com>'
build_requires: {}
configure_requires:
ExtUtils::MakeMaker: '6.30'
dynamic_config: 0
generated_by: 'ExtUtils::MakeMaker version 7.24, CPAN::Meta::Converter version 2.143240'
license: apache
meta-spec:
url: http://module-build.sourceforge.net/META-spec-v1.4.html
version: '1.4'
name: AI-MXNet
no_index:
directory:
- t
- inc
requires:
AI::MXNetCAPI: '1.0102'
AI::NNVMCAPI: '1.01'
Function::Parameters: '1.0705'
GraphViz: '2.14'
Mouse: v2.1.0
PDL: '2.007'
version: '1.0102'
Makefile.PL view on Meta::CPAN
use strict;
use warnings;
use 5.014000;
use ExtUtils::MakeMaker 6.30;
my %WriteMakefileArgs = (
"ABSTRACT" => "Perl interface to MXNet machine learning library",
"AUTHOR" => "Sergey Kolychev <sergeykolychev.github\@gmail.com>",
"BUILD_REQUIRES" => {},
"CONFIGURE_REQUIRES" => {
"ExtUtils::MakeMaker" => "6.30"
},
"DISTNAME" => "AI-MXNet",
"EXE_FILES" => [],
"LICENSE" => "apache_2_0",
"NAME" => "AI::MXNet",
"PREREQ_PM" => {
"AI::MXNetCAPI" => "1.0102",
"AI::NNVMCAPI" => "1.01",
"Function::Parameters" => "1.0705",
"Mouse" => "v2.1.0",
"PDL" => "2.007",
"GraphViz" => "2.14"
},
"TEST_REQUIRES" => {},
"VERSION" => "1.0101",
"test" => {
"TESTS" => "t/*.t"
}
);
my %FallbackPrereqs = (
"AI::MXNetCAPI" => "1.0102",
"AI::NNVMCAPI" => "1.01",
"Function::Parameters" => "1.0705",
"Mouse" => "v2.1.0",
"PDL" => "2.007",
"GraphViz" => "2.14"
);
unless ( eval { ExtUtils::MakeMaker->VERSION(6.63_03) } ) {
delete $WriteMakefileArgs{TEST_REQUIRES};
delete $WriteMakefileArgs{BUILD_REQUIRES};
$WriteMakefileArgs{PREREQ_PM} = \%FallbackPrereqs;
}
delete $WriteMakefileArgs{CONFIGURE_REQUIRES}
unless eval { ExtUtils::MakeMaker->VERSION(6.52) };
WriteMakefile(%WriteMakefileArgs);
This archive contains the distribution AI-MXNet,
version 1.0102:
Perl interface to MXNet machine learning library
Copyright (C) 2017 by Sergey Kolychev <sergeykolychev.github@gmail.com>
This library is licensed under Apache 2.0 license https://www.apache.org/licenses/LICENSE-2.0
examples/calculator.pl view on Meta::CPAN
#!/usr/bin/perl
use strict;
use warnings;
use AI::MXNet ('mx');
## preparing the samples
## to train our network
sub samples {
my($batch_size, $func) = @_;
# get samples
my $n = 16384;
## creates a pdl with $n rows and two columns with random
## floats in the range between 0 and 1
my $data = PDL->random(2, $n);
## creates the pdl with $n rows and one column with labels
## labels are floats that either sum or product, etc of
## two random values in each corresponding row of the data pdl
my $label = $func->($data->slice('0,:'), $data->slice('1,:'));
# partition into train/eval sets
my $edge = int($n / 8);
my $validation_data = $data->slice(":,0:@{[ $edge - 1 ]}");
my $validation_label = $label->slice(":,0:@{[ $edge - 1 ]}");
my $train_data = $data->slice(":,$edge:");
my $train_label = $label->slice(":,$edge:");
# build iterators around the sets
return(mx->io->NDArrayIter(
batch_size => $batch_size,
data => $train_data,
label => $train_label,
), mx->io->NDArrayIter(
batch_size => $batch_size,
data => $validation_data,
label => $validation_label,
));
}
## the network model
sub nn_fc {
my $data = mx->sym->Variable('data');
my $ln = mx->sym->exp(mx->sym->FullyConnected(
data => mx->sym->log($data),
num_hidden => 1,
));
my $wide = mx->sym->Concat($data, $ln);
my $fc = mx->sym->FullyConnected(
$wide,
num_hidden => 1
);
return mx->sym->MAERegressionOutput(data => $fc, name => 'softmax');
}
sub learn_function {
my(%args) = @_;
my $func = $args{func};
my $batch_size = $args{batch_size}//128;
my($train_iter, $eval_iter) = samples($batch_size, $func);
my $sym = nn_fc();
## call as ./calculator.pl 1 to just print model and exit
if($ARGV[0]) {
my @dsz = @{$train_iter->data->[0][1]->shape};
my @lsz = @{$train_iter->label->[0][1]->shape};
my $shape = {
data => [ $batch_size, splice @dsz, 1 ],
softmax_label => [ $batch_size, splice @lsz, 1 ],
};
print mx->viz->plot_network($sym, shape => $shape)->graph->as_png;
exit;
}
my $model = mx->mod->Module(
symbol => $sym,
context => mx->cpu(),
);
$model->fit($train_iter,
eval_data => $eval_iter,
optimizer => 'adam',
optimizer_params => {
learning_rate => $args{lr}//0.01,
rescale_grad => 1/$batch_size,
lr_scheduler => AI::MXNet::FactorScheduler->new(
step => 100,
factor => 0.99
)
},
eval_metric => 'mse',
num_epoch => $args{epoch}//25,
);
# refit the model for calling on 1 sample at a time
my $iter = mx->io->NDArrayIter(
batch_size => 1,
data => PDL->pdl([[ 0, 0 ]]),
label => PDL->pdl([[ 0 ]]),
);
$model->reshape(
data_shapes => $iter->provide_data,
label_shapes => $iter->provide_label,
);
# wrap a helper around making predictions
my ($arg_params) = $model->get_params;
for my $k (sort keys %$arg_params)
{
print "$k -> ". $arg_params->{$k}->aspdl."\n";
}
return sub {
my($n, $m) = @_;
return $model->predict(mx->io->NDArrayIter(
batch_size => 1,
data => PDL->new([[ $n, $m ]]),
))->aspdl->list;
};
}
my $add = learn_function(func => sub {
my($n, $m) = @_;
return $n + $m;
});
my $sub = learn_function(func => sub {
my($n, $m) = @_;
return $n - $m;
}, batch_size => 50, epoch => 40);
my $mul = learn_function(func => sub {
my($n, $m) = @_;
return $n * $m;
}, batch_size => 50, epoch => 40);
my $div = learn_function(func => sub {
my($n, $m) = @_;
return $n / $m;
}, batch_size => 10, epoch => 80);
print "12345 + 54321 â ", $add->(12345, 54321), "\n";
print "188 - 88 â ", $sub->(188, 88), "\n";
print "250 * 2 â ", $mul->(250, 2), "\n";
print "250 / 2 â ", $div->(250, 2), "\n";
examples/char_lstm.pl view on Meta::CPAN
#!/usr/bin/perl
use strict;
use warnings;
use PDL;
use Math::Random::Discrete;
use AI::MXNet qw(mx);
use AI::MXNet::Function::Parameters;
use Getopt::Long qw(HelpMessage);
GetOptions(
'num-layers=i' => \(my $num_layers = 2 ),
'num-hidden=i' => \(my $num_hidden = 256 ),
'num-embed=i' => \(my $num_embed = 10 ),
'num-seq=i' => \(my $seq_size = 60 ),
'gpus=s' => \(my $gpus ),
'kv-store=s' => \(my $kv_store = 'device'),
'num-epoch=i' => \(my $num_epoch = 25 ),
'lr=f' => \(my $lr = 0.001 ),
'optimizer=s' => \(my $optimizer = 'adam' ),
'mom=f' => \(my $mom = 0 ),
'wd=f' => \(my $wd = 0.00001 ),
'batch-size=i' => \(my $batch_size = 32 ),
'disp-batches=i' => \(my $disp_batches = 50 ),
'chkp-prefix=s' => \(my $chkp_prefix = 'lstm_' ),
'cell-mode=s' => \(my $cell_mode = 'LSTM' ),
'sample-size=i' => \(my $sample_size = 10000 ),
'chkp-epoch=i' => \(my $chkp_epoch = 1 ),
'bidirectional=i'=> \(my $bidirectional= 0 ),
'help' => sub { HelpMessage(0) },
) or HelpMessage(1);
=head1 NAME
char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
with optional inferred sampling (RNN generates Shakespeare like text)
=head1 SYNOPSIS
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=256
--num-embed embed size, default=10
--num-seq sequence size, default=60
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--bidirectional use bidirectional cell, default false (0)
--disp-batches show progress for every n batches, default=50
--chkp-prefix prefix for checkpoint files, default='lstm_'
--cell-mode RNN cell mode (LSTM, GRU, RNN, default=LSTM)
--sample-size a size of inferred sample text (default=10000) after each epoch
--chkp-epoch save checkpoint after this many epoch, default=1 (saving every checkpoint)
=cut
package AI::MXNet::RNN::IO::ASCIIIterator;
use Mouse;
extends AI::MXNet::DataIter;
has 'data' => (is => 'ro', isa => 'PDL', required => 1);
has 'seq_size' => (is => 'ro', isa => 'Int', required => 1);
has '+batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'data_name' => (is => 'ro', isa => 'Str', default => 'data');
has 'label_name' => (is => 'ro', isa => 'Str', default => 'softmax_label');
has 'dtype' => (is => 'ro', isa => 'Dtype', default => 'float32');
has [qw/nd counter seq_counter vocab_size
data_size provide_data provide_label idx/] => (is => 'rw', init_arg => undef);
sub BUILD
{
my $self = shift;
$self->data_size($self->data->nelem);
my $segments = int(($self->data_size-$self->seq_size)/($self->batch_size*$self->seq_size));
$self->idx([0..$segments-1]);
$self->vocab_size($self->data->uniq->shape->at(0));
$self->counter(0);
$self->seq_counter(0);
$self->nd(mx->nd->array($self->data, dtype => $self->dtype));
my $shape = [$self->batch_size, $self->seq_size];
$self->provide_data([
AI::MXNet::DataDesc->new(
name => $self->data_name,
shape => $shape,
dtype => $self->dtype
)
]);
$self->provide_label([
AI::MXNet::DataDesc->new(
name => $self->label_name,
shape => $shape,
dtype => $self->dtype
)
]);
$self->reset;
}
method reset()
{
$self->counter(0);
@{ $self->idx } = List::Util::shuffle(@{ $self->idx });
}
method next()
{
return undef if $self->counter == @{$self->idx};
my $offset = $self->idx->[$self->counter]*$self->batch_size*$self->seq_size + $self->seq_counter;
my $data = $self->nd->slice(
[$offset, $offset + $self->batch_size*$self->seq_size-1]
)->reshape([$self->batch_size, $self->seq_size]);
my $label = $self->nd->slice(
[$offset + 1 , $offset + $self->batch_size*$self->seq_size]
)->reshape([$self->batch_size, $self->seq_size]);
$self->seq_counter($self->seq_counter + 1);
if($self->seq_counter == $seq_size - 1)
{
$self->counter($self->counter + 1);
$self->seq_counter(0);
}
return AI::MXNet::DataBatch->new(
data => [$data],
label => [$label],
provide_data => [
AI::MXNet::DataDesc->new(
name => $self->data_name,
shape => $data->shape,
dtype => $self->dtype
)
],
provide_label => [
AI::MXNet::DataDesc->new(
name => $self->label_name,
shape => $label->shape,
dtype => $self->dtype
)
],
);
}
package main;
my $file = "data/input.txt";
open(F, $file) or die "can't open $file: $!";
my $fdata;
{ local($/) = undef; $fdata = <F>; close(F) };
my %vocabulary; my $i = 0;
$fdata = pdl(map{ exists $vocabulary{$_} ? $vocabulary{$_} : ($vocabulary{$_} = $i++) } split(//, $fdata));
my $data_iter = AI::MXNet::RNN::IO::ASCIIIterator->new(
batch_size => $batch_size,
data => $fdata,
seq_size => $seq_size
);
my %reverse_vocab = reverse %vocabulary;
my $mode = "${cell_mode}Cell";
my $stack = mx->rnn->SequentialRNNCell();
for my $i (0..$num_layers-1)
{
my $cell = mx->rnn->$mode(num_hidden => $num_hidden, prefix => "lstm_${i}l0_");
if($bidirectional)
{
$cell = mx->rnn->BidirectionalCell(
$cell,
mx->rnn->$mode(
num_hidden => $num_hidden,
prefix => "lstm_${i}r0_"
),
output_prefix => "bi_lstm_$i"
);
}
$stack->add($cell);
}
my $data = mx->sym->Variable('data');
my $label = mx->sym->Variable('softmax_label');
my $embed = mx->sym->Embedding(
data => $data, input_dim => scalar(keys %vocabulary),
output_dim => $num_embed, name => 'embed'
);
$stack->reset;
my ($outputs, $states) = $stack->unroll($seq_size, inputs => $embed, merge_outputs => 1);
my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden*(1+($bidirectional ? 1 : 0))]);
$pred = mx->sym->FullyConnected(data => $pred, num_hidden => $data_iter->vocab_size, name => 'pred');
$label = mx->sym->Reshape($label, shape => [-1]);
my $net = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
my $contexts;
if(defined $gpus)
{
$contexts = [map { mx->gpu($_) } split(/,/, $gpus)];
}
else
{
$contexts = mx->cpu(0);
}
my $model = mx->mod->Module(
symbol => $net,
context => $contexts
);
$model->fit(
$data_iter,
eval_metric => mx->metric->Perplexity,
kvstore => $kv_store,
optimizer => $optimizer,
optimizer_params => {
learning_rate => $lr,
momentum => $mom,
wd => $wd,
clip_gradient => 5,
rescale_grad => 1/$batch_size,
lr_scheduler => AI::MXNet::FactorScheduler->new(step => 1000, factor => 0.99)
},
initializer => mx->init->Xavier(factor_type => "in", magnitude => 2.34),
num_epoch => $num_epoch,
batch_end_callback => mx->callback->Speedometer($batch_size, $disp_batches),
($chkp_epoch ? (epoch_end_callback => [mx->rnn->do_rnn_checkpoint($stack, $chkp_prefix, $chkp_epoch), \&sample]) : ())
);
sub sample {
return if not $sample_size;
$model->reshape(data_shapes=>[['data',[1, $seq_size]]], label_shapes=>[['softmax_label',[1, $seq_size]]]);
my $input = mx->nd->array($fdata->slice([0, $seq_size-1]))->reshape([1, $seq_size]);
$| = 1;
for (0..$sample_size-1)
{
$model->forward(mx->io->DataBatch(data=>[$input]), is_train => 0);
my $prob = $model->get_outputs(0)->[0][0]->at($seq_size-1)->aspdl;
my $next_char = Math::Random::Discrete->new($prob->reshape(-1)->unpdl, [0..scalar(keys %vocabulary)-1])->rand;
print "$reverse_vocab{$next_char}";
$input->at(0)->slice([0, $seq_size-2]) .= $input->at(0)->slice([1, $seq_size-1])->copy;
$input->at(0)->at($seq_size-1) .= $next_char;
}
$model->reshape(data_shapes=>[['data',[$batch_size, $seq_size]]], label_shapes=>[['softmax_label',[$batch_size, $seq_size]]]);
}
examples/cudnn_lstm_bucketing.pl view on Meta::CPAN
#!/usr/bin/perl
use strict;
use warnings;
use AI::MXNet qw(mx);
use AI::MXNet::Function::Parameters;
use AI::MXNet::Base;
use Getopt::Long qw(HelpMessage);
GetOptions(
'test' => \(my $do_test ),
'num-layers=i' => \(my $num_layers = 2 ),
'num-hidden=i' => \(my $num_hidden = 256 ),
'num-embed=i' => \(my $num_embed = 256 ),
'num-seq=i' => \(my $seq_size = 32 ),
'gpus=s' => \(my $gpus ),
'kv-store=s' => \(my $kv_store = 'device'),
'num-epoch=i' => \(my $num_epoch = 25 ),
'lr=f' => \(my $lr = 0.01 ),
'optimizer=s' => \(my $optimizer = 'adam' ),
'mom=f' => \(my $mom = 0 ),
'wd=f' => \(my $wd = 0.00001 ),
'batch-size=i' => \(my $batch_size = 32 ),
'disp-batches=i' => \(my $disp_batches = 50 ),
'model-prefix=s' => \(my $model_prefix = 'lstm_' ),
'load-epoch=i' => \(my $load_epoch = 0 ),
'stack-rnn' => \(my $stack_rnn ),
'bidirectional=i' => \(my $bidirectional ),
'dropout=f', => \(my $dropout = 0 ),
'help' => sub { HelpMessage(0) },
) or HelpMessage(1);
=head1 NAME
char_lstm.pl - Example of training char LSTM RNN on tiny shakespeare using high level RNN interface
=head1 SYNOPSIS
--test Whether to test or train (default 0)
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=200
--num-seq sequence size, default=32
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='adam'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--disp-batches show progress for every n batches, default=50
--model-prefix prefix for checkpoint files for loading/saving, default='lstm_'
--load-epoch load from epoch
--stack-rnn stack rnn to reduce communication overhead (1,0 default 0)
--bidirectional whether to use bidirectional layers (1,0 default 0)
--dropout dropout probability (1.0 - keep probability), default 0
=cut
$bidirectional = $bidirectional ? 1 : 0;
$stack_rnn = $stack_rnn ? 1 : 0;
func tokenize_text($fname, :$vocab=, :$invalid_label=-1, :$start_label=0)
{
open(F, $fname) or die "Can't open $fname: $!";
my @lines = map { my $l = [split(/ /)]; shift(@$l); $l } (<F>);
my $sentences;
($sentences, $vocab) = mx->rnn->encode_sentences(
\@lines,
vocab => $vocab,
invalid_label => $invalid_label,
start_label => $start_label
);
return ($sentences, $vocab);
}
my $buckets = [10, 20, 30, 40, 50, 60];
my $start_label = 1;
my $invalid_label = 0;
func get_data($layout)
{
my ($train_sentences, $vocabulary) = tokenize_text(
'./data/ptb.train.txt', start_label => $start_label,
invalid_label => $invalid_label
);
my ($validation_sentences) = tokenize_text(
'./data/ptb.test.txt', vocab => $vocabulary,
start_label => $start_label, invalid_label => $invalid_label
);
my $data_train = mx->rnn->BucketSentenceIter(
$train_sentences, $batch_size, buckets => $buckets,
invalid_label => $invalid_label,
layout => $layout
);
my $data_val = mx->rnn->BucketSentenceIter(
$validation_sentences, $batch_size, buckets => $buckets,
invalid_label => $invalid_label,
layout => $layout
);
return ($data_train, $data_val, $vocabulary);
}
my $train = sub
{
my ($data_train, $data_val, $vocab) = get_data('TN');
my $cell;
if($stack_rnn)
{
my $stack = mx->rnn->SequentialRNNCell();
for my $i (0..$num_layers-1)
{
my $dropout_rate = 0;
if($i < $num_layers-1)
{
$dropout_rate = $dropout;
}
$stack->add(
mx->rnn->FusedRNNCell(
$num_hidden, num_layers => 1,
mode => 'lstm', prefix => "lstm_$i",
bidirectional => $bidirectional, dropout => $dropout_rate
)
);
}
$cell = $stack;
}
else
{
$cell = mx->rnn->FusedRNNCell(
$num_hidden, mode => 'lstm', num_layers => $num_layers,
bidirectional => $bidirectional, dropout => $dropout
);
}
my $sym_gen = sub { my $seq_len = shift;
my $data = mx->sym->Variable('data');
my $label = mx->sym->Variable('softmax_label');
my $embed = mx->sym->Embedding(data=>$data, input_dim=>scalar(keys %$vocab), output_dim=>$num_embed,name=>'embed');
my ($output) = $cell->unroll($seq_len, inputs=>$embed, merge_outputs=>1, layout=>'TNC');
my $pred = mx->sym->Reshape($output, shape=>[-1, $num_hidden*(1+$bidirectional)]);
$pred = mx->sym->FullyConnected(data=>$pred, num_hidden=>scalar(keys %$vocab), name=>'pred');
$label = mx->sym->Reshape($label, shape=>[-1]);
$pred = mx->sym->SoftmaxOutput(data=>$pred, label=>$label, name=>'softmax');
return ($pred, ['data'], ['softmax_label']);
};
my $contexts;
if(defined $gpus)
{
$contexts = [map { mx->gpu($_) } split(/,/, $gpus)];
}
else
{
$contexts = mx->cpu(0);
}
my $model = mx->mod->BucketingModule(
sym_gen => $sym_gen,
default_bucket_key => $data_train->default_bucket_key,
context => $contexts
);
my ($arg_params, $aux_params);
if($load_epoch)
{
(undef, $arg_params, $aux_params) = mx->rnn->load_rnn_checkpoint(
$cell, $model_prefix, $load_epoch);
}
$model->fit(
$data_train,
eval_data => $data_val,
eval_metric => mx->metric->Perplexity($invalid_label),
kvstore => $kv_store,
optimizer => $optimizer,
optimizer_params => {
learning_rate => $lr,
momentum => $mom,
wd => $wd,
},
begin_epoch => $load_epoch,
initializer => mx->init->Xavier(factor_type => "in", magnitude => 2.34),
num_epoch => $num_epoch,
batch_end_callback => mx->callback->Speedometer($batch_size, $disp_batches),
($model_prefix ? (epoch_end_callback => mx->rnn->do_rnn_checkpoint($cell, $model_prefix, 1)) : ())
);
};
my $test = sub {
assert($model_prefix, "Must specifiy path to load from");
my (undef, $data_val, $vocab) = get_data('NT');
my $stack;
if($stack_rnn)
{
$stack = mx->rnn->SequentialRNNCell();
for my $i (0..$num_layers-1)
{
my $cell = mx->rnn->LSTMCell(num_hidden => $num_hidden, prefix => "lstm_${i}l0_");
if($bidirectional)
{
$cell = mx->rnn->BidirectionalCell(
$cell,
mx->rnn->LSTMCell(
num_hidden => $num_hidden,
prefix => "lstm_${i}r0_"
),
output_prefix => "bi_lstm_$i"
);
}
$stack->add($cell);
}
}
else
{
$stack = mx->rnn->FusedRNNCell(
$num_hidden, num_layers => $num_layers,
mode=>'lstm', bidirectional => $bidirectional
)->unfuse()
}
my $sym_gen = sub {
my $seq_len = shift;
my $data = mx->sym->Variable('data');
my $label = mx->sym->Variable('softmax_label');
my $embed = mx->sym->Embedding(
data => $data, input_dim => scalar(keys %$vocab),
output_dim => $num_embed, name => 'embed'
);
$stack->reset;
my ($outputs, $states) = $stack->unroll($seq_len, inputs => $embed, merge_outputs => 1);
my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden*(1+$bidirectional)]);
$pred = mx->sym->FullyConnected(data => $pred, num_hidden => scalar(keys %$vocab), name => 'pred');
$label = mx->sym->Reshape($label, shape => [-1]);
$pred = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
return ($pred, ['data'], ['softmax_label']);
};
my $contexts;
if($gpus)
{
$contexts = [map { mx->gpu($_) } split(/,/, $gpus)];
}
else
{
$contexts = mx->cpu(0);
}
my ($arg_params, $aux_params);
if($load_epoch)
{
(undef, $arg_params, $aux_params) = mx->rnn->load_rnn_checkpoint(
$stack, $model_prefix, $load_epoch);
}
my $model = mx->mod->BucketingModule(
sym_gen => $sym_gen,
default_bucket_key => $data_val->default_bucket_key,
context => $contexts
);
$model->bind(
data_shapes => $data_val->provide_data,
label_shapes => $data_val->provide_label,
for_training => 0,
force_rebind => 0
);
$model->set_params($arg_params, $aux_params);
my $score = $model->score($data_val,
mx->metric->Perplexity($invalid_label),
batch_end_callback=>mx->callback->Speedometer($batch_size, 5)
);
};
if($num_layers >= 4 and split(/,/,$gpus) >= 4 and not $stack_rnn)
{
print("WARNING: stack-rnn is recommended to train complex model on multiple GPUs\n");
}
if($do_test)
{
# Demonstrates how to load a model trained with CuDNN RNN and predict
# with non-fused MXNet symbol
$test->();
}
else
{
$train->();
}
examples/get_ptb_data.sh view on Meta::CPAN
#!/usr/bin/env bash
RNN_DIR=$(cd `dirname $0`; pwd)
DATA_DIR="${RNN_DIR}/data/"
if [[ ! -d "${DATA_DIR}" ]]; then
echo "${DATA_DIR} doesn't exist, will create one";
mkdir -p ${DATA_DIR}
fi
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.train.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.valid.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/ptb/ptb.test.txt;
wget -P ${DATA_DIR} https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/tinyshakespeare/input.txt;
examples/lstm_bucketing.pl view on Meta::CPAN
#!/usr/bin/perl
use strict;
use warnings;
use PDL;
use AI::MXNet qw(mx);
use AI::MXNet::Function::Parameters;
use Getopt::Long qw(HelpMessage);
GetOptions(
'num-layers=i' => \(my $num_layers = 2 ),
'num-hidden=i' => \(my $num_hidden = 200 ),
'num-embed=i' => \(my $num_embed = 200 ),
'gpus=s' => \(my $gpus ),
'kv-store=s' => \(my $kv_store = 'device'),
'num-epoch=i' => \(my $num_epoch = 25 ),
'lr=f' => \(my $lr = 0.01 ),
'optimizer=s' => \(my $optimizer = 'sgd' ),
'mom=f' => \(my $mom = 0 ),
'wd=f' => \(my $wd = 0.00001 ),
'batch-size=i' => \(my $batch_size = 32 ),
'disp-batches=i' => \(my $disp_batches = 50 ),
'chkp-prefix=s' => \(my $chkp_prefix = 'lstm_' ),
'chkp-epoch=i' => \(my $chkp_epoch = 0 ),
'help' => sub { HelpMessage(0) },
) or HelpMessage(1);
=head1 NAME
lstm_bucketing.pl - Example of training LSTM RNN on Penn Tree Bank data using high level RNN interface
=head1 SYNOPSIS
--num-layers number of stacked RNN layers, default=2
--num-hidden hidden layer size, default=200
--num-embed embedding layer size, default=200
--gpus list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
Increase batch size when using multiple gpus for best performance.
--kv-store key-value store type, default='device'
--num-epochs max num of epochs, default=25
--lr initial learning rate, default=0.01
--optimizer the optimizer type, default='sgd'
--mom momentum for sgd, default=0.0
--wd weight decay for sgd, default=0.00001
--batch-size the batch size type, default=32
--disp-batches show progress for every n batches, default=50
--chkp-prefix prefix for checkpoint files, default='lstm_'
--chkp-epoch save checkpoint after this many epoch, default=0 (saving checkpoints is disabled)
=cut
func tokenize_text($fname, :$vocab=, :$invalid_label=-1, :$start_label=0)
{
open(F, $fname) or die "Can't open $fname: $!";
my @lines = map { my $l = [split(/ /)]; shift(@$l); $l } (<F>);
my $sentences;
($sentences, $vocab) = mx->rnn->encode_sentences(
\@lines,
vocab => $vocab,
invalid_label => $invalid_label,
start_label => $start_label
);
return ($sentences, $vocab);
}
my $buckets = [10, 20, 30, 40, 50, 60];
my $start_label = 1;
my $invalid_label = 0;
my ($train_sentences, $vocabulary) = tokenize_text(
'./data/ptb.train.txt', start_label => $start_label,
invalid_label => $invalid_label
);
my ($validation_sentences) = tokenize_text(
'./data/ptb.test.txt', vocab => $vocabulary,
start_label => $start_label, invalid_label => $invalid_label
);
my $data_train = mx->rnn->BucketSentenceIter(
$train_sentences, $batch_size, buckets => $buckets,
invalid_label => $invalid_label
);
my $data_val = mx->rnn->BucketSentenceIter(
$validation_sentences, $batch_size, buckets => $buckets,
invalid_label => $invalid_label
);
my $stack = mx->rnn->SequentialRNNCell();
for my $i (0..$num_layers-1)
{
$stack->add(mx->rnn->LSTMCell(num_hidden => $num_hidden, prefix => "lstm_l${i}_"));
}
my $sym_gen = sub {
my $seq_len = shift;
my $data = mx->sym->Variable('data');
my $label = mx->sym->Variable('softmax_label');
my $embed = mx->sym->Embedding(
data => $data, input_dim => scalar(keys %$vocabulary),
output_dim => $num_embed, name => 'embed'
);
$stack->reset;
my ($outputs, $states) = $stack->unroll($seq_len, inputs => $embed, merge_outputs => 1);
my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden]);
$pred = mx->sym->FullyConnected(data => $pred, num_hidden => scalar(keys %$vocabulary), name => 'pred');
$label = mx->sym->Reshape($label, shape => [-1]);
$pred = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
return ($pred, ['data'], ['softmax_label']);
};
my $contexts;
if(defined $gpus)
{
$contexts = [map { mx->gpu($_) } split(/,/, $gpus)];
}
else
{
$contexts = mx->cpu(0);
}
my $model = mx->mod->BucketingModule(
sym_gen => $sym_gen,
default_bucket_key => $data_train->default_bucket_key,
context => $contexts
);
$model->fit(
$data_train,
eval_data => $data_val,
eval_metric => mx->metric->Perplexity($invalid_label),
kvstore => $kv_store,
optimizer => $optimizer,
optimizer_params => {
learning_rate => $lr,
momentum => $mom,
wd => $wd,
},
initializer => mx->init->Xavier(factor_type => "in", magnitude => 2.34),
num_epoch => $num_epoch,
batch_end_callback => mx->callback->Speedometer($batch_size, $disp_batches),
($chkp_epoch ? (epoch_end_callback => mx->rnn->do_rnn_checkpoint($stack, $chkp_prefix, $chkp_epoch)) : ())
);
examples/mnist.pl view on Meta::CPAN
use warnings;
# derived from http://mxnet.io/tutorials/python/mnist.html
use LWP::UserAgent ();
use PDL ();
#use Gtk2 '-init';
use AI::MXNet ('mx');
my $ua = LWP::UserAgent->new();
sub download_data {
my($url, $force_download) = @_;
$force_download = 1 if @_ < 2;
my $fname = (split m{/}, $url)[-1];
if($force_download or not -f $fname) {
$ua->get($url, ':content_file' => $fname);
}
return $fname;
}
sub read_data {
my($label_url, $image_url) = @_;
my($magic, $num, $rows, $cols);
open my($flbl), '<:gzip', download_data($label_url);
read $flbl, my($buf), 8;
($magic, $num) = unpack 'N2', $buf;
my $label = PDL->new();
$label->set_datatype($PDL::Types::PDL_B);
$label->setdims([ $num ]);
read $flbl, ${$label->get_dataref}, $num;
$label->upd_data();
open my($fimg), '<:gzip', download_data($image_url);
read $fimg, $buf, 16;
($magic, $num, $rows, $cols) = unpack 'N4', $buf;
my $image = PDL->new();
$image->set_datatype($PDL::Types::PDL_B);
$image->setdims([ $rows, $cols, $num ]);
read $fimg, ${$image->get_dataref}, $num * $rows * $cols;
$image->upd_data();
return($label, $image);
}
my $path='http://yann.lecun.com/exdb/mnist/';
my($train_lbl, $train_img) = read_data(
"${path}train-labels-idx1-ubyte.gz", "${path}train-images-idx3-ubyte.gz");
my($val_lbl, $val_img) = read_data(
"${path}t10k-labels-idx1-ubyte.gz", "${path}t10k-images-idx3-ubyte.gz");
sub show_sample {
print 'label: ', $train_lbl->slice('0:9'), "\n";
my $hbox = Gtk2::HBox->new(0, 2);
for my $i (0 .. 9) {
my $img = $train_img->slice(":,:,$i");
my($w, $h) = $img->dims;
$img->make_physical();
# ugh, pixbufs don't have a grayscale colorspace?!
# burst it to rgb I guess.
my $data = pack 'c*', map { $_, $_, $_ } unpack 'c*', ${$img->get_dataref};
$hbox->add(Gtk2::Image->new_from_pixbuf(
Gtk2::Gdk::Pixbuf->new_from_data($data, 'rgb', 0, 8, $w, $h, $w * 3)
));
}
my $win = Gtk2::Window->new('toplevel');
$win->signal_connect(delete_event => sub { Gtk2->main_quit() });
$win->add($hbox);
$win->show_all();
Gtk2->main();
}
sub show_network {
my($viz) = @_;
my $load = Gtk2::Gdk::PixbufLoader->new();
$load->write($viz->graph->as_png);
$load->close();
my $img = Gtk2::Image->new_from_pixbuf($load->get_pixbuf());
my $sw = Gtk2::ScrolledWindow->new(undef, undef);
$sw->add_with_viewport($img);
my $win = Gtk2::Window->new('toplevel');
$win->signal_connect(delete_event => sub { Gtk2->main_quit() });
$win->add($sw);
$win->show_all();
Gtk2->main();
}
#show_sample();
sub to4d {
my($img) = @_;
return $img->reshape(28, 28, 1, ($img->dims)[2])->float / 255;
}
my $batch_size = 100;
my $train_iter = mx->io->NDArrayIter(
data => to4d($train_img),
label => $train_lbl,
batch_size => $batch_size,
shuffle => 1,
);
my $val_iter = mx->io->NDArrayIter(
data => to4d($val_img),
label => $val_lbl,
batch_size => $batch_size,
);
# Create a place holder variable for the input data
my $data = mx->sym->Variable('data');
sub nn_fc {
# Epoch[9] Train-accuracy=0.978889
# Epoch[9] Time cost=145.437
# Epoch[9] Validation-accuracy=0.964600
my($data) = @_;
# Flatten the data from 4-D shape (batch_size, num_channel, width, height)
# into 2-D (batch_size, num_channel*width*height)
$data = mx->sym->Flatten(data => $data);
# The first fully-connected layer
# my $fc1 = mx->sym->FullyConnected(data => $data, name => 'fc1', num_hidden => 128);
# # Apply relu to the output of the first fully-connnected layer
# my $act1 = mx->sym->Activation(data => $fc1, name => 'relu1', act_type => "relu");
# The second fully-connected layer and the according activation function
my $fc2 = mx->sym->FullyConnected(data => $data, name => 'fc2', num_hidden => 64);
my $act2 = mx->sym->Activation(data => $fc2, name => 'relu2', act_type => "relu");
# The thrid fully-connected layer, note that the hidden size should be 10, which is the number of unique digits
my $fc3 = mx->sym->FullyConnected(data => $act2, name => 'fc3', num_hidden => 10);
# The softmax and loss layer
my $mlp = mx->sym->SoftmaxOutput(data => $fc3, name => 'softmax');
return $mlp;
}
sub nn_conv {
my($data) = @_;
# Epoch[9] Batch [200] Speed: 1625.07 samples/sec Train-accuracy=0.992090
# Epoch[9] Batch [400] Speed: 1630.12 samples/sec Train-accuracy=0.992850
# Epoch[9] Train-accuracy=0.991357
# Epoch[9] Time cost=36.817
# Epoch[9] Validation-accuracy=0.988100
my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 20, kernel => [5,5], stride => [2,2]);
my $bn1 = mx->symbol->BatchNorm(data => $conv1, name => "bn1");
my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu");
my $mp1 = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[1,1], pool_type=>'max');
my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 50, kernel=>[3,3], stride=>[2,2]);
my $bn2 = mx->symbol->BatchNorm(data => $conv2, name=>"bn2");
my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu");
my $mp2 = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[1,1], pool_type=>'max');
my $fl = mx->symbol->Flatten(data => $mp2, name=>"flatten");
my $fc1 = mx->symbol->FullyConnected(data => $fl, name=>"fc1", num_hidden=>100);
my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu");
my $fc2 = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>30);
my $act4 = mx->symbol->Activation(data => $fc2, name=>'relu4', act_type=>"relu");
my $fc3 = mx->symbol->FullyConnected(data => $act4, name=>'fc3', num_hidden=>10);
my $softmax = mx->symbol->SoftmaxOutput(data => $fc3, name => 'softmax');
return $softmax;
}
my $mlp = $ARGV[0] ? nn_conv($data) : nn_fc($data);
#We visualize the network structure with output size (the batch_size is ignored.)
#my $shape = { data => [ $batch_size, 1, 28, 28 ] };
#show_network(mx->viz->plot_network($mlp, shape => $shape));
my $model = mx->mod->Module(
symbol => $mlp, # network structure
);
$model->fit(
$train_iter, # training data
num_epoch => 10, # number of data passes for training
eval_data => $val_iter, # validation data
batch_end_callback => mx->callback->Speedometer($batch_size, 200), # output progress for each 200 data batches
optimizer => 'adam',
);
lib/AI/MXNet.pm view on Meta::CPAN
use AI::MXNet::Visualization;
use AI::MXNet::RecordIO;
use AI::MXNet::Image;
use AI::MXNet::Contrib;
use AI::MXNet::Contrib::AutoGrad;
use AI::MXNet::CachedOp;
our $VERSION = '1.0102';
sub import
{
my ($class, $short_name) = @_;
if($short_name)
{
$short_name =~ s/[^\w:]//g;
if(length $short_name)
{
my $short_name_package =<<"EOP";
package $short_name;
no warnings 'redefine';
sub nd { 'AI::MXNet::NDArray' }
sub sym { 'AI::MXNet::Symbol' }
sub symbol { 'AI::MXNet::Symbol' }
sub init { 'AI::MXNet::Initializer' }
sub initializer { 'AI::MXNet::Initializer' }
sub optimizer { 'AI::MXNet::Optimizer' }
sub opt { 'AI::MXNet::Optimizer' }
sub rnd { 'AI::MXNet::Random' }
sub random { 'AI::MXNet::Random' }
sub Context { shift; AI::MXNet::Context->new(\@_) }
sub cpu { AI::MXNet::Context->cpu(\$_[1]//0) }
sub gpu { AI::MXNet::Context->gpu(\$_[1]//0) }
sub kv { 'AI::MXNet::KVStore' }
sub recordio { 'AI::MXNet::RecordIO' }
sub io { 'AI::MXNet::IO' }
sub metric { 'AI::MXNet::Metric' }
sub mod { 'AI::MXNet::Module' }
sub mon { 'AI::MXNet::Monitor' }
sub viz { 'AI::MXNet::Visualization' }
sub rnn { 'AI::MXNet::RNN' }
sub callback { 'AI::MXNet::Callback' }
sub img { 'AI::MXNet::Image' }
sub contrib { 'AI::MXNet::Contrib' }
sub name { '$short_name' }
sub AttrScope { shift; AI::MXNet::Symbol::AttrScope->new(\@_) }
*AI::MXNet::Symbol::AttrScope::current = sub { \$${short_name}::AttrScope; };
\$${short_name}::AttrScope = AI::MXNet::Symbol::AttrScope->new;
sub Prefix { AI::MXNet::Symbol::Prefix->new(prefix => \$_[1]) }
*AI::MXNet::Symbol::NameManager::current = sub { \$${short_name}::NameManager; };
\$${short_name}::NameManager = AI::MXNet::Symbol::NameManager->new;
*AI::MXNet::Context::current_ctx = sub { \$${short_name}::Context; };
\$${short_name}::Context = AI::MXNet::Context->new(device_type => 'cpu', device_id => 0);
1;
EOP
eval $short_name_package;
}
}
}
1;
__END__
=encoding UTF-8
=head1 NAME
AI::MXNet - Perl interface to MXNet machine learning library
=head1 SYNOPSIS
## Convolutional NN for recognizing hand-written digits in MNIST dataset
## It's considered "Hello, World" for Neural Networks
## For more info about the MNIST problem please refer to http://neuralnetworksanddeeplearning.com/chap1.html
use strict;
use warnings;
use AI::MXNet qw(mx);
use AI::MXNet::TestUtils qw(GetMNIST_ubyte);
use Test::More tests => 1;
# symbol net
my $batch_size = 100;
### model
my $data = mx->symbol->Variable('data');
my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 32, kernel => [3,3], stride => [2,2]);
my $bn1 = mx->symbol->BatchNorm(data => $conv1, name => "bn1");
my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu");
my $mp1 = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[2,2], pool_type=>'max');
my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 32, kernel=>[3,3], stride=>[2,2]);
my $bn2 = mx->symbol->BatchNorm(data => $conv2, name=>"bn2");
my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu");
my $mp2 = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[2,2], pool_type=>'max');
my $fl = mx->symbol->Flatten(data => $mp2, name=>"flatten");
my $fc1 = mx->symbol->FullyConnected(data => $fl, name=>"fc1", num_hidden=>30);
my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu");
my $fc2 = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>10);
my $softmax = mx->symbol->SoftmaxOutput(data => $fc2, name => 'softmax');
# check data
GetMNIST_ubyte();
my $train_dataiter = mx->io->MNISTIter({
image=>"data/train-images-idx3-ubyte",
label=>"data/train-labels-idx1-ubyte",
data_shape=>[1, 28, 28],
batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0, seed=>10});
my $val_dataiter = mx->io->MNISTIter({
image=>"data/t10k-images-idx3-ubyte",
label=>"data/t10k-labels-idx1-ubyte",
data_shape=>[1, 28, 28],
batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0});
my $n_epoch = 1;
my $mod = mx->mod->new(symbol => $softmax);
$mod->fit(
$train_dataiter,
eval_data => $val_dataiter,
optimizer_params=>{learning_rate=>0.01, momentum=> 0.9},
num_epoch=>$n_epoch
);
my $res = $mod->score($val_dataiter, mx->metric->create('acc'));
ok($res->{accuracy} > 0.8);
=head1 DESCRIPTION
Perl interface to MXNet machine learning library.
=head1 BUGS AND INCOMPATIBILITIES
Parity with Python inteface is mostly achieved, few deprecated
and not often used features left unported for now.
=head1 SEE ALSO
http://mxnet.io/
https://github.com/dmlc/mxnet/tree/master/perl-package
Function::Parameters, Mouse
=head1 AUTHOR
Sergey Kolychev, <sergeykolychev.github@gmail.com>
=head1 COPYRIGHT & LICENSE
Copyright (C) 2017 by Sergey Kolychev <sergeykolychev.github@gmail.com>
This library is licensed under Apache 2.0 license https://www.apache.org/licenses/LICENSE-2.0
=cut
lib/AI/MXNet/Base.pm view on Meta::CPAN
use AI::MXNetCAPI 1.0102;
use AI::NNVMCAPI 1.01;
use AI::MXNet::Types;
use Time::HiRes;
use Carp;
use Exporter;
use base qw(Exporter);
use List::Util qw(shuffle);
@AI::MXNet::Base::EXPORT = qw(product enumerate assert zip check_call build_param_doc
pdl cat dog svd bisect_left pdl_shuffle
DTYPE_STR_TO_MX DTYPE_MX_TO_STR DTYPE_MX_TO_PDL
DTYPE_PDL_TO_MX DTYPE_MX_TO_PERL GRAD_REQ_MAP);
@AI::MXNet::Base::EXPORT_OK = qw(pzeros pceil);
use constant DTYPE_STR_TO_MX => {
float32 => 0,
float64 => 1,
float16 => 2,
uint8 => 3,
int32 => 4
};
use constant DTYPE_MX_TO_STR => {
0 => 'float32',
1 => 'float64',
2 => 'float16',
3 => 'uint8',
4 => 'int32'
};
use constant DTYPE_MX_TO_PDL => {
0 => 6,
1 => 7,
2 => 6,
3 => 0,
4 => 3,
float32 => 6,
float64 => 7,
float16 => 6,
uint8 => 0,
int32 => 3
};
use constant DTYPE_PDL_TO_MX => {
6 => 0,
7 => 1,
0 => 3,
3 => 4,
};
use constant DTYPE_MX_TO_PERL => {
0 => 'f',
1 => 'd',
2 => 'S',
3 => 'C',
4 => 'l',
float32 => 'f',
float64 => 'd',
float16 => 'S',
uint8 => 'C',
int32 => 'l'
};
use constant GRAD_REQ_MAP => {
null => 0,
write => 1,
add => 3
};
=head1 NAME
AI::MXNet::Base - Helper functions
=head1 DEFINITION
Helper functions
=head2 zip
Perl version of for x,y,z in zip (arr_x, arr_y, arr_z)
Parameters
----------
$sub_ref, called with @_ filled with $arr_x->[$i], $arr_y->[$i], $arr_z->[$i]
for each loop iteration.
@array_refs
=cut
sub zip
{
my ($sub, @arrays) = @_;
my $len = @{ $arrays[0] };
for (my $i = 0; $i < $len; $i++)
{
$sub->(map { $_->[$i] } @arrays);
}
}
=head2 enumerate
Same as zip, but the argument list in the anonymous sub is prepended
by the iteration count.
=cut
sub enumerate
{
my ($sub, @arrays) = @_;
my $len = @{ $arrays[0] };
zip($sub, [0..$len-1], @arrays);
}
=head2 product
Calculates the product of the input agruments.
=cut
sub product
{
my $p = 1;
map { $p = $p * $_ } @_;
return $p;
}
=head2 bisect_left
https://hg.python.org/cpython/file/2.7/Lib/bisect.py
=cut
sub bisect_left
{
my ($a, $x, $lo, $hi) = @_;
$lo //= 0;
$hi //= @{ $a };
if($lo < 0)
{
Carp::confess('lo must be non-negative');
}
while($lo < $hi)
{
my $mid = int(($lo+$hi)/2);
if($a->[$mid] < $x)
{
$lo = $mid+1;
}
else
{
$hi = $mid;
}
}
return $lo;
}
=head2 pdl_shuffle
Shuffle the pdl by the last dimension
Parameters
-----------
PDL $pdl
$preshuffle Maybe[ArrayRef[Index]], if defined the array elements are used
as shuffled last dimension's indexes
=cut
sub pdl_shuffle
{
my ($pdl, $preshuffle) = @_;
my $c = $pdl->copy;
my @shuffle = $preshuffle ? @{ $preshuffle } : shuffle(0..$pdl->dim(-1)-1);
my $rem = $pdl->ndims-1;
for my $i (0..$pdl->dim(-1)-1)
{
$c->slice(('X')x$rem, $i) .= $pdl->slice(('X')x$rem, $shuffle[$i])
}
$c;
}
=head2 assert
Parameters
-----------
Bool $input
Str $error_str
Calls Carp::confess with $error_str//"AssertionError" if the $input is false
=cut
sub assert
{
my ($input, $error_str) = @_;
local($Carp::CarpLevel) = 1;
Carp::confess($error_str//'AssertionError')
unless $input;
}
=head2 check_call
Checks the return value of C API call
This function will raise an exception when error occurs.
Every API call is wrapped with this function.
Returns the C API call return values stripped of first return value,
checks for return context and returns first element in
the values list when called in scalar context.
=cut
sub check_call
{
Carp::confess(AI::MXNetCAPI::GetLastError()) if shift;
return wantarray ? @_ : $_[0];
}
=head2 build_param_doc
Builds argument docs in python style.
arg_names : array ref of str
Argument names.
arg_types : array ref of str
Argument type information.
arg_descs : array ref of str
Argument description information.
remove_dup : boolean, optional
Whether to remove duplication or not.
Returns
-------
docstr : str
Python docstring of parameter sections.
=cut
sub build_param_doc
{
my ($arg_names, $arg_types, $arg_descs, $remove_dup) = @_;
$remove_dup //= 1;
my %param_keys;
my @param_str;
zip(sub {
my ($key, $type_info, $desc) = @_;
return if exists $param_keys{$key} and $remove_dup;
$param_keys{$key} = 1;
my $ret = sprintf("%s : %s", $key, $type_info);
$ret .= "\n ".$desc if length($desc);
push @param_str, $ret;
},
$arg_names, $arg_types, $arg_descs
);
return sprintf("Parameters\n----------\n%s\n", join("\n", @param_str));
}
=head2 _notify_shutdown
Notify MXNet about shutdown.
=cut
sub _notify_shutdown
{
check_call(AI::MXNetCAPI::NotifyShutdown());
}
END {
_notify_shutdown();
Time::HiRes::sleep(0.01);
}
*pzeros = \&zeros;
*pceil = \&ceil;
## making sure that we can stringify arbitrarily large piddles
$PDL::toolongtoprint = 1000_000_000;
1;
lib/AI/MXNet/CachedOp.pm view on Meta::CPAN
package AI::MXNet::CachedOp;
=head1 NAME
AI::MXNet::CachedOp - A wrapper around CachedOpHandle
=cut
use strict;
use warnings;
use AI::MXNet::Base;
use Mouse;
use overload '&{}' => sub { my $self = shift; sub { $self->call(@_) } };
has 'handle' => (is => 'ro', isa => 'CachedOpHandle', required => 1);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
my ($sym) = @_;
my $handle = check_call(
AI::MXNetCAPI::CreateCachedOp(
$sym->handle
)
);
return $class->$orig(handle => $handle);
};
sub DEMOLISH
{
check_call(AI::MXNetCAPI::FreeCachedOp(shift->handle));
}
sub call
{
my $self = shift;
my @args;
my %kwargs;
if(blessed $_[0] and $_[0]->isa('AI::MXNet::NDArray'))
{
while(blessed $_[0] and $_[0]->isa('AI::MXNet::NDArray'))
{
push @args, shift(@_);
}
%kwargs = @_;
}
else
{
%kwargs = @_;
}
my $out = delete $kwargs{out};
if(%kwargs)
{
confess(
"AI::MXNet::CachedOp::call got unexpected keyword argument(s): ".
join(', ', keys %kwargs)
);
}
my $original_output;
if(defined $out)
{
$original_output = $out;
if(blessed($out))
{
$out = [$out];
}
}
else
{
$out = [];
}
my $output = check_call(
AI::MXNetCAPI::InvokeCachedOp(
$self->handle,
scalar(@args),
[map { $_->handle } @args],
[map { $_->handle } @$out]
)
);
return $original_output if defined $original_output;
if(@$output == 1)
{
return AI::MXNet::NDArray->new(handle => $output->[0]);
}
else
{
return [map { AI::MXNet::NDArray->new(handle => $_) } @$output];
}
}
1;
lib/AI/MXNet/Callback.pm view on Meta::CPAN
package AI::MXNet::Callback;
use strict;
use warnings;
use List::Util qw/max/;
use AI::MXNet::Function::Parameters;
use Mouse;
use overload "&{}" => sub { my $self = shift; sub { $self->call(@_) } };
=head1 NAME
AI::MXNet::Callback - A collection of predefined callback functions
=cut
=head2 module_checkpoint
Callback to save the module setup in the checkpoint files.
Parameters
----------
$mod : subclass of AI::MXNet::Module::Base
The module to checkpoint.
$prefix : str
The file prefix to checkpoint to
$period=1 : int
How many epochs to wait before checkpointing. Default is 1.
$save_optimizer_states=0 : Bool
Whether to save optimizer states for later training.
Returns
-------
$callback : sub ref
The callback function that can be passed as iter_end_callback to fit.
=cut
method module_checkpoint(
AI::MXNet::Module::Base $mod,
Str $prefix,
Int $period=1,
Int $save_optimizer_states=0
)
{
$period = max(1, $period);
return sub {
my ($iter_no, $sym, $arg, $aux) = @_;
if(($iter_no + 1) % $period == 0)
{
$mod->save_checkpoint($prefix, $iter_no + 1, $save_optimizer_states);
}
}
}
=head2 log_train_metric
Callback to log the training evaluation result every period.
Parameters
----------
$period : Int
The number of batches after which to log the training evaluation metric.
$auto_reset : Bool
Whether to reset the metric after the logging.
Returns
-------
$callback : sub ref
The callback function that can be passed as iter_epoch_callback to fit.
=cut
method log_train_metric(Int $period, Int $auto_reset=0)
{
return sub {
my ($param) = @_;
if($param->nbatch % $period == 0 and defined $param->eval_metric)
{
my $name_value = $param->eval_metric->get_name_value;
while(my ($name, $value) = each %{ $name_value })
{
AI::MXNet::Logging->info(
"Iter[%d] Batch[%d] Train-%s=%f",
$param->epoch, $param->nbatch, $name, $value
);
}
$param->eval_metric->reset if $auto_reset;
}
}
}
package AI::MXNet::Speedometer;
use Mouse;
use Time::HiRes qw/time/;
extends 'AI::MXNet::Callback';
=head1 NAME
AI::MXNet::Speedometer - A callback that logs training speed
=cut
=head1 DESCRIPTION
Calculate and log training speed periodically.
Parameters
----------
batch_size: int
batch_size of data
frequent: int
How many batches between calculations.
Defaults to calculating & logging every 50 batches.
auto_reset: Bool
Reset the metric after each log, defaults to true.
=cut
has 'batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'frequent' => (is => 'ro', isa => 'Int', default => 50);
has 'init' => (is => 'rw', isa => 'Int', default => 0);
has 'tic' => (is => 'rw', isa => 'Num', default => 0);
has 'last_count' => (is => 'rw', isa => 'Int', default => 0);
has 'auto_reset' => (is => 'ro', isa => 'Bool', default => 1);
method call(AI::MXNet::BatchEndParam $param)
{
my $count = $param->nbatch;
if($self->last_count > $count)
{
$self->init(0);
}
$self->last_count($count);
if($self->init)
{
if(($count % $self->frequent) == 0)
{
my $speed = $self->frequent * $self->batch_size / (time - $self->tic);
if(defined $param->eval_metric)
{
my $name_value = $param->eval_metric->get_name_value;
$param->eval_metric->reset if $self->auto_reset;
while(my ($name, $value) = each %{ $name_value })
{
AI::MXNet::Logging->info(
"Epoch[%d] Batch [%d]\tSpeed: %.2f samples/sec\tTrain-%s=%f",
$param->epoch, $count, $speed, $name, $value
);
}
}
else
{
AI::MXNet::Logging->info(
"Iter[%d] Batch [%d]\tSpeed: %.2f samples/sec",
$param->epoch, $count, $speed
);
}
$self->tic(time);
}
}
else
{
$self->init(1);
$self->tic(time);
}
}
*slice = \&call;
package AI::MXNet::ProgressBar;
use Mouse;
extends 'AI::MXNet::Callback';
=head1 NAME
AI::MXNet::ProgressBar - A callback to show a progress bar.
=head1 DESCRIPTION
Shows a progress bar.
Parameters
----------
total: Int
batch size, default is 1
length: Int
the length of the progress bar, default is 80 chars
=cut
has 'length' => (is => 'ro', isa => 'Int', default => 80);
has 'total' => (is => 'ro', isa => 'Int', required => 1);
method call(AI::MXNet::BatchEndParam $param)
{
my $count = $param->nbatch;
my $filled_len = int(0.5 + $self->length * $count / $self->total);
my $percents = int(100.0 * $count / $self->total) + 1;
my $prog_bar = ('=' x $filled_len) . ('-' x ($self->length - $filled_len));
print "[$prog_bar] $percents%\r";
}
*slice = \&call;
# Just logs the eval metrics at the end of an epoch.
package AI::MXNet::LogValidationMetricsCallback;
use Mouse;
extends 'AI::MXNet::Callback';
=head1 NAME
AI::MXNet::LogValidationMetricsCallback - A callback to log the eval metrics at the end of an epoch.
=cut
method call(AI::MXNet::BatchEndParam $param)
{
return unless defined $param->eval_metric;
my $name_value = $param->eval_metric->get_name_value;
while(my ($name, $value) = each %{ $name_value })
{
AI::MXNet::Logging->info(
"Epoch[%d] Validation-%s=%f",
$param->epoch, $name, $value
);
}
}
package AI::MXNet::Callback;
method Speedometer(@args)
{
AI::MXNet::Speedometer->new(
@args == 3 ?
(batch_size => $args[0], frequent => $args[1], auto_reset => $args[2])
: @args == 2 ?
(batch_size => $args[0], frequent => $args[1])
: (batch_size => $args[0])
)
}
method ProgressBar(@args)
{
AI::MXNet::ProgressBar->new(
@args == 2 ? (total => $args[0], 'length' => $args[1]) : (total => $args[0])
)
}
method LogValidationMetricsCallback()
{
AI::MXNet::LogValidationMetricsCallback->new
}
1;
lib/AI/MXNet/Context.pm view on Meta::CPAN
package AI::MXNet::Context;
use strict;
use warnings;
use Mouse;
use AI::MXNet::Types;
use AI::MXNet::Function::Parameters;
use constant devtype2str => { 1 => 'cpu', 2 => 'gpu', 3 => 'cpu_pinned' };
use constant devstr2type => { cpu => 1, gpu => 2, cpu_pinned => 3 };
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(device_type => $_[0])
if @_ == 1 and $_[0] =~ /^(?:cpu|gpu|cpu_pinned)$/;
return $class->$orig(
device_type => $_[0]->device_type,
device_id => $_[0]->device_id
) if @_ == 1 and blessed $_[0];
return $class->$orig(device_type => $_[0], device_id => $_[0])
if @_ == 2 and $_[0] =~ /^(?:cpu|gpu|cpu_pinned)$/;
return $class->$orig(@_);
};
has 'device_type' => (
is => 'rw',
isa => enum([qw[cpu gpu cpu_pinned]]),
default => 'cpu'
);
has 'device_type_id' => (
is => 'rw',
isa => enum([1, 2, 3]),
default => sub { devstr2type->{ shift->device_type } },
lazy => 1
);
has 'device_id' => (
is => 'rw',
isa => 'Int',
default => 0
);
use overload
'==' => sub {
my ($self, $other) = @_;
return 0 unless blessed($other) and $other->isa(__PACKAGE__);
return "$self" eq "$other";
},
'""' => sub {
my ($self) = @_;
return sprintf("%s(%s)", $self->device_type, $self->device_id);
};
=head1 NAME
AI::MXNet::Context - A device context.
=cut
=head1 DESCRIPTION
This class governs the device context of AI::MXNet::NDArray objects.
=cut
=head2
Constructing a context.
Parameters
----------
device_type : {'cpu', 'gpu'} or Context.
String representing the device type
device_id : int (default=0)
The device id of the device, needed for GPU
=cut
=head2 cpu
Returns a CPU context.
Parameters
----------
device_id : int, optional
The device id of the device. device_id is not needed for CPU.
This is included to make interface compatible with GPU.
Returns
-------
context : AI::MXNet::Context
The corresponding CPU context.
=cut
method cpu(Int $device_id=0)
{
return $self->new(device_type => 'cpu', device_id => $device_id);
}
=head2 gpu
Returns a GPU context.
Parameters
----------
device_id : int, optional
Returns
-------
context : AI::MXNet::Context
The corresponding GPU context.
=cut
method gpu(Int $device_id=0)
{
return $self->new(device_type => 'gpu', device_id => $device_id);
}
=head2 current_context
Returns the current context.
Returns
-------
$default_ctx : AI::MXNet::Context
=cut
method current_ctx()
{
return $AI::MXNet::current_ctx;
}
method deepcopy()
{
return __PACKAGE__->new(
device_type => $self->device_type,
device_id => $self->device_id
);
}
$AI::MXNet::current_ctx = __PACKAGE__->new(device_type => 'cpu', device_id => 0);
lib/AI/MXNet/Contrib/AutoGrad.pm view on Meta::CPAN
package AI::MXNet::Contrib::AutoGrad;
use strict;
use warnings;
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
use Scalar::Util qw(blessed);
=head1 NAME
AI::MXNet::AutoGrad - Autograd for NDArray.
=cut
=head2 set_is_training
Set status to training/not training. When training, graph will be constructed
for gradient computation. Operators will also run with ctx.is_train=True. For example,
Dropout will drop inputs randomly when is_train=True while simply passing through
if is_train=False.
Parameters
----------
is_train: bool
Returns
-------
previous state before this set.
=cut
method set_is_training(Bool $is_train)
{
my $prev = scalar(check_call(AI::MXNetCAPI::AutogradSetIsTraining($is_train ? 1 : 0)));
return $prev ? 1 : 0
}
=head2 mark_variables
Mark AI::MXNet::NDArrays as variables to compute gradient for autograd.
Parameters
----------
variables: array ref of AI::MXNet::NDArrays
gradients: array ref of AI::MXNet::NDArrays
grad_reqs: array ref of strings
=cut
method mark_variables(
ArrayRef[AI::MXNet::NDArray] $variables,
ArrayRef[AI::MXNet::NDArray] $gradients,
GradReq|ArrayRef[GradReq] $grad_reqs='write'
)
{
my @variable_handles = map { $_->handle } @{ $variables };
my @gradient_handles = map { $_->handle } @{ $gradients };
my @grad_reqs;
if(not ref $grad_reqs)
{
@grad_reqs = (GRAD_REQ_MAP->{ $grad_reqs }) x scalar(@variable_handles);
}
else
{
@grad_reqs = map { GRAD_REQ_MAP->{ $_ } } @{ $grad_reqs };
}
check_call(
AI::MXNetCAPI::AutogradMarkVariables(
scalar(@variable_handles),
\@variable_handles,
\@grad_reqs,
\@gradient_handles
)
);
}
=head2 backward
Compute the gradients of outputs w.r.t variables.
Parameters
----------
outputs: array ref of NDArray
out_grads: array ref of NDArray or undef
retain_graph: bool, defaults to false
=cut
method backward(
ArrayRef[AI::MXNet::NDArray] $outputs,
Maybe[ArrayRef[AI::MXNet::NDArray|Undef]] $out_grads=,
Bool $retain_graph=0
)
{
my @output_handles = map { $_->handle } @{ $outputs };
if(not defined $out_grads)
{
check_call(
AI::MXNetCAPI::AutogradBackward(
scalar(@output_handles),
\@output_handles,
[],
$retain_graph
)
);
return;
}
my @ograd_handles;
for my $arr (@$out_grads)
{
push @ograd_handles, (defined $arr ? $arr->handle : undef);
}
assert(
(@ograd_handles == @output_handles),
"outputs and out_grads must have the same length"
);
check_call(
AI::MXNetCAPI::AutogradBackward(
scalar(@output_handles),
\@output_handles,
\@ograd_handles,
$retain_graph
)
);
}
=head2 compute_gradient
Compute the gradients of outputs w.r.t variables.
Parameters
----------
outputs: array ref of NDArray
Returns
-------
gradients: array ref of NDArray
=cut
method compute_gradient(ArrayRef[AI::MXNet::NDArray] $outputs)
{
__PACKAGE__->backward($outputs);
}
=head2 grad_and_loss
Return function that computes both gradient of arguments and loss value.
Parameters
----------
func: a perl sub
The forward (loss) function.
argnum: an int or a array ref of int
The index of argument to calculate gradient for.
Returns
-------
grad_and_loss_func: a perl sub
A function that would compute both the gradient of arguments and loss value.
=cut
method grad_and_loss(CodeRef $func, Maybe[Int|ArrayRef[Int]] $argnum=)
{
return sub {
my @args = @_;
my @variables = @_;
if(defined $argnum)
{
my @argnum = ref $argnum ? @$argnum : ($argnum);
@variables = map { $_[$_] } @argnum;
}
map {
assert(
(blessed($_) and $_->isa('AI::MXNet::NDArray')),
"type of autograd input should NDArray")
} @variables;
my @grads = map { $_->zeros_like } @variables;
__PACKAGE__->mark_variables(\@variables, \@grads);
my $prev = __PACKAGE__->set_is_training(1);
my $outputs = $func->(@args);
__PACKAGE__->set_is_training(0) unless $prev;
__PACKAGE__->compute_gradient(ref $outputs eq 'ARRAY' ? $outputs : [$outputs]);
return (\@grads, $outputs);
};
}
=head2 grad
Return function that computes gradient of arguments.
Parameters
----------
func: a perl sub
The forward (loss) function.
argnum: an int or arry ref of int
The index of argument to calculate gradient for.
Returns
-------
grad_func: a perl function
A function that would compute the gradient of arguments.
=cut
method grad(CodeRef $func, Maybe[Int|ArrayRef[Int]] $argnum=)
{
my $grad_with_loss_func = __PACKAGE__->grad_and_loss($func, $argnum);
return sub {
return ($grad_with_loss_func->(@_))[0];
};
}
method train_section(CodeRef $sub)
{
my $prev = __PACKAGE__->set_is_training(1);
$sub->();
__PACKAGE__->set_is_training(0) unless $prev;
}
method test_section(CodeRef $sub)
{
my $prev = __PACKAGE__->set_is_training(0);
$sub->();
__PACKAGE__->set_is_training(1) if $prev;
}
1;
lib/AI/MXNet/Contrib/NDArray.pm view on Meta::CPAN
package AI::MXNet::Contrib::NDArray;
use strict;
use warnings;
sub AUTOLOAD {
my $sub = $AI::MXNet::Contrib::NDArray::AUTOLOAD;
$sub =~ s/.*:://;
$sub = "_contrib_$sub";
shift;
return AI::MXNet::NDArray->$sub(@_);
}
1;
lib/AI/MXNet/Contrib/Symbol.pm view on Meta::CPAN
package AI::MXNet::Contrib::Symbol;
use strict;
use warnings;
sub AUTOLOAD {
my $sub = $AI::MXNet::Contrib::Symbol::AUTOLOAD;
$sub =~ s/.*:://;
$sub = "_contrib_$sub";
shift;
return AI::MXNet::Symbol->$sub(@_);
}
1;
lib/AI/MXNet/Executor.pm view on Meta::CPAN
has 'handle' => (is => 'ro', isa => 'ExecutorHandle', required => 1);
has 'arg_arrays' => (is => 'rw', isa => 'Maybe[ArrayRef[AI::MXNet::NDArray]]');
has 'grad_arrays' => (is => 'rw', isa => 'Maybe[ArrayRef[Undef|AI::MXNet::NDArray]]');
has 'aux_arrays' => (is => 'rw', isa => 'Maybe[ArrayRef[AI::MXNet::NDArray]]');
has '_symbol' => (is => 'rw', init_arg => 'symbol', isa => 'AI::MXNet::Symbol');
has '_ctx' => (is => 'rw', init_arg => 'ctx', isa => 'AI::MXNet::Context' );
has '_grad_req' => (is => 'rw', init_arg => 'grad_req', isa => 'Maybe[Str|ArrayRef[Str]|HashRef[Str]]');
has '_group2ctx' => (is => 'rw', init_arg => 'group2ctx', isa => 'Maybe[HashRef[AI::MXNet::Context]]');
has '_monitor_callback' => (is => 'rw', isa => 'CodeRef');
has [qw/_arg_dict
_grad_dict
_aux_dict
_output_dict
outputs
_output_dirty/] => (is => 'rw', init_arg => undef);
=head1 NAME
AI::MXNet::Executor - The actual executing object of MXNet.
=head2 new
Constructor, used by AI::MXNet::Symbol->bind and by AI::MXNet::Symbol->simple_bind.
Parameters
----------
handle: ExecutorHandle
ExecutorHandle is generated by calling bind.
See Also
--------
AI::MXNet::Symbol->bind : how to create the AI::MXNet::Executor.
=cut
sub BUILD
{
my $self = shift;
my ($symbol, $ctx, $grad_req, $group2ctx)
=
($self->_symbol, $self->_ctx, $self->_grad_req, $self->_group2ctx);
$symbol = $symbol->deepcopy;
$ctx = $ctx->deepcopy;
if(ref $grad_req)
{
if(ref $grad_req eq 'ARRAY')
{
$grad_req = [ @{ $grad_req }];
}
elsif(ref $grad_req eq 'HASH')
{
$grad_req = { %{ $grad_req } };
}
}
if(ref $group2ctx)
{
$group2ctx = { %{ $group2ctx } };
}
$self->_symbol($symbol);
$self->_ctx($ctx);
$self->_grad_req($grad_req);
$self->_group2ctx($group2ctx);
$self->outputs($self->_get_outputs);
}
sub DEMOLISH
{
check_call(AI::MXNetCAPI::ExecutorFree(shift->handle));
}
# Get the dictionary given name and ndarray pairs.
func _get_dict(
ArrayRef[Str] $names,
ArrayRef[Maybe[AI::MXNet::NDArray]] $ndarrays
)
{
my %nset = ();
for my $nm (@{ $names })
{
if(exists $nset{ $nm })
{
confess("Duplicate names detected, @$names")
}
$nset{ $nm }++;
}
my %ret;
@ret{ @{ $names } } = @{ $ndarrays };
return \%ret;
}
=head2 outputs
The output ndarrays bound to this executor.
Returns
-------
An array ref with AI::MXNet::NDArray objects bound to the heads of the executor.
=cut
method _get_outputs()
{
return [
map {
AI::MXNet::NDArray->new(handle => $_)
}
@{ check_call(AI::MXNetCAPI::ExecutorOutputs($self->handle)) }
];
}
=head2 forward
Calculate the outputs specified by the bound symbol.
Parameters
----------
$is_train=0: bool, optional
whether this forward is for evaluation purpose. If True,
a backward call is expected to follow. Otherwise following
backward is invalid.
%kwargs
Additional specification of input arguments.
Examples
--------
>>> # doing forward by specifying data
>>> $texec->forward(1, data => $mydata);
>>> # doing forward by not specifying things, but copy to the executor before hand
>>> $mydata->copyto($texec->arg_dict->{'data'});
>>> $texec->forward(1);
>>> # doing forward by specifying data and get outputs
>>> my $outputs = $texec->forward(1, data => $mydata);
>>> print $outputs->[0]->aspdl;
=cut
method forward(Int $is_train=0, %kwargs)
{
if(%kwargs)
{
my $arg_dict = $self->arg_dict;
while (my ($name, $array) = each %kwargs)
{
if(not find_type_constraint('AcceptableInput')->check($array))
{
confess('only accept keyword argument of NDArrays/PDLs/Perl Array refs');
}
if(not exists $arg_dict->{ $name })
{
confess("unknown argument $name");
}
if(not blessed($array) or not $array->isa('AI::MXNet::NDArray'))
{
$array = AI::MXNet::NDArray->array($array);
}
if(join(',', @{ $arg_dict->{$name}->shape }) ne join(',', @{ $array->shape }))
{
my $expected = $arg_dict->{$name}->shape;
my $got = $array->shape;
confess("Shape not match! Argument $name, need: @$expected, received: @$got'");
}
$arg_dict->{ $name } .= $array;
}
}
check_call(AI::MXNetCAPI::ExecutorForward(
$self->handle,
$is_train
)
);
if($self->_output_dirty)
{
AI::MXNet::Logging->warning(
"Calling forward the second time after forward(is_train=1) "
."without calling backward first. Is this intended?"
);
}
$self->_output_dirty($is_train);
return $self->outputs;
}
=head2 backward
Do a backward pass to get the gradient of the arguments.
Parameters
----------
out_grads : NDArray or an array ref of NDArrays or hash ref of NDArrays, optional.
The gradient on the outputs to be propagated back.
This parameter is only needed when bind is called
on outputs that are not a loss function.
=cut
method backward(Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]|HashRef[AI::MXNet::NDArray]] $out_grads=)
{
$out_grads //= [];
if(blessed $out_grads)
{
$out_grads = [$out_grads];
}
elsif(ref $out_grads eq 'HASH')
{
$out_grads = [ @{ $out_grads }{ @{ $self->symbol->list_outputs() } } ];
}
check_call(
AI::MXNetCAPI::ExecutorBackward(
$self->handle,
scalar(@{ $out_grads }),
[map { $_->handle } @{ $out_grads }]
)
);
if(not $self->_output_dirty)
{
AI::MXNet::Logging->warning(
"Calling backward without calling forward(is_train=True) "
."first. Behavior is undefined."
);
}
$self->_output_dirty(0);
}
=head2 set_monitor_callback
Install callback.
Parameters
----------
callback : subref
Takes a string and an NDArrayHandle.
=cut
method set_monitor_callback(CodeRef $callback)
{
$self->_monitor_callback($callback);
check_call(
AI::MXNetCAPI::ExecutorSetMonitorCallback(
$self->handle,
$self->_monitor_callback
)
);
}
=head2 arg_dict
Get a hash ref representation of the argument arrays.
Returns
-------
arg_dict : HashRef[AI::MXNet::NDArray]
The map that maps a name of the arguments to the NDArrays.
=cut
method arg_dict()
{
if(not defined $self->_arg_dict)
{
$self->_arg_dict(_get_dict(
$self->_symbol->list_arguments(),
$self->arg_arrays
)
);
}
return $self->_arg_dict;
}
=head2 grad_dict
Get a hash ref representation of the gradient arrays.
Returns
-------
grad_dict : HashRef[AI::MXNet::NDArray]
The map that maps a name of the arguments to the gradient NDArrays.
=cut
method grad_dict()
{
if(not defined $self->_grad_dict)
{
$self->_grad_dict(_get_dict(
$self->_symbol->list_arguments(),
$self->grad_arrays
)
);
}
return $self->_grad_dict;
}
=head2 aux_dict
Get a hash ref representation of the auxiliary states arrays.
Returns
-------
aux_dict : HashRef[AI::MXNet::NDArray]
The map that maps a name of the auxiliary states to the NDArrays.
=cut
method aux_dict()
{
if(not defined $self->_aux_dict)
{
$self->_aux_dict(_get_dict(
$self->_symbol->list_auxiliary_states(),
$self->aux_arrays()
)
);
}
return $self->_aux_dict;
}
=head2 output_dict
Get a hash ref representation of the output arrays.
Returns
-------
output_dict : HashRef[AI::MXNet::NDArray]
The map that maps a name of the outputs to the NDArrays.
=cut
method output_dict()
{
if(not defined $self->_output_dict)
{
$self->_output_dict(_get_dict(
$self->_symbol->list_outputs(),
$self->outputs
)
);
}
return $self->_output_dict;
}
=head2 copy_params_from
Copy parameters from arg_params, aux_params into the executor's internal array.
Parameters
----------
arg_params : HashRef[AI::MXNet::NDArray]
Parameters, hash ref of name to NDArray of arguments
aux_params : Maybe[HashRef[AI::MXNet::NDArray]], optional
Parameters, hash ref of name to NDArray of auxiliary states.
allow_extra_params : boolean, optional
Whether to allow extra parameters that are not needed by symbol
If this is True, no error will be thrown when arg_params or aux_params
contain extra parameters that is not needed by the executor.
=cut
method copy_params_from(
HashRef[AI::MXNet::NDArray] $arg_params,
Maybe[HashRef[AI::MXNet::NDArray]] $aux_params=,
Maybe[Bool] $allow_extra_params=
)
{
my %arg_dict = %{ $self->arg_dict };
while (my ($name, $array) = each %{ $arg_params })
{
if(exists $arg_dict{ $name })
{
my $dst = $arg_dict{ $name };
$array->astype($dst->dtype)->copyto($dst);
}
elsif(not $allow_extra_params)
{
confess("Found name \"$name\" that is not in the arguments");
}
}
if(defined $aux_params)
{
my %aux_dict = %{ $self->aux_dict };
while (my ($name, $array) = each %{ $aux_params })
{
if(exists $aux_dict{ $name })
{
my $dst = $aux_dict{ $name };
$array->astype($dst->dtype)->copyto($dst);
}
elsif(not $allow_extra_params)
{
confess("Found name \"$name\" that is not in the arguments");
}
}
}
}
=head2 reshape
Returns new executor with the same symbol and shared memory,
but different input/output shapes.
For runtime reshaping, variable length sequences, etc.
The returned executor shares state with the current one,
and cannot be used in parallel with it.
Parameters
----------
$kwargs : HashRef[Shape]
new shape for arguments.
:$partial_shaping : bool
Whether to allow changing the shape of unspecified arguments.
:$allow_up_sizing : bool
Whether to allow allocating new ndarrays that's larger than the original.
Returns
-------
$exec : AI::MXNet::Executor
A new executor that shares memory with self.
=cut
method reshape(HashRef[Shape] $kwargs, Int :$partial_shaping=0, Int :$allow_up_sizing=0)
{
my ($arg_shapes, undef, $aux_shapes) = $self->_symbol->infer_shape(%{ $kwargs });
confess("Insufficient argument shapes provided.")
unless defined $arg_shapes;
my %new_arg_dict;
my %new_grad_dict;
my $i = 0;
for my $name (@{ $self->_symbol->list_arguments() })
{
my $new_shape = $arg_shapes->[$i];
my $arr = $self->arg_arrays->[$i];
my $darr;
if(@{ $self->grad_arrays })
{
$darr = $self->grad_arrays->[$i];
}
if(
$partial_shaping
or
exists $kwargs->{ $name }
or
join(',', @{ $new_shape }) eq join(',', @{ $arr->shape })
)
{
if(AI::MXNet::NDArray->size($new_shape) > $arr->size)
{
confess(
"New shape of arg:$name larger than original. "
."First making a big executor and then down sizing it "
."is more efficient than the reverse."
."If you really want to up size, set \$allow_up_sizing=1 "
."to enable allocation of new arrays."
) unless $allow_up_sizing;
$new_arg_dict{ $name } = AI::MXNet::NDArray->empty(
$new_shape,
ctx => $arr->context,
dtype => $arr->dtype
);
if(defined $darr)
{
$new_grad_dict{ $name } = AI::MXNet::NDArray->empty(
$new_shape,
ctx => $darr->context,
dtype => $arr->dtype
);
}
}
else
{
$new_arg_dict{ $name } = $arr->reshape($new_shape);
if(defined $darr)
{
$new_grad_dict{ $name } = $darr->reshape($new_shape);
}
}
}
else
{
confess(
"Shape of unspecified array arg:$name changed. "
."This can cause the new executor to not share parameters "
."with the old one. Please check for error in network."
."If this is intended, set partial_shaping=True to suppress this warning."
);
}
$i++;
}
my %new_aux_dict;
$i = 0;
for my $name (@{ $self->_symbol->list_auxiliary_states() })
{
my $new_shape = $aux_shapes->[$i];
my $arr = $self->aux_arrays->[$i];
if($partial_shaping or join(',', @{ $new_shape }) eq join (',', @{ $arr->shape }))
{
if(AI::MXNet::NDArray->size($new_shape) > $arr->size)
{
confess(
"New shape of arg:$name larger than original. "
."First making a big executor and then down sizing it "
."is more efficient than the reverse."
."If you really want to up size, set \$allow_up_sizing=1 "
."to enable allocation of new arrays."
) unless $allow_up_sizing;
$new_aux_dict{ $name } = AI::MXNet::NDArray->empty(
$new_shape,
ctx => $arr->context,
dtype => $arr->dtype
);
}
else
{
$new_aux_dict{ $name } = $arr->reshape($new_shape);
}
}
else
{
confess(
"Shape of unspecified array aux:$name changed. "
."This can cause the new executor to not share parameters "
."with the old one. Please check for error in network."
."If this is intended, set partial_shaping=True to suppress this warning."
);
}
$i++;
}
return $self->_symbol->bind(
ctx => $self->_ctx,
args => \%new_arg_dict,
args_grad => \%new_grad_dict,
grad_req => $self->_grad_req,
aux_states => \%new_aux_dict,
group2ctx => $self->_group2ctx,
shared_exec => $self
);
}
=head2 debug_str
A debug string about the internal execution plan.
Returns
-------
debug_str : string
Debug string of the executor.
=cut
method debug_str()
{
return scalar(check_call(AI::MXNetCAPI::ExecutorPrint($self->handle)));
}
1;
lib/AI/MXNet/Executor/Group.pm view on Meta::CPAN
package AI::MXNet::Executor::Group;
use strict;
use warnings;
use Scalar::Util qw(blessed);
use List::Util qw(sum min);
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
=head1 NAME
AI::MXNet::Executor::Group - Manager for a group of executors working in different contexts.
=cut
func _split_input_slice($batch_size, $work_load_list)
{
my $total_work_load = sum(@{ $work_load_list });
my @batch_num_list = map { # perl does not have builtin round
int(($_ * $batch_size / $total_work_load) + 0.5)
} @{ $work_load_list };
my $batch_num_sum = sum(@batch_num_list);
my @slices;
if($batch_num_sum < $batch_size)
{
$batch_num_list[-1] += $batch_size - $batch_num_sum;
}
my $end = 0;
for my $batch_num (@batch_num_list)
{
my $begin = int(min($end, $batch_size));
$end = int(min($begin + $batch_num, $batch_size));
if($begin >= $end)
{
confess('Too many slices such that some splits are empty');
}
push @slices, [$begin, $end];
}
return \@slices;
}
# Load a array ref of arrays into a array ref of arrays specified by slices
func _load_general($data, $targets, $major_axis)
{
zip(sub {
my ($d_src, $d_targets, $axis) = @_;
if(blessed($d_targets) and $d_targets->isa('AI::MXNet::NDarray'))
{
$d_src->copyto($d_targets);
}
elsif(ref $d_targets eq 'ARRAY' and blessed $d_targets->[0])
{
zip(sub {
my ($src, $dst) = @_;
$src->copyto($dst);
}, $d_src, $d_targets);
}
else
{
for my $d (@{ $d_targets })
{
my ($slice_idx, $d_dst) = @{ $d };
if($axis >= 0)
{
my $shape = $d_src->shape;
my $do_crop = ($slice_idx->[0] != 0 or $shape->[$axis] != $slice_idx->[1]);
if($do_crop)
{
if($axis == 0)
{
$d_src->slice([$slice_idx->[0], $slice_idx->[1] - 1])->copyto($d_dst);
}
else
{
if($d_src->context == $d_dst->context)
{
AI::MXNet::NDArray->slice_axis(
$d_src,
{
axis => $axis,
begin => $slice_idx->[0],
end => $slice_idx->[1],
out => $d_dst
}
);
}
else
{
my $d_dst_copy = AI::MXNet::NDArray->slice_axis(
$d_src,
{
axis => $axis,
begin => $slice_idx->[0],
end => $slice_idx->[1]
}
);
$d_dst_copy->copyto($d_dst);
}
}
}
else
{
$d_src->copyto($d_dst);
}
}
else
{
$d_src->copyto($d_dst);
}
}
}
}, $data, $targets, $major_axis);
}
# Load data into sliced arrays
func _load_data($batch, $targets, $major_axis)
{
_load_general($batch->data, $targets, $major_axis);
}
# Load label into sliced arrays
func _load_label($batch, $targets, $major_axis)
{
_load_general($batch->label, $targets, $major_axis);
}
# Merge outputs that live on multiple context into one, so that they look
# like living on one context.
func _merge_multi_context($outputs, $major_axis)
{
my @rets;
zip(sub {
my ($tensors, $axis) = @_;
if($axis >= 0)
{
if(@$tensors == 1)
{
push @rets, $tensors->[0];
}
else
{
my $ctx = $tensors->[0]->context;
push @rets, AI::MXNet::NDArray->concat((map { $_->as_in_context($ctx) } @$tensors), { dim => $axis });
}
}
else
{
# negative axis means the there is no batch_size axis, and all the
# results should be the same on each device. We simply take the
# first one, without checking they are actually the same
push @rets, $tensors->[0];
}
}, $outputs, $major_axis);
return \@rets;
}
## TODO
## this class is here because of https://github.com/gfx/p5-Mouse/pull/67
## once 2.4.7 version of Mouse in Ubuntu for affected Perl version
## these accessors should be merged into main class
package AI::MXNet::DataParallelExecutorGroup::_private;
use Mouse;
has [qw/output_layouts label_layouts arg_names aux_names
batch_size slices execs data_arrays
label_arrays param_arrays grad_arrays aux_arrays
data_layouts shared_data_arrays input_grad_arrays
_default_execs state_arrays/
] => (is => 'rw', init_arg => undef);
package AI::MXNet::DataParallelExecutorGroup;
use Mouse;
use AI::MXNet::Base;
use List::Util qw(sum);
=head1 DESCRIPTION
DataParallelExecutorGroup is a group of executors that lives on a group of devices.
This is a helper class used to implement data parallelization. Each mini-batch will
be split and run on the devices.
Parameters for constructor
----------
symbol : AI::MXNet::Symbol
The common symbolic computation graph for all executors.
contexts : ArrayRef[AI::MXNet::Context]
A array ref of contexts.
workload : ArrayRef[Num]
If not undef, could be an array ref of numbers that specify the workload to be assigned
to different context. Larger number indicate heavier workload.
data_shapes : ArrayRef[NameShape|AI::MXNet::DataDesc]
Should be a array ref of [name, shape] array refs, for the shapes of data. Note the order is
important and should be the same as the order that the `DataIter` provide the data.
label_shapes : Maybe[ArrayRef[NameShape|AI::MXNet::DataDesc]]
Should be a array ref of [$name, $shape] array refs, for the shapes of label. Note the order is
important and should be the same as the order that the `DataIter` provide the label.
param_names : ArrayRef[Str]
A array ref of strings, indicating the names of parameters (e.g. weights, filters, etc.)
in the computation graph.
for_training : Bool
Indicate whether the executors should be bind for training. When not doing training,
the memory for gradients will not be allocated.
inputs_need_grad : Bool
Indicate whether the gradients for the input data should be computed. This is currently
not used. It will be useful for implementing composition of modules.
shared_group : AI::MXNet::DataParallelExecutorGroup
Default is undef. This is used in bucketing. When not undef, it should be a executor
group corresponding to a different bucket. In other words, it will correspond to a different
symbol with the same set of parameters (e.g. unrolled RNNs with different lengths).
In this case the memory regions of the parameters will be shared.
logger : Logger
Default is AI::MXNet::Logging->get_logger.
fixed_param_names: Maybe[ArrayRef[Str]]
Indicate parameters to be fixed during training. Parameters in this array ref will not allocate
space for gradient, nor do gradient calculation.
grad_req : ArrayRef[GradReq]|HashRef[GradReq]|GradReq
Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
(default to 'write').
Can be specified globally (str) or for each argument (array ref, hash ref).
state_names: Maybe[ArrayRef[Str]]
=cut
has 'symbol' => (is => 'ro', isa => 'AI::MXNet::Symbol', required => 1);
has 'contexts' => (is => 'ro', isa => 'ArrayRef[AI::MXNet::Context]', required => 1);
has 'workload' => (is => 'ro', isa => 'ArrayRef[Num]', default => sub { [] });
has 'data_shapes' => (is => 'rw', isa => 'ArrayRef[NameShape|AI::MXNet::DataDesc]', required => 1);
has 'label_shapes' => (is => 'rw', isa => 'Maybe[ArrayRef[NameShape|AI::MXNet::DataDesc]]');
has 'param_names' => (is => 'ro', isa => 'ArrayRef[Str]', required => 1);
has 'for_training' => (is => 'ro', isa => 'Bool', required => 1);
has 'inputs_need_grad' => (is => 'ro', isa => 'Bool', default => 0);
has 'shared_group' => (is => 'ro', isa => 'Maybe[AI::MXNet::DataParallelExecutorGroup]');
has 'logger' => (is => 'ro', default => sub { AI::MXNet::Logging->get_logger });
has 'fixed_param_names' => (is => 'rw', isa => 'Maybe[ArrayRef[Str]]');
has 'state_names' => (is => 'rw', isa => 'Maybe[ArrayRef[Str]]');
has 'grad_req' => (is => 'rw', isa => 'ArrayRef[GradReq]|HashRef[GradReq]|GradReq', default=>'write');
has '_p' => (is => 'rw', init_arg => undef);
sub BUILD
{
my $self = shift;
my $p = AI::MXNet::DataParallelExecutorGroup::_private->new;
$p->arg_names($self->symbol->list_arguments);
$p->aux_names($self->symbol->list_auxiliary_states);
$p->execs([]);
$self->_p($p);
$self->grad_req('null') if not $self->for_training;
$self->fixed_param_names([]) unless defined $self->fixed_param_names;
$self->state_names([]) unless defined $self->state_names;
my $data_shapes = [];
for my $d (@{ $self->data_shapes })
{
$d = AI::MXNet::DataDesc->new(name => $d->[0], shape => $d->[1])
unless blessed $d;
push @{ $data_shapes }, $d;
}
$self->data_shapes($data_shapes);
if(defined $self->label_shapes)
{
my $label_shapes = [];
for my $l (@{ $self->label_shapes })
{
$l = AI::MXNet::DataDesc->new(name => $l->[0], shape => $l->[1])
unless blessed $l;
push @{ $label_shapes }, $l;
}
$self->label_shapes($label_shapes);
}
my %data_names = map { $_->name => 1 } @{ $self->data_shapes };
my %param_names = map { $_ => 1 } @{ $self->param_names };
my %fixed_param_names = map { $_ => 1 } @{ $self->fixed_param_names };
my %grad_req;
if(not ref $self->grad_req)
{
for my $k (@{ $self->_p->arg_names })
{
if(exists $param_names{ $k })
{
$grad_req{$k} = exists $fixed_param_names{ $k } ? 'null' : $self->grad_req;
}
elsif(exists $data_names{ $k })
{
$grad_req{$k} = $self->inputs_need_grad ? $self->grad_req : 'null';
}
else
{
$grad_req{$k} = 'null';
}
}
}
elsif(ref $self->grad_req eq 'ARRAY')
{
@grad_req{ @{ $self->_p->arg_names } } = @{ $self->grad_req };
}
else
{
for my $k (@{ $self->_p->arg_names })
{
if(exists $param_names{ $k })
{
$grad_req{$k} = exists $fixed_param_names{ $k } ? 'null' : 'write';
}
elsif(exists $data_names{ $k })
{
$grad_req{$k} = $self->inputs_need_grad ? 'write' : 'null';
}
else
{
$grad_req{$k} = 'null';
}
}
%grad_req = (%grad_req, %{ $self->grad_req });
}
$self->grad_req(\%grad_req);
if(defined $self->shared_group)
{
$self->_p->shared_data_arrays($self->shared_group->_p->shared_data_arrays);
}
else
{
$self->_p->shared_data_arrays([map { +{} } 0..@{ $self->contexts }-1]);
}
$self->_p->output_layouts([
map {
AI::MXNet::DataDesc->get_batch_axis($self->symbol->slice($_)->attr('__layout__'))
} @{ $self->symbol->list_outputs }
]);
$self->bind_exec($self->data_shapes, $self->label_shapes, $self->shared_group);
}
=decide_slices
Decide the slices for each context according to the workload.
Parameters
----------
$data_shapes : ArrayRef[AI::MXNet::DataDesc]
=cut
method decide_slices(ArrayRef[AI::MXNet::DataDesc] $data_shapes)
{
confess("empty data_shapes array") unless @{ $data_shapes } > 0;
my $major_axis = [map { AI::MXNet::DataDesc->get_batch_axis($_->layout) } @{ $data_shapes }];
zip(sub {
my ($desc, $axis) = @_;
return if($axis == -1);
my $batch_size = $desc->shape->[$axis];
if(defined $self->_p->batch_size)
{
confess(
"all data must have the same batch size: "
. sprintf("batch_size = %d, but ", $self->_p->batch_size)
. sprintf("%s has shape %s", $desc->name, '('. join(',', @{ $desc->shape }) . ')')
) unless $batch_size == $self->_p->batch_size;
}
else
{
$self->_p->batch_size($batch_size);
$self->_p->slices(AI::MXNet::Executor::Group::_split_input_slice($self->_p->batch_size, $self->workload));
}
}, $data_shapes, $major_axis);
return $major_axis;
}
# Collect internal arrays from executors.
method _collect_arrays()
{
# convenient data structures
$self->_p->data_arrays([]);
for my $d (@{ $self->data_shapes })
{
my $name = $d->name;
my @tmp;
for my $i (0..@{ $self->_p->execs }-1)
{
push @tmp, [ $self->_p->slices->[$i], $self->_p->execs->[$i]->arg_dict->{$name} ];
}
push @{ $self->_p->data_arrays }, \@tmp;
}
if(defined $self->label_shapes)
{
$self->_p->label_arrays([]);
for my $l (@{ $self->label_shapes })
{
my $name = $l->name;
my @tmp;
for my $i (0..@{ $self->_p->execs }-1)
{
push @tmp, [ $self->_p->slices->[$i], $self->_p->execs->[$i]->arg_dict->{$name} ];
}
push @{ $self->_p->label_arrays }, \@tmp;
}
}
$self->_p->param_arrays([]);
my %param_names = map { $_ => 1 } @{ $self->param_names };
for my $i (0..@{ $self->_p->arg_names }-1)
{
my $name = $self->_p->arg_names->[$i];
if(exists $param_names{$name})
{
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->arg_arrays->[$i];
}
push @{ $self->_p->param_arrays }, \@tmp;
}
}
$self->_p->state_arrays([]);
for my $i (0..@{ $self->state_names }-1)
{
my $name = $self->state_names->[$i];
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->arg_dict->{$name};
}
push @{ $self->_p->state_arrays }, \@tmp;
}
if($self->for_training)
{
$self->_p->grad_arrays([]);
for my $i (0..@{ $self->_p->arg_names }-1)
{
my $name = $self->_p->arg_names->[$i];
if(exists $param_names{$name})
{
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->grad_arrays->[$i];
}
push @{ $self->_p->grad_arrays }, \@tmp;
}
}
}
my @data_names = map { $_->name } @{ $self->data_shapes };
my $j = 0; my %arg_names = map { $_ => $j++ } @{ $self->_p->arg_names };
if($self->inputs_need_grad)
{
$self->_p->input_grad_arrays([]);
for my $name (@data_names)
{
next unless exists $arg_names{$name};
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->grad_arrays->[$arg_names{$name}];
}
push @{ $self->_p->input_grad_arrays }, \@tmp;
}
}
$self->_p->aux_arrays([]);
for my $i (0..@{ $self->_p->aux_names }-1)
{
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->aux_arrays->[$i];
}
push @{ $self->_p->aux_arrays }, \@tmp;
}
}
=head2 bind_exec
Bind executors on their respective devices.
Parameters
----------
$data_shapes : ArrayRef[AI::MXNet::DataDesc]
$label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]]
$shared_group : Maybe[AI::MXNet::DataParallelExecutorGroup]
$reshape : Bool
=cut
method bind_exec(
ArrayRef[AI::MXNet::DataDesc] $data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc]] $label_shapes=,
Maybe[AI::MXNet::DataParallelExecutorGroup] $shared_group=,
Bool $reshape=0
)
{
assert($reshape or not @{ $self->_p->execs });
$self->_p->batch_size(undef);
# calculate workload and bind executors
$self->_p->data_layouts($self->decide_slices($data_shapes));
# call it to make sure labels has the same batch size as data
if(defined $label_shapes)
{
$self->_p->label_layouts($self->decide_slices($label_shapes));
}
for my $i (0..@{ $self->contexts }-1)
{
my $data_shapes_i = $self->_sliced_shape($data_shapes, $i, $self->_p->data_layouts);
my $label_shapes_i = [];
if(defined $label_shapes)
{
$label_shapes_i = $self->_sliced_shape($label_shapes, $i, $self->_p->label_layouts);
}
if($reshape)
{
my %combined_hash = map { $_->name => $_->shape } (@{ $data_shapes_i }, @{ $label_shapes_i });
$self->_p->execs->[$i] = $self->_p->_default_execs->[$i]->reshape(
\%combined_hash,
allow_up_sizing => 1,
);
}
else
{
push @{ $self->_p->execs }, $self->_bind_ith_exec($i, $data_shapes_i, $label_shapes_i, $shared_group);
}
}
$self->data_shapes($data_shapes);
$self->label_shapes($label_shapes);
$self->_collect_arrays;
}
=head2 reshape
Reshape executors.
Parameters
----------
$data_shapes : ArrayRef[AI::MXNet::DataDesc]
$label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]]
=cut
method reshape(
ArrayRef[AI::MXNet::DataDesc] $data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc]] $label_shapes=
)
{
return if($data_shapes eq $self->data_shapes and $label_shapes eq $self->label_shapes);
if (not defined $self->_p->_default_execs)
{
$self->_p->_default_execs([@{ $self->_p->execs }]);
}
$self->bind_exec($data_shapes, $label_shapes, undef, 1);
}
=head2 set_params
Assign, i.e. copy parameters to all the executors.
Parameters
----------
$arg_params : HashRef[AI::MXNet::NDArray]
A dictionary of name to AI::MXNet::NDArray parameter mapping.
$aux_params : HashRef[AI::MXNet::NDArray]
A dictionary of name to AI::MXNet::NDArray auxiliary variable mapping.
=cut
method set_params(HashRef[AI::MXNet::NDArray] $arg_params, HashRef[AI::MXNet::NDArray] $aux_params, Bool $allow_extra=0)
{
$_->copy_params_from($arg_params, $aux_params, $allow_extra) for @{ $self->_p->execs };
}
=head2 get_params
Copy data from each executor to arg_params and aux_params.
Parameters
----------
$arg_params : HashRef[AI::MXNet::NDArray]
target parameter arrays
$aux_params : HashRef[AI::MXNet::NDArray]
target aux arrays
Notes
-----
- This function will inplace update the NDArrays in arg_params and aux_params.
=cut
method get_params(HashRef[AI::MXNet::NDArray] $arg_params, HashRef[AI::MXNet::NDArray] $aux_params)
{
my $weight = 0;
zip(sub {
my ($name, $block) = @_;
my $weight = sum(map { $_->copyto(AI::MXNet::Context->cpu) } @{ $block }) / @{ $block };
$weight->astype($arg_params->{$name}->dtype)->copyto($arg_params->{$name});
}, $self->param_names, $self->_p->param_arrays);
zip(sub {
my ($name, $block) = @_;
my $weight = sum(map { $_->copyto(AI::MXNet::Context->cpu) } @{ $block }) / @{ $block };
$weight->astype($aux_params->{$name}->dtype)->copyto($aux_params->{$name});
}, $self->_p->aux_names, $self->_p->aux_arrays);
}
method get_states($merge_multi_context=1)
{
assert((not $merge_multi_context), "merge_multi_context=True is not supported for get_states yet.");
return $self->_p->state_arrays;
}
method set_states($states, $value)
{
if(defined $states)
{
assert((not defined $value), "Only one of states & value can be specified.");
AI::MXNet::Executor::Group::_load_general($states, $self->_p->state_arrays, [(0)x@{ $states }]);
}
else
{
assert((defined $value), "At least one of states & value must be specified.");
assert((not defined $states), "Only one of states & value can be specified.");
for my $d_dst (@{ $self->_p->state_arrays })
{
for my $dst (@{ $d_dst })
{
$dst .= $value;
}
}
}
}
=head2 forward
Split the data_batch according to a workload and run forward on each devices.
Parameters
----------
data_batch : AI::MXNet::DataBatch
Or could be any object implementing similar interface.
is_train : bool
The hint for the backend, indicating whether we are during training phase.
Default is undef, then the value $self->for_training will be used.
=cut
method forward(AI::MXNet::DataBatch $data_batch, Maybe[Bool] $is_train=)
{
AI::MXNet::Executor::Group::_load_data($data_batch, $self->_p->data_arrays, $self->_p->data_layouts);
$is_train //= $self->for_training;
if(defined $self->_p->label_arrays)
{
confess("assert not is_train or data_batch.label")
unless (not $is_train or $data_batch->label);
if($data_batch->label)
{
AI::MXNet::Executor::Group::_load_label($data_batch, $self->_p->label_arrays, $self->_p->label_layouts);
}
}
$_->forward($is_train) for @{ $self->_p->execs };
}
# Get the shapes of the outputs
method get_output_shapes()
{
my @shapes = map { $_->shape } @{ $self->execs->[0]->outputs };
my @concat_shapes;
zip(sub {
my ($key, $shape, $axis) = @_;
my @the_shape = @{ $shape };
if($axis >= 0)
{
$the_shape[$axis] = $self->_p->batch_size;
}
push @concat_shapes, AI::MXNet::DataDesc->new(name => $key, shape => \@the_shape);
}, $self->symbol->list_outputs, \@shapes, $self->_p->output_layouts);
return \@concat_shapes;
}
=head2 get_outputs
Gets outputs of the previous forward computation.
Parameters
----------
merge_multi_context : bool
Default is 1. In the case when data-parallelism is used, the outputs
will be collected from multiple devices. A 1 value indicates that we
should merge the collected results so that they look like from a single
executor.
Returns
-------
If merge_multi_context is 1, it is [$out1, $out2]. Otherwise, it
is [[$out1_dev1, $out1_dev2], [$out2_dev1, $out2_dev2]]. All the output
elements are `AI::MXNet::NDArray`.
=cut
method get_outputs(Bool $merge_multi_context=1)
{
my $outputs;
for my $i (0..@{ $self->_p->execs->[0]->outputs }-1)
{
my @tmp;
for my $exec (@{ $self->_p->execs })
{
push @tmp, $exec->outputs->[$i];
}
push @$outputs, \@tmp;
}
if($merge_multi_context)
{
$outputs = AI::MXNet::Executor::Group::_merge_multi_context($outputs, $self->_p->output_layouts);
}
return $outputs;
}
=head2 get_input_grads
Get the gradients with respect to the inputs of the module.
Parameters
----------
merge_multi_context : bool
Default is 1. In the case when data-parallelism is used, the outputs
will be collected from multiple devices. A 1 value indicates that we
should merge the collected results so that they look like from a single
executor.
Returns
-------
If merge_multi_context is 1, it is [$grad1, $grad2]. Otherwise, it
is [[$grad1_dev1, $grad1_dev2], [$grad2_dev1, $grad2_dev2]]. All the output
elements are AI::MXNet::NDArray.
=cut
method get_input_grads(Bool $merge_multi_context=1)
{
confess("assert \$self->inputs_need_grad") unless $self->inputs_need_grad;
if($merge_multi_context)
{
return AI::MXNet::Executor::Group::_merge_multi_context($self->_p->input_grad_arrays, $self->_p->data_layouts);
}
return $self->_p->input_grad_arrays;
}
=head2 backward
Run backward on all devices. A backward should be called after
a call to the forward function. Backward cannot be called unless
$self->for_training is 1.
Parameters
----------
out_grads : NDArray or array ref of NDArray, optional
Gradient on the outputs to be propagated back.
This parameter is only needed when bind is called
on outputs that are not a loss function.
=cut
method backward(Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]] $out_grads=)
{
confess('re-bind with for_training=1 to run backward') unless $self->for_training;
$out_grads //= [];
zip(sub {
my ($i, $exec, $islice) = @_;
my @out_grads_slice;
zip(sub{
my ($grad, $axis) = @_;
if($axis >= 0)
{
my $og_my_slice = $grad->slice_axis({
axis => $axis,
begin => $islice->[0],
end => $islice->[1]
});
push @out_grads_slice, $og_my_slice->as_in_context($self->contexts->[$i]);
}
else
{
push @out_grads_slice, $grad->copyto($self->contexts->[$i]);
}
}, $out_grads, $self->_p->output_layouts);
$exec->backward(\@out_grads_slice);
}, [0..@{ $self->_p->execs }-1], $self->_p->execs, $self->_p->slices);
}
=head2 update_metric
Accumulate the performance according to eval_metric on all devices.
Parameters
----------
eval_metric : AI::MXNet::EvalMetric
The metric used for evaluation.
labels : array ref of NDArray
Typically comes from label of AI::MXNet::DataBatch.
=cut
method update_metric(AI::MXNet::EvalMetric $eval_metric, ArrayRef[AI::MXNet::NDArray] $labels)
{
zip(sub {
my ($texec, $islice) = @_;
my @labels_slice;
zip(sub {
my ($label, $axis) = @_;
if($axis == 0)
{
# slicing NDArray along axis 0 can avoid copying
push @labels_slice, $label->slice([$islice->[0], $islice->[1]-1]);
}
elsif($axis > 0)
{
my $label_my_slice = $label->slice_axis({
axis => $axis,
begin => $islice->[0],
end => $islice->[1]
})->as_in_context($label->context);
push @labels_slice, $label_my_slice;
}
else
{
push @labels_slice, $label;
}
}, $labels, $self->_p->label_layouts);
$eval_metric->update(\@labels_slice, $texec->outputs);
}, $self->_p->execs, $self->_p->slices);
}
method _bind_ith_exec(
Int $i,
ArrayRef[AI::MXNet::DataDesc] $data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc]] $label_shapes,
Maybe[AI::MXNet::DataParallelExecutorGroup] $shared_group
)
{
my $shared_exec = $shared_group ? $shared_group->_p->execs->[$i] : undef;
my $context = $self->contexts->[$i];
my $shared_data_arrays = $self->_p->shared_data_arrays->[$i];
my %input_shapes = map { $_->name => $_->shape } @{ $data_shapes };
if(defined $label_shapes)
{
%input_shapes = (%input_shapes, map { $_->name => $_->shape } @{ $label_shapes });
}
my %input_types = map { $_->name => $_->dtype } @{ $data_shapes };
my $executor = $self->symbol->simple_bind(
ctx => $context,
grad_req => $self->grad_req,
type_dict => \%input_types,
shared_arg_names => $self->param_names,
shared_exec => $shared_exec,
shared_buffer => $shared_data_arrays,
shapes => \%input_shapes
);
return $executor;
}
=head2 _sliced_shape
Get the sliced shapes for the i-th executor.
Parameters
----------
shapes : array ref of (str, array ref)
The original (name, shape) pairs.
i : int
Which executor we are dealing with.
=cut
method _sliced_shape(ArrayRef[AI::MXNet::DataDesc] $shapes, Int $i, ArrayRef[Int] $major_axis)
{
my @sliced_shapes;
zip(sub {
my ($desc, $axis) = @_;
my @shape = @{ $desc->shape };
if($axis >= 0)
{
$shape[$axis] = $self->_p->slices->[$i]->[1] - $self->_p->slices->[$i]->[0];
}
push @sliced_shapes, AI::MXNet::DataDesc->new(
name => $desc->name,
shape => \@shape,
dtype => $desc->dtype,
layout => $desc->layout
);
}, $shapes, $major_axis);
return \@sliced_shapes;
}
=head2 install_monitor
Install monitor on all executors
Parameters
----------
$mon : AI::MXNet::Monitor
=cut
method install_monitor(AI::MXNet::Monitor $mon)
{
$mon->install($_) for @{ $self->_p->execs };
}
method shared_data_arrays()
{
$self->_p->shared_data_arrays;
}
method execs()
{
$self->_p->execs;
}
1;
lib/AI/MXNet/Function/Parameters.pm view on Meta::CPAN
package AI::MXNet::Function::Parameters;
use strict;
use warnings;
use Function::Parameters ();
use AI::MXNet::Types ();
sub import {
Function::Parameters->import(
{
func => {
defaults => 'function_strict',
runtime => 1,
reify_type => sub {
Mouse::Util::TypeConstraints::find_or_create_isa_type_constraint($_[0])
}
},
method => {
defaults => 'method_strict',
runtime => 1,
reify_type => sub {
Mouse::Util::TypeConstraints::find_or_create_isa_type_constraint($_[0])
}
},
}
);
}
{
no warnings 'redefine';
*Function::Parameters::_croak = sub {
local($Carp::CarpLevel) = 1;
Carp::confess ("@_");
};
}
1;
lib/AI/MXNet/IO.pm view on Meta::CPAN
package AI::MXNet::IO;
use strict;
use warnings;
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
use Scalar::Util qw/blessed/;
=head1 NAME
AI::MXNet::IO - NDArray interface of mxnet.
=cut
# Convert data into canonical form.
method init_data(
AcceptableInput|HashRef[AcceptableInput]|ArrayRef[AcceptableInput]|Undef $data,
Undef|Int :$allow_empty=,
Str :$default_name
)
{
Carp::confess("data must be defined or allow_empty set to true value")
if(not defined $data and not $allow_empty);
$data //= [];
if(ref($data) and ref($data) ne 'ARRAY' and ref($data) ne 'HASH')
{
$data = [$data];
}
Carp::confess("data must not be empty or allow_empty set to true value")
if(ref($data) eq 'ARRAY' and not @{ $data } and not $allow_empty);
my @ret;
if(ref($data) eq 'ARRAY')
{
if(@{ $data } == 1)
{
@ret = ([$default_name, $data->[0]]);
}
else
{
my $i = -1;
@ret = map { $i++; ["_${i}_$default_name", $_] } @{ $data };
}
}
if(ref($data) eq 'HASH')
{
while(my ($k, $v) = each %{ $data })
{
push @ret, [$k, $v];
}
}
for my $d (@ret)
{
if(not (blessed $d->[1] and $d->[1]->isa('AI::MXNet::NDArray')))
{
$d->[1] = AI::MXNet::NDArray->array($d->[1]);
}
}
return \@ret;
}
method DataDesc(@args) { AI::MXNet::DataDesc->new(@args) }
method DataBatch(@args) { AI::MXNet::DataBatch->new(@args) }
package AI::MXNet::DataDesc;
use Mouse;
use overload '""' => \&stringify,
'@{}' => \&to_nameshape;
has 'name' => (is => 'ro', isa => "Str", required => 1);
has 'shape' => (is => 'ro', isa => "Shape", required => 1);
has 'dtype' => (is => 'ro', isa => "Dtype", default => 'float32');
has 'layout' => (is => 'ro', isa => "Str", default => 'NCHW');
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
if(@_ >= 2 and ref $_[1] eq 'ARRAY')
{
my $name = shift;
my $shape = shift;
return $class->$orig(name => $name, shape => $shape, @_);
}
return $class->$orig(@_);
};
method stringify($other=, $reverse=)
{
sprintf(
"DataDesc[%s,%s,%s,%s]",
$self->name,
join('x', @{ $self->shape }),
$self->dtype,
$self->layout
);
}
method to_nameshape($other=, $reverse=)
{
[$self->name, $self->shape];
}
=head1 NAME
AI::MXNet::DataDesc - A container class for describing the data layout.
=cut
=head2 get_batch_axis
Get the dimension that corresponds to the batch size.
Parameters
----------
layout : str
layout string. For example, "NCHW".
Returns
-------
An axis indicating the batch_size dimension. When data-parallelism is
used, the data will be automatically split and concatenate along the batch_size
dimension. Axis can be -1, which means the whole array will be copied for each
data-parallelism device.
=cut
method get_batch_axis(Str|Undef $layout)
{
return 0 unless defined $layout;
return index($layout, 'N');
}
=head2 get_list
Coverts the input to an array ref AI::MXNet::DataDesc objects.
Parameters
----------
$shapes : HashRef[Shape]
$types= : Maybe[HashRef[Dtype]]
=cut
method get_list(HashRef[Shape] $shapes, Maybe[HashRef[Dtype]] $types=)
{
$types //= {};
return [
map {
AI::MXNet::DataDesc->new(
name => $_,
shape => $shapes->{$_},
(exists $types->{$_} ? (type => $types->{$_}) : ())
)
} keys %{ $shapes }
];
}
package AI::MXNet::DataBatch;
use Mouse;
=head1 NAME
AI::MXNet::DataBatch - A container for a mini-batch of the data and related information.
=cut
=head1 DESCRIPTION
Default object for holding a mini-batch of data and related information.
=cut
has 'data' => (is => 'rw', isa => 'Maybe[ArrayRef[AI::MXNet::NDArray]]', required => 1);
has 'label' => (is => 'rw', isa => 'Maybe[ArrayRef[AI::MXNet::NDArray]]');
has 'pad' => (is => 'rw');
has 'index' => (is => 'rw');
has 'bucket_key' => (is => 'rw');
has 'provide_data' => (is => 'rw');
has 'provide_label' => (is => 'rw');
package AI::MXNet::DataIter;
use Mouse;
use overload '<>' => sub { shift->next },
'@{}' => sub { shift->list };
=head1 NAME
AI::MXNet::DataIter - A parent class for MXNet data iterators.
=cut
has 'batch_size' => (is => 'rw', isa => 'Int', default => 0);
=head2 reset
Reset the iterator.
=cut
method reset(){}
=head2 list
Returns remaining iterator items as an array ref.
=cut
method list()
{
my @ret;
while(<$self>)
{
push @ret, $_;
}
return \@ret;
}
=head2 next
Returns the next data batch from the iterator.
Returns
-------
$data : AI::MXNet::DataBatch
The data of next batch.
=cut
method next()
{
if($self->iter_next())
{
return AI::MXNet::DataBatch->new(
data => $self->getdata,
label => $self->getlabel,
pad => $self->getpad,
index => $self->getindex
);
}
else
{
return undef;
}
}
=head2 iter_next
Iterate to next batch.
Returns
-------
$has_next : Bool
=cut
method iter_next(){}
=head2 get_data
The data of current batch.
Returns
-------
data : AI::MXNet::NDArray
=cut
method get_data(){}
=head2 getlabel
The label of the current batch.
Returns
-------
label : AI::MXNet::NDArray
=cut
method getlabel(){}
=head2 getindex
The index of the current batch.
Returns
-------
$index : PDL
=cut
method getindex(){}
=head2 getpad
The number of padding examples in the current batch.
Returns
-------
$pad : Int
=cut
method getpad(){}
package AI::MXNet::ResizeIter;
use Mouse;
extends 'AI::MXNet::DataIter';
=head1 NAME
AI::MXNet::ResizeIter
=cut
=head1 DESCRIPTION
Resize a DataIter to a given number of batches per epoch.
May produce incomplete batch in the middle of an epoch due
to the padding from internal iterator.
Parameters
----------
data_iter : DataIter
Internal data iterator.
size : number of batches per epoch to resize to.
reset_internal : whether to reset internal iterator on ResizeIter.reset
=cut
has 'data_iter' => (is => 'ro', isa => 'AI::MXnet::DataIter', required => 1);
has 'size' => (is => 'ro', isa => 'Int', required => 1);
has 'reset_internal' => (is => 'rw', isa => 'Int', default => 1);
has 'cur' => (is => 'rw', isa => 'Int', default => 0);
has 'current_batch' => (is => 'rw', isa => 'Maybe[AI::MXNet::DataBatch]');
has [qw/provide_data
default_bucket_key
provide_label
batch_size/] => (is => 'rw', init_arg => undef);
sub BUILD
{
my $self = shift;
$self->provide_data($self->data_iter->provide_data);
$self->provide_label($self->data_iter->provide_label);
$self->batch_size($self->data_iter->batch_size);
if($self->data_iter->can('default_bucket_key'))
{
$self->default_bucket_key($self->data_iter->default_bucket_key);
}
}
method reset()
{
$self->cur(0);
if($self->reset_internal)
{
$self->data_iter->reset;
}
}
method iter_next()
{
return 0 if($self->cur == $self->size);
$self->current_batch($self->data_iter->next);
if(not defined $self->current_batch)
{
$self->data_iter->reset;
$self->current_batch($self->data_iter->next);
}
$self->cur($self->cur + 1);
return 1;
}
method get_data()
{
return $self->current_batch->data;
}
method getlabel()
{
return $self->current_batch->label;
}
method getindex()
{
return $self->current_batch->index;
}
method getpad()
{
return $self->current_batch->pad;
}
package AI::MXNet::NDArrayIter;
use Mouse;
use AI::MXNet::Base;
use List::Util qw(shuffle);
extends 'AI::MXNet::DataIter';
=head1 NAME
AI::MXNet::NDArrayIter - Predefined NDArray iterator.
=cut
=head1 DESCRIPTION
Predefined NDArray iterator. Accepts PDL or AI::MXNet::NDArray object as an input.
Parameters
----------
data: Maybe[AcceptableInput|HashRef[AcceptableInput]|ArrayRef[AcceptableInput]].
NDArrayIter supports single or multiple data and label.
label: Maybe[AcceptableInput|HashRef[AcceptableInput]|ArrayRef[AcceptableInput]].
Same as data, but is not given to the model during testing.
batch_size=1: Int
Batch Size
shuffle=0: Bool
Whether to shuffle the data
last_batch_handle='pad': 'pad', 'discard' or 'roll_over'
How to handle the last batch
Note
----
This iterator will pad, discard or roll over the last batch if
the size of data does not match batch_size. Roll over is intended
for training and can cause problems if used for prediction.
=cut
has 'data' => (is => 'rw', isa => 'Maybe[AcceptableInput|HashRef[AcceptableInput]|ArrayRef[AcceptableInput]]');
has 'data_list' => (is => 'rw', isa => 'ArrayRef[AI::MXNet::NDArray]');
has 'label' => (is => 'rw', isa => 'Maybe[AcceptableInput|HashRef[AcceptableInput]|ArrayRef[AcceptableInput]]');
has 'batch_size' => (is => 'rw', isa => 'Int', default => 1);
has '_shuffle' => (is => 'rw', init_arg => 'shuffle', isa => 'Bool', default => 0);
has 'last_batch_handle' => (is => 'rw', isa => 'Str', default => 'pad');
has 'label_name' => (is => 'rw', isa => 'Str', default => 'softmax_label');
has 'num_source' => (is => 'rw', isa => 'Int');
has 'cursor' => (is => 'rw', isa => 'Int');
has 'num_data' => (is => 'rw', isa => 'Int');
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
if(@_%2)
{
my $data = shift;
return $class->$orig(data => $data, @_);
}
return $class->$orig(@_);
};
sub BUILD
{
my $self = shift;
my $data = AI::MXNet::IO->init_data($self->data, allow_empty => 0, default_name => 'data');
my $label = AI::MXNet::IO->init_data($self->label, allow_empty => 1, default_name => $self->label_name);
my $num_data = $data->[0][1]->shape->[0];
confess("size of data dimension 0 $num_data < batch_size ${\ $self->batch_size }")
unless($num_data >= $self->batch_size);
if($self->_shuffle)
{
my @idx = shuffle(0..$num_data-1);
$_->[1] = AI::MXNet::NDArray->array(pdl_shuffle($_->[1]->aspdl, \@idx)) for @$data;
$_->[1] = AI::MXNet::NDArray->array(pdl_shuffle($_->[1]->aspdl, \@idx)) for @$label;
}
if($self->last_batch_handle eq 'discard')
{
my $new_n = $num_data - $num_data % $self->batch_size - 1;
$_->[1] = $_->[1]->slice([0, $new_n]) for @$data;
$_->[1] = $_->[1]->slice([0, $new_n]) for @$label;
}
my $data_list = [map { $_->[1] } (@{ $data }, @{ $label })];
my $num_source = @{ $data_list };
my $cursor = -$self->batch_size;
$self->data($data);
$self->data_list($data_list);
$self->label($label);
$self->num_source($num_source);
$self->cursor($cursor);
$self->num_data($num_data);
}
# The name and shape of data provided by this iterator
method provide_data()
{
return [map {
my ($k, $v) = @{ $_ };
my $shape = $v->shape;
$shape->[0] = $self->batch_size;
AI::MXNet::DataDesc->new(name => $k, shape => $shape, dtype => $v->dtype)
} @{ $self->data }];
}
# The name and shape of label provided by this iterator
method provide_label()
{
return [map {
my ($k, $v) = @{ $_ };
my $shape = $v->shape;
$shape->[0] = $self->batch_size;
AI::MXNet::DataDesc->new(name => $k, shape => $shape, dtype => $v->dtype)
} @{ $self->label }];
}
# Ignore roll over data and set to start
method hard_reset()
{
$self->cursor(-$self->batch_size);
}
method reset()
{
if($self->last_batch_handle eq 'roll_over' and $self->cursor > $self->num_data)
{
$self->cursor(-$self->batch_size + ($self->cursor%$self->num_data)%$self->batch_size);
}
else
{
$self->cursor(-$self->batch_size);
}
}
method iter_next()
{
$self->cursor($self->batch_size + $self->cursor);
return $self->cursor < $self->num_data;
}
method next()
{
if($self->iter_next)
{
return AI::MXNet::DataBatch->new(
data => $self->getdata,
label => $self->getlabel,
pad => $self->getpad,
index => undef
);
}
else
{
return undef;
}
}
# Load data from underlying arrays, internal use only
method _getdata($data_source)
{
confess("DataIter needs reset.") unless $self->cursor < $self->num_data;
if(($self->cursor + $self->batch_size) <= $self->num_data)
{
return [
map {
$_->[1]->slice([$self->cursor,$self->cursor+$self->batch_size-1])
} @{ $data_source }
];
}
else
{
my $pad = $self->batch_size - $self->num_data + $self->cursor - 1;
return [
map {
AI::MXNet::NDArray->concatenate(
[
$_->[1]->slice([$self->cursor, -1]),
$_->[1]->slice([0, $pad])
]
)
} @{ $data_source }
];
}
}
method getdata()
{
return $self->_getdata($self->data);
}
method getlabel()
{
return $self->_getdata($self->label);
}
method getpad()
{
if( $self->last_batch_handle eq 'pad'
and
($self->cursor + $self->batch_size) > $self->num_data
)
{
return $self->cursor + $self->batch_size - $self->num_data;
}
else
{
return 0;
}
}
package AI::MXNet::MXDataIter;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::DataIter';
=head1 NAME
AI::MXNet::MXDataIter - A data iterator pre-built in C++ layer of MXNet.
=cut
has 'handle' => (is => 'ro', isa => 'DataIterHandle', required => 1);
has '_debug_skip_load' => (is => 'rw', isa => 'Int', default => 0);
has '_debug_at_begin' => (is => 'rw', isa => 'Int', default => 0);
has 'data_name' => (is => 'ro', isa => 'Str', default => 'data');
has 'label_name' => (is => 'ro', isa => 'Str', default => 'softmax_label');
has [qw/first_batch
provide_data
provide_label
batch_size/] => (is => 'rw', init_arg => undef);
sub BUILD
{
my $self = shift;
$self->first_batch($self->next);
my $data = $self->first_batch->data->[0];
$self->provide_data([
AI::MXNet::DataDesc->new(
name => $self->data_name,
shape => $data->shape,
dtype => $data->dtype
)
]);
my $label = $self->first_batch->label->[0];
$self->provide_label([
AI::MXNet::DataDesc->new(
name => $self->label_name,
shape => $label->shape,
dtype => $label->dtype
)
]);
$self->batch_size($data->shape->[0]);
}
sub DEMOLISH
{
check_call(AI::MXNetCAPI::DataIterFree(shift->handle));
}
=head2 debug_skip_load
Set the iterator to simply return always first batch.
Notes
-----
This can be used to test the speed of network without taking
the loading delay into account.
=cut
method debug_skip_load()
{
$self->_debug_skip_load(1);
AI::MXNet::Logging->info('Set debug_skip_load to be true, will simply return first batch');
}
method reset()
{
$self->_debug_at_begin(1);
$self->first_batch(undef);
check_call(AI::MXNetCAPI::DataIterBeforeFirst($self->handle));
}
method next()
{
if($self->_debug_skip_load and not $self->_debug_at_begin)
{
return AI::MXNet::DataBatch->new(
data => [$self->getdata],
label => [$self->getlabel],
pad => $self->getpad,
index => $self->getindex
);
}
if(defined $self->first_batch)
{
my $batch = $self->first_batch;
$self->first_batch(undef);
return $batch
}
$self->_debug_at_begin(0);
my $next_res = check_call(AI::MXNetCAPI::DataIterNext($self->handle));
if($next_res)
{
return AI::MXNet::DataBatch->new(
data => [$self->getdata],
label => [$self->getlabel],
pad => $self->getpad,
index => $self->getindex
);
}
else
{
return undef;
}
}
method iter_next()
{
if(defined $self->first_batch)
{
return 1;
}
else
{
return scalar(check_call(AI::MXNetCAPI::DataIterNext($self->handle)));
}
}
method getdata()
{
my $handle = check_call(AI::MXNetCAPI::DataIterGetData($self->handle));
return AI::MXNet::NDArray->new(handle => $handle);
}
method getlabel()
{
my $handle = check_call(AI::MXNetCAPI::DataIterGetLabel($self->handle));
return AI::MXNet::NDArray->new(handle => $handle);
}
method getindex()
{
return pdl(check_call(AI::MXNetCAPI::DataIterGetIndex($self->handle)));
}
method getpad()
{
return scalar(check_call(AI::MXNetCAPI::DataIterGetPadNum($self->handle)));
}
package AI::MXNet::IO;
sub NDArrayIter { shift; return AI::MXNet::NDArrayIter->new(@_); }
my %iter_meta;
method get_iter_meta()
{
return \%iter_meta;
}
# Create an io iterator by handle.
func _make_io_iterator($handle)
{
my ($iter_name, $desc,
$arg_names, $arg_types, $arg_descs
) = @{ check_call(AI::MXNetCAPI::DataIterGetIterInfo($handle)) };
my $param_str = build_param_doc($arg_names, $arg_types, $arg_descs);
my $doc_str = "$desc\n\n"
."$param_str\n"
."name : string, required.\n"
." Name of the resulting data iterator.\n\n"
."Returns\n"
."-------\n"
."iterator: DataIter\n"
." The result iterator.";
my $iter = sub {
my $class = shift;
my (@args, %kwargs);
if(@_ and ref $_[-1] eq 'HASH')
{
%kwargs = %{ pop(@_) };
}
@args = @_;
Carp::confess("$iter_name can only accept keyword arguments")
if @args;
for my $key (keys %kwargs)
{
$kwargs{ $key } = "(" .join(",", @{ $kwargs{ $key } }) .")"
if ref $kwargs{ $key } eq 'ARRAY';
}
my $handle = check_call(
AI::MXNetCAPI::DataIterCreateIter(
$handle,
scalar(keys %kwargs),
\%kwargs
)
);
return AI::MXNet::MXDataIter->new(handle => $handle, %kwargs);
};
$iter_meta{$iter}{__name__} = $iter_name;
$iter_meta{$iter}{__doc__} = $doc_str;
return $iter;
}
# List and add all the data iterators to current module.
method _init_io_module()
{
for my $creator (@{ check_call(AI::MXNetCAPI::ListDataIters()) })
{
my $data_iter = _make_io_iterator($creator);
{
my $name = $iter_meta{ $data_iter }{__name__};
no strict 'refs';
{
*{__PACKAGE__."::$name"} = $data_iter;
}
}
}
}
# Initialize the io in startups
__PACKAGE__->_init_io_module;
1;
lib/AI/MXNet/Image.pm view on Meta::CPAN
package AI::MXNet::Image;
use strict;
use warnings;
use Scalar::Util qw(blessed);
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
=head1 NAME
AI::MXNet:Image - Read individual image files and perform augmentations.
=cut
=head2 imdecode
Decode an image from string. Requires OpenCV to work.
Parameters
----------
$buf : str, array ref, pdl, ndarray
Binary image data.
:$flag : int
0 for grayscale. 1 for colored.
:$to_rgb : int
0 for BGR format (OpenCV default). 1 for RGB format (MXNet default).
:$out : NDArray
Output buffer. Do not specify for automatic allocation.
=cut
method imdecode(Str|PDL $buf, Int :$flag=1, Int :$to_rgb=1, Maybe[AI::MXNet::NDArray] :$out=)
{
if(not ref $buf)
{
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{'uint8'});
my $len; { use bytes; $len = length $buf; }
my $pdl = PDL->new_from_specification($pdl_type, $len);
${$pdl->get_dataref} = $buf;
$pdl->upd_data;
$buf = $pdl;
}
if(not (blessed $buf and $buf->isa('AI::MXNet::NDArray')))
{
$buf = AI::MXNet::NDArray->array($buf, dtype=>'uint8');
}
return AI::MXNet::NDArray->_cvimdecode($buf, { flag => $flag, to_rgb => $to_rgb, ($out ? (out => $out) : ()) });
}
=head2 scale_down
Scale down crop size if it's bigger than the image size.
Parameters:
-----------
Shape $src_size
Shape $size
Returns:
--------
($w, $h)
=cut
method scale_down(Shape $src_size, Shape $size)
{
my ($w, $h) = @{ $size };
my ($sw, $sh) = @{ $src_size };
if($sh < $h)
{
($w, $h) = (($w*$sh)/$h, $sh);
}
if($sw < $w)
{
($w, $h) = ($sw, ($h*$sw)/$w);
}
return (int($w), int($h));
}
=head2 resize_short
Resize shorter edge to the size.
Parameters:
-----------
AI::MXNet::NDArray $src
Int $size
Int $interp=2
Returns:
--------
AI::MXNet::NDArray $resized_image
=cut
method resize_short(AI::MXNet::NDArray $src, Int $size, Int $interp=2)
{
my ($new_h, $new_w);
my ($h, $w) = @{ $src->shape };
if($h > $w)
{
($new_h, $new_w) = ($size*$h/$w, $size);
}
else
{
($new_h, $new_w) = ($size, $size*$w/$h);
}
return AI::MXNet::NDArray->_cvimresize($src, $new_w, $new_h, { interp=>$interp });
}
=head2 fixed_crop
Crop src at fixed location, and (optionally) resize it to the size.
Parameters:
-----------
AI::MXNet::NDArray $src
Int $x0
Int $y0
Int $w
Int $h
Maybe[Shape] $size=
Int $interp=2
Returns:
--------
AI::MXNet::NDArray $cropped_image
=cut
method fixed_crop(AI::MXNet::NDArray $src, Int $x0, Int $y0, Int $w, Int $h, Maybe[Shape] $size=, Int $interp=2)
{
my $out = AI::MXNet::NDArray->crop($src, { begin=>[$y0, $x0, 0], end=>[$y0+$h, $x0+$w, $src->shape->[2]] });
if(defined $size and join(',', $w, $h) ne join(',', @{ $size }))
{
$out = AI::MXNet::NDArray->_cvimresize($out, @{ $size }, { interp=>$interp });
}
return $out;
}
=head2 random_crop
Randomly crop src with size. Upsample result if src is smaller than the size.
Parameters:
-----------
AI::MXNet::NDArray $src
Shape $size=
Int $interp=2
Returns:
--------
($cropped_image, [$x0, $y0, $new_w, $new_h])
=cut
method random_crop(AI::MXNet::NDArray $src, Shape $size, Int $interp=2)
{
my ($h, $w) = @{ $src->shape };
my ($new_w, $new_h) = __PACKAGE__->scale_down([$w, $h], $size);
my $x0 = int(rand($w - $new_w + 1));
my $y0 = int(rand($h - $new_h + 1));
my $out = __PACKAGE__->fixed_crop($src, $x0, $y0, $new_w, $new_h, $size, $interp);
return ($out, [$x0, $y0, $new_w, $new_h]);
}
=head2 center_crop
Randomly crop src with size around the center. Upsample result if src is smaller than the size.
Parameters:
-----------
AI::MXNet::NDArray $src
Shape $size=
Int $interp=2
Returns:
--------
($cropped_image, [$x0, $y0, $new_w, $new_h])
=cut
method center_crop(AI::MXNet::NDArray $src, Shape $size, Int $interp=2)
{
my ($h, $w) = @{ $src->shape };
my ($new_w, $new_h) = __PACKAGE__->scale_down([$w, $h], $size);
my $x0 = int(($w - $new_w)/2);
my $y0 = int(($h - $new_h)/2);
my $out = __PACKAGE__->fixed_crop($src, $x0, $y0, $new_w, $new_h, $size, $interp);
return ($out, [$x0, $y0, $new_w, $new_h]);
}
=head2 color_normalize
Normalize src with mean and std.
Parameters:
-----------
AI::MXNet::NDArray $src
Num|AI::MXNet::NDArray $mean
Maybe[Num|AI::MXNet::NDArray] $std=
Int $interp=2
Returns:
--------
AI::MXNet::NDArray $normalized_image
=cut
method color_normalize(AI::MXNet::NDArray $src, Num|AI::MXNet::NDArray $mean, Maybe[Num|AI::MXNet::NDArray] $std=)
{
$src -= $mean;
if(defined $std)
{
$src /= $std;
}
return $src;
}
=head2 random_size_crop
Randomly crop src with size. Randomize area and aspect ratio.
Parameters:
-----------
AI::MXNet::NDArray $src
Shape $size
Num $min_area
ArrayRef[Int] [$from, $to] # $ratio
Maybe[Int] $interp=2
Returns:
--------
($cropped_image, [$x0, $y0, $new_w, $new_h])
=cut
method random_size_crop(AI::MXNet::NDArray $src, Shape $size, Num $min_area, ArrayRef[Num] $ratio, Maybe[Int] $interp=2)
{
my ($h, $w) = @{ $src->shape };
my ($from, $to) = @{ $ratio };
my $new_ratio = $from + ($to-$from) * rand;
my $max_area;
if($new_ratio * $h > $w)
{
$max_area = $w*int($w/$new_ratio);
}
else
{
$max_area = $h*int($h*$new_ratio);
}
$min_area *= $h*$w;
if($max_area < $min_area)
{
return __PACKAGE__->random_crop($src, $size, $interp);
}
my $new_area = $min_area + ($max_area-$min_area) * rand;
my $new_w = int(sqrt($new_area*$new_ratio));
my $new_h = $new_w;
assert($new_w <= $w and $new_h <= $h);
my $x0 = int(rand($w - $new_w + 1));
my $y0 = int(rand($h - $new_h + 1));
my $out = __PACKAGE__->fixed_crop($src, $x0, $y0, $new_w, $new_h, $size, $interp);
return ($out, [$x0, $y0, $new_w, $new_h]);
}
=head2 ResizeAug
Makes "resize shorter edge to size augumenter" closure.
Parameters:
-----------
Shape $size
Int $interp=2
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [__PACKAGE__->resize_short($src, $size, $interp)]
=cut
method ResizeAug(Shape $size, Int $interp=2)
{
my $aug = sub {
my $src = shift;
return [__PACKAGE__->resize_short($src, $size, $interp)];
};
return $aug;
}
=head2 RandomCropAug
Makes "random crop augumenter" closure.
Parameters:
-----------
Shape $size
Int $interp=2
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [(__PACKAGE__->random_crop($src, $size, $interp))[0]]
=cut
method RandomCropAug(Shape $size, Int $interp=2)
{
my $aug = sub {
my $src = shift;
return [(__PACKAGE__->random_crop($src, $size, $interp))[0]];
};
return $aug;
}
=head2 RandomSizedCropAug
Makes "random crop augumenter" closure.
Parameters:
-----------
Shape $size
Num $min_area
ArrayRef[Num] $ratio
Int $interp=2
Returns:
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [(__PACKAGE__->random_size_crop($src, $size, $min_area, $ratio, $interp))[0]]
=cut
method RandomSizedCropAug(Shape $size, Num $min_area, ArrayRef[Num] $ratio, Int $interp=2)
{
my $aug = sub {
my $src = shift;
return [(__PACKAGE__->random_size_crop($src, $size, $min_area, $ratio, $interp))[0]];
};
return $aug;
}
=head2 CenterCropAug
Makes "center crop augumenter" closure.
Parameters:
-----------
Shape $size
Int $interp=2
Returns:
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [(__PACKAGE__->center_crop($src, $size, $interp))[0]]
=cut
method CenterCropAug(Shape $size, Int $interp=2)
{
my $aug = sub {
my $src = shift;
return [(__PACKAGE__->center_crop($src, $size, $interp))[0]];
};
return $aug;
}
=head2 RandomOrderAug
Makes "Apply list of augmenters in random order" closure.
Parameters:
-----------
ArrayRef[CodeRef] $ts
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns ArrayRef[AI::MXNet::NDArray]
=cut
method RandomOrderAug(ArrayRef[CodeRef] $ts)
{
my $aug = sub {
my $src = shift;
my @ts = List::Util::shuffle(@{ $ts });
my @tmp;
for my $t (@ts)
{
push @tmp, &{$t}($src);
}
return \@tmp;
};
return $aug;
}
=head2 RandomOrderAug
Makes "Apply random brightness, contrast and saturation jitter in random order" closure
Parameters:
-----------
Num $brightness
Num $contrast
Num $saturation
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns ArrayRef[AI::MXNet::NDArray]
=cut
method ColorJitterAug(Num $brightness, Num $contrast, Num $saturation)
{
my @ts;
my $coef = AI::MXNet::NDArray->array([[[0.299, 0.587, 0.114]]]);
if($brightness > 0)
{
my $baug = sub { my $src = shift;
my $alpha = 1 + -$brightness + 2 * $brightness * rand;
$src *= $alpha;
return [$src];
};
push @ts, $baug;
}
if($contrast > 0)
{
my $caug = sub { my $src = shift;
my $alpha = 1 + -$contrast + 2 * $contrast * rand;
my $gray = $src*$coef;
$gray = (3.0*(1.0-$alpha)/$gray->size)*$gray->sum;
$src *= $alpha;
$src += $gray;
return [$src];
};
push @ts, $caug;
}
if($saturation > 0)
{
my $saug = sub { my $src = shift;
my $alpha = 1 + -$saturation + 2 * $saturation * rand;
my $gray = $src*$coef;
$gray = AI::MXNet::NDArray->sum($gray, { axis=>2, keepdims =>1 });
$gray *= (1.0-$alpha);
$src *= $alpha;
$src += $gray;
return [$src];
};
push @ts, $saug;
}
return __PACKAGE__->RandomOrderAug(\@ts);
}
=head2 LightingAug
Makes "Add PCA based noise" closure.
Parameters:
-----------
Num $alphastd
PDL $eigval
PDL $eigvec
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns ArrayRef[AI::MXNet::NDArray]
=cut
method LightingAug(Num $alphastd, PDL $eigval, PDL $eigvec)
{
my $aug = sub { my $src = shift;
my $alpha = AI::MXNet::NDArray->zeros([3]);
AI::MXNet::Random->normal(0, $alphastd, { out => $alpha });
my $rgb = ($eigvec*$alpha->aspdl) x $eigval;
$src += AI::MXNet::NDArray->array($rgb);
return [$src]
};
return $aug
}
=head2 ColorNormalizeAug
Makes "Mean and std normalization" closure.
Parameters:
-----------
PDL $mean
PDL $std
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [__PACKAGE__->color_normalize($src, $mean, $std)]
=cut
method ColorNormalizeAug(PDL $mean, PDL $std)
{
$mean = AI::MXNet::NDArray->array($mean);
$std = AI::MXNet::NDArray->array($std);
my $aug = sub { my $src = shift;
return [__PACKAGE__->color_normalize($src, $mean, $std)]
};
return $aug;
}
=head2 HorizontalFlipAug
Makes "Random horizontal flipping" closure.
Parameters:
-----------
Num $p < 1
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [$p > rand ? AI::MXNet::NDArray->flip($src, axis=1>) : $src]
=cut
method HorizontalFlipAug(Num $p)
{
my $aug = sub { my $src = shift;
return [$p > rand() ? AI::MXNet::NDArray->flip($src, { axis=>1 }) : $src]
};
return $aug;
}
=head2 CastAug
Makes "Cast to float32" closure.
Returns:
--------
CodeRef that accepts AI::MXNet::NDArray $src as input
and returns [$src->astype('float32')]
=cut
method CastAug()
{
my $aug = sub { my $src = shift;
return [$src->astype('float32')]
};
return $aug;
}
=head2 CreateAugmenter
Create augumenter list
Parameters:
-----------
Shape :$data_shape,
Bool :$resize=0,
Bool :$rand_crop=0,
Bool :$rand_resize=0,
Bool :$rand_mirror=0,
Maybe[Num|PDL] :$mean=,
Maybe[Num|PDL] :$std=,
Num :$brightness=0,
Num :$contrast=0,
Num :$saturation=0,
Num :$pca_noise=0,
Int :$inter_method=2
=cut
method CreateAugmenter(
Shape :$data_shape,
Bool :$resize=0,
Bool :$rand_crop=0,
Bool :$rand_resize=0,
Bool :$rand_mirror=0,
Maybe[Num|PDL] :$mean=,
Maybe[Num|PDL] :$std=,
Num :$brightness=0,
Num :$contrast=0,
Num :$saturation=0,
Num :$pca_noise=0,
Int :$inter_method=2
)
{
my @auglist;
if($resize > 0)
{
push @auglist, __PACKAGE__->ResizeAug($resize, $inter_method);
}
my $crop_size = [$data_shape->[2], $data_shape->[1]];
if($rand_resize)
{
assert($rand_crop);
push @auglist, __PACKAGE__->RandomSizedCropAug($crop_size, 0.3, [3.0/4.0, 4.0/3.0], $inter_method);
}
elsif($rand_crop)
{
push @auglist, __PACKAGE__->RandomCropAug($crop_size, $inter_method);
}
else
{
push @auglist, __PACKAGE__->CenterCropAug($crop_size, $inter_method);
}
if($rand_mirror)
{
push @auglist, __PACKAGE__->HorizontalFlipAug(0.5);
}
push @auglist, __PACKAGE__->CastAug;
if($brightness or $contrast or $saturation)
{
push @auglist, __PACKAGE__->ColorJitterAug($brightness, $contrast, $saturation);
}
if($pca_noise > 0)
{
my $eigval = AI::MXNet::NDArray->array([55.46, 4.794, 1.148])->aspdl;
my $eigvec = AI::MXNet::NDArray->array([[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]])->aspdl;
push @auglist, __PACKAGE__->LightingAug($pca_noise, $eigval, $eigvec);
}
if($mean)
{
$mean = AI::MXNet::NDArray->array([123.68, 116.28, 103.53])->aspdl;
}
if($std)
{
$std = AI::MXNet::NDArray->array([58.395, 57.12, 57.375])->aspdl;
}
if(defined $mean)
{
assert(defined $std);
push @auglist, __PACKAGE__->ColorNormalizeAug($mean, $std);
}
return \@auglist;
}
method ImageIter(@args) { AI::MXNet::ImageIter->new(@args) }
package AI::MXNet::ImageIter;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::DataIter';
=head1 NAME
AI::MXNet::ImageIter - Image data iterator.
=cut
=head1 DESCRIPTION
Image data iterator with a large number of augumentation choices.
Supports reading from both .rec files and raw image files with image list.
To load from .rec files, please specify path_imgrec. Also specify path_imgidx
to use data partition (for distributed training) or shuffling.
To load from raw image files, specify path_imglist and path_root.
Parameters
----------
batch_size : Int
Number of examples per batch
data_shape : Shape
Data shape in (channels, height, width).
For now, only RGB image with 3 channels is supported.
label_width : Int
dimension of label
path_imgrec : str
path to image record file (.rec).
Created with tools/im2rec.py or bin/im2rec
path_imglist : str
path to image list (.lst)
Created with tools/im2rec.py or with custom script.
Format: index\t[one or more label separated by \t]\trelative_path_from_root
imglist: array ref
a list of image with the label(s)
each item is a list [imagelabel: float or array ref of float, imgpath]
path_root : str
Root folder of image files
path_imgidx : str
Path to image index file. Needed for partition and shuffling when using .rec source.
shuffle : bool
Whether to shuffle all images at the start of each iteration.
Can be slow for HDD.
part_index : int
Partition index
num_parts : int
Total number of partitions.
data_name='data' Str
label_name='softmax_label' Str
kwargs : hash ref with any additional arguments for augmenters
=cut
has 'batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'data_shape' => (is => 'ro', isa => 'Shape', required => 1);
has 'label_width' => (is => 'ro', isa => 'Int', default => 1);
has 'data_name' => (is => 'ro', isa => 'Str', default => 'data');
has 'label_name' => (is => 'ro', isa => 'Str', default => 'softmax_label');
has [qw/path_imgrec
path_imglist
path_root
path_imgidx
/] => (is => 'ro', isa => 'Str');
has 'shuffle' => (is => 'ro', isa => 'Bool', default => 0);
has 'part_index' => (is => 'ro', isa => 'Int', default => 0);
has 'num_parts' => (is => 'ro', isa => 'Int', default => 0);
has 'aug_list' => (is => 'rw', isa => 'ArrayRef[CodeRef]');
has 'imglist' => (is => 'rw', isa => 'ArrayRef|HashRef');
has 'kwargs' => (is => 'ro', isa => 'HashRef');
has [qw/imgidx
imgrec
seq
cur
provide_data
provide_label
/] => (is => 'rw', init_arg => undef);
sub BUILD
{
my $self = shift;
assert($self->path_imgrec or $self->path_imglist or ref $self->imglist eq 'ARRAY');
if($self->path_imgrec)
{
print("loading recordio...\n");
if($self->path_imgidx)
{
$self->imgrec(
AI::MXNet::IndexedRecordIO->new(
idx_path => $self->path_imgidx,
uri => $self->path_imgrec,
flag => 'r'
)
);
$self->imgidx([@{ $self->imgrec->keys }]);
}
else
{
$self->imgrec(AI::MXNet::RecordIO->new(uri => $self->path_imgrec, flag => 'r'));
}
}
my %imglist;
my @imgkeys;
if($self->path_imglist)
{
print("loading image list...\n");
open(my $f, $self->path_imglist) or confess("can't open ${\ $self->path_imglist } : $!");
while(my $line = <$f>)
{
chomp($line);
my @line = split(/\t/, $line);
my $label = AI::MXNet::NDArray->array([@line[1..@line-2]]);
my $key = $line[0];
$imglist{$key} = [$label, $line[-1]];
push @imgkeys, $key;
}
$self->imglist(\%imglist);
}
elsif(ref $self->imglist eq 'ARRAY')
{
print("loading image list...\n");
my %result;
my $index = 1;
for my $img (@{ $self->imglist })
{
my $key = $index++;
my $label;
if(not ref $img->[0])
{
$label = AI::MXNet::NDArray->array([$img->[0]]);
}
else
{
$label = AI::MXNet::NDArray->array($img->[0]);
$result{$key} = [$label, $img->[1]];
push @imgkeys, $key;
}
}
$self->imglist(\%result);
}
assert(@{ $self->data_shape } == 3 and $self->data_shape->[0] == 3);
$self->provide_data([
AI::MXNet::DataDesc->new(
name => $self->data_name,
shape => [$self->batch_size, @{ $self->data_shape }]
)
]);
if($self->label_width > 1)
{
$self->provide_label([
AI::MXNet::DataDesc->new(
name => $self->label_name,
shape => [$self->batch_size, $self->label_width]
)
]);
}
else
{
$self->provide_label([
AI::MXNet::DataDesc->new(
name => $self->label_name,
shape => [$self->batch_size]
)
]);
}
if(not defined $self->imgrec)
{
$self->seq(\@imgkeys);
}
elsif($self->shuffle or $self->num_parts > 1)
{
assert(defined $self->imgidx);
$self->seq($self->imgidx);
}
if($self->num_parts > 1)
{
assert($self->part_index < $self->num_parts);
my $N = @{ $self->seq };
my $C = $N/$self->num_parts;
$self->seq([@{ $self->seq }[$self->part_index*$C..($self->part_index+1)*$C-1]]);
}
if(defined $self->aug_list or defined $self->kwargs)
{
$self->aug_list(AI::MXNet::Image->CreateAugmenter(data_shape => $self->data_shape, %{ $self->kwargs//{} }));
}
else
{
$self->aug_list([]);
}
$self->cur(0);
$self->reset();
}
method reset()
{
if($self->shuffle)
{
@{ $self->seq } = List::Util::shuffle(@{ $self->seq });
}
if(defined $self->imgrec)
{
$self->imgrec->reset;
}
$self->cur(0);
}
method next_sample()
{
if(defined $self->seq)
{
return undef if($self->cur >= @{ $self->seq });
my $idx = $self->seq->[$self->cur];
$self->cur($self->cur + 1);
if(defined $self->imgrec)
{
my $s = $self->imgrec->read_idx($idx);
my ($header, $img) = AI::MXNet::RecordIO->unpack($s);
if(not defined $self->imglist)
{
return ($header->label, $img);
}
else
{
return ($self->imglist->{$idx}[0], $img);
}
}
else
{
my ($label, $fname) = @{ $self->imglist->{$idx} };
if(not defined $self->imgrec)
{
open(F, $self->path_root . "/$fname") or confess("can't open $fname $!");
my $img;
{ local $/ = undef; $img = <F> };
close(F);
return ($label, $img);
}
}
}
else
{
my $s = $self->imgrec->read;
return undef if(not defined $s);
my ($header, $img) = AI::MXNet::RecordIO->unpack($s);
return ($header->label, $img)
}
}
method next()
{
my $batch_size = $self->batch_size;
my ($c, $h, $w) = @{ $self->data_shape };
my $batch_data = AI::MXNet::NDArray->empty([$batch_size, $c, $h, $w]);
my $batch_label = AI::MXNet::NDArray->empty(@{$self->provide_label->[0]}[1]);
my $i = 0;
while ($i < $batch_size)
{
my ($label, $s) = $self->next_sample;
last if not defined $label;
my $data = [AI::MXNet::Image->imdecode($s)];
if(@{ $data->[0]->shape } == 0)
{
AI::MXNet::Logging->debug('Invalid image, skipping.');
next;
}
for my $aug (@{ $self->aug_list })
{
$data = [map { @{ $aug->($_) } } @$data];
}
for my $d (@$data)
{
assert(($i < $batch_size), 'Batch size must be multiples of augmenter output length');
$batch_data->at($i) .= AI::MXNet::NDArray->transpose($d, { axes=>[2, 0, 1] });
$batch_label->at($i) .= $label;
$i++;
}
}
return undef if not $i;
return AI::MXNet::DataBatch->new(data=>[$batch_data], label=>[$batch_label], pad => $batch_size-$i);
}
1;
lib/AI/MXNet/Initializer.pm view on Meta::CPAN
package AI::MXNet::InitDesc;
use Mouse;
use AI::MXNet::Function::Parameters;
=head1 NAME
AI::MXNet::InitDesc - A container for the initialization pattern serialization.
=head2 new
Parameters
---------
name : str
name of variable
attrs : hash ref of str to str
attributes of this variable taken from AI::MXNet::Symbol->attr_dict
=cut
has 'name' => (is => 'ro', isa => 'Str', required => 1);
has 'attrs' => (is => 'rw', isa => 'HashRef[Str]', lazy => 1, default => sub { +{} });
use overload '""' => sub { shift->name };
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(name => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
# Base class for Initializers
package AI::MXNet::Initializer;
use Mouse;
use AI::MXNet::Base qw(:DEFAULT pzeros pceil);
use AI::MXNet::NDArray;
use JSON::PP;
use overload "&{}" => sub { my $self = shift; sub { $self->call(@_) } },
'""' => sub {
my $self = shift;
my ($name) = ref($self) =~ /::(\w+)$/;
encode_json(
[lc $name,
$self->kwargs//{ map { $_ => "".$self->$_ } $self->meta->get_attribute_list }
]);
},
fallback => 1;
has 'kwargs' => (is => 'rw', init_arg => undef, isa => 'HashRef');
has '_verbose' => (is => 'rw', isa => 'Bool', lazy => 1, default => 0);
has '_print_func' => (is => 'rw', isa => 'CodeRef', lazy => 1,
default => sub {
return sub {
my $x = shift;
return ($x->norm/sqrt($x->size))->asscalar;
};
}
);
=head1 NAME
AI::MXNet::Initializer - Base class for all Initializers
=head2 register
Register an initializer class to the AI::MXNet::Initializer factory.
=cut
=head2 set_verbosity
Switch on/off verbose mode
Parameters
----------
$verbose : bool
switch on/off verbose mode
$print_func : CodeRef
A function that computes statistics of initialized arrays.
Takes an AI::MXNet::NDArray and returns a scalar. Defaults to mean
absolute value |x|/size(x)
=cut
method set_verbosity(Bool $verbose=0, CodeRef $print_func=)
{
$self->_verbose($verbose);
$self->_print_func($print_func) if defined $print_func;
}
method _verbose_print($desc, $init, $arr)
{
if($self->_verbose and defined $self->_print_func)
{
AI::MXNet::Logging->info('Initialized %s as %s: %s', $desc, $init, $self->_print_func->($arr));
}
}
my %init_registry;
method get_init_registry()
{
return \%init_registry;
}
method register()
{
my ($name) = $self =~ /::(\w+)$/;
my $orig_name = $name;
$name = lc $name;
if(exists $init_registry{ $name })
{
my $existing = $init_registry{ $name };
warn(
"WARNING: New initializer $self.$name"
."is overriding existing initializer $existing.$name"
);
}
$init_registry{ $name } = $self;
{
no strict 'refs';
no warnings 'redefine';
*{"$orig_name"} = sub { shift; $self->new(@_) };
*InitDesc = sub { shift; AI::MXNet::InitDesc->new(@_) };
}
}
=head2 init
Parameters
----------
$desc : AI::MXNet::InitDesc|str
a name of corresponding ndarray
or the object that describes the initializer.
$arr : AI::MXNet::NDArray
an ndarray to be initialized.
=cut
method call(Str|AI::MXNet::InitDesc $desc, AI::MXNet::NDArray $arr)
{
return $self->_legacy_init($desc, $arr) unless blessed $desc;
my $init = $desc->attrs->{ __init__ };
if($init)
{
my ($klass, $kwargs) = @{ decode_json($init) };
$self->get_init_registry->{ lc $klass }->new(%{ $kwargs })->_init_weight("$desc", $arr);
$self->_verbose_print($desc, $init, $arr);
}
else
{
$desc = "$desc";
if($desc =~ /(weight|bias|gamma|beta)$/)
{
my $method = "_init_$1";
$self->$method($desc, $arr);
$self->_verbose_print($desc, $1, $arr);
}
else
{
$self->_init_default($desc, $arr)
}
}
}
method _legacy_init(Str $name, AI::MXNet::NDArray $arr)
{
warnings::warnif(
'deprecated',
'Calling initializer with init($str, $NDArray) has been deprecated.'.
'please use init(mx->init->InitDesc(...), NDArray) instead.'
);
if($name =~ /^upsampling/)
{
$self->_init_bilinear($name, $arr);
}
elsif($name =~ /^stn_loc/ and $name =~ /weight$/)
{
$self->_init_zero($name, $arr);
}
elsif($name =~ /^stn_loc/ and $name =~ /bias$/)
{
$self->_init_loc_bias($name, $arr);
}
elsif($name =~ /bias$/)
{
$self->_init_bias($name, $arr);
}
elsif($name =~ /gamma$/)
{
$self->_init_gamma($name, $arr);
}
elsif($name =~ /beta$/)
{
$self->_init_beta($name, $arr);
}
elsif($name =~ /weight$/)
{
$self->_init_weight($name, $arr);
}
elsif($name =~ /moving_mean$/)
{
$self->_init_zero($name, $arr);
}
elsif($name =~ /moving_var$/)
{
$self->_init_one($name, $arr);
}
elsif($name =~ /moving_inv_var$/)
{
$self->_init_zero($name, $arr);
}
elsif($name =~ /moving_avg$/)
{
$self->_init_zero($name, $arr);
}
else
{
$self->_init_default($name, $arr);
}
}
*slice = *call;
method _init_bilinear($name, $arr)
{
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ 'float32' });
my $weight = pzeros(
PDL::Type->new(DTYPE_MX_TO_PDL->{ 'float32' }),
$arr->size
);
my $shape = $arr->shape;
my $size = $arr->size;
my $f = pceil($shape->[3] / 2)->at(0);
my $c = (2 * $f - 1 - $f % 2) / (2 * $f);
for my $i (0..($size-1))
{
my $x = $i % $shape->[3];
my $y = ($i / $shape->[3]) % $shape->[2];
$weight->index($i) .= (1 - abs($x / $f - $c)) * (1 - abs($y / $f - $c));
}
$arr .= $weight->reshape(reverse @{ $shape });
}
method _init_loc_bias($name, $arr)
{
confess("assert error shape[0] == 6")
unless $arr->shape->[0] == 6;
$arr .= [1.0, 0, 0, 0, 1.0, 0];
}
method _init_zero($name, $arr)
{
$arr .= 0;
}
method _init_one($name, $arr)
{
$arr .= 1;
}
method _init_bias($name, $arr)
{
$arr .= 0;
}
method _init_gamma($name, $arr)
{
$arr .= 1;
}
method _init_beta($name, $arr)
{
$arr .= 0;
}
method _init_weight($name, $arr)
{
confess("Virtual method, subclass must override it");
}
method _init_default($name, $arr)
{
confess(
"Unknown initialization pattern for $name. "
.'Default initialization is now limited to '
.'"weight", "bias", "gamma" (1.0), and "beta" (0.0).'
.'Please use mx.sym.Variable(init=mx.init.*) to set initialization pattern'
);
}
=head1 NAME
AI::MXNet::Load - Initialize by loading a pretrained param from a hash ref.
=cut
=head2 new
Parameters
----------
param: HashRef[AI::MXNet::NDArray]
default_init: Initializer
default initializer when a name is not found in the param hash ref.
verbose: bool
log the names when initializing.
=cut
package AI::MXNet::Load;
use Mouse;
extends 'AI::MXNet::Initializer';
has 'param' => (is => "rw", isa => 'HashRef[AI::MXNet::NDArray]', required => 1);
has 'default_init' => (is => "rw", isa => "AI::MXNet::Initializer");
has 'verbose' => (is => "rw", isa => "Int", default => 0);
sub BUILD
{
my $self = shift;
my $param = AI::MXNet::NDArray->load($self->param) unless ref $self->param;
my %self_param;
while(my ($name, $arr) = each %{ $self->param })
{
$name =~ s/^(?:arg|aux)://;
$self_param{ $name } = $arr;
}
$self->param(\%self_param);
}
method call(Str $name, AI::MXNet::NDArray $arr)
{
if(exists $self->param->{ $name })
{
my $target_shape = join(',', @{ $arr->shape });
my $param_shape = join(',', @{ $self->param->{ $name }->shape });
confess(
"Parameter $name cannot be initialized from loading. "
."Shape mismatch, target $target_shape vs loaded $param_shape"
) unless $target_shape eq $param_shape;
$arr .= $self->param->{ $name };
AI::MXNet::Log->info("Initialized $name by loading") if $self->verbose;
}
else
{
confess(
"Cannot Initialize $name. Not found in loaded param "
."and no default Initializer is provided."
) unless defined $self->default_init;
$self->default_init($name, $arr);
AI::MXNet::Log->info("Initialized $name by default") if $self->verbose;
}
}
*slice = *call;
=head1 NAME
AI::MXNet::Mixed - A container for multiple initializer patterns.
=cut
=head2 new
patterns: array ref of str
array ref of regular expression patterns to match parameter names.
initializers: array ref of AI::MXNet::Initializer objects.
array ref of Initializers corresponding to the patterns.
=cut
package AI::MXNet::Mixed;
use Mouse;
extends 'AI::MXNet::Initializer';
has "map" => (is => "rw", init_arg => undef);
has "patterns" => (is => "ro", isa => 'ArrayRef[Str]');
has "initializers" => (is => "ro", isa => 'ArrayRef[AI::MXnet::Initializer]');
sub BUILD
{
my $self = shift;
confess("patterns count != initializers count")
unless (@{ $self->patterns } == @{ $self->initializers });
my %map;
@map{ @{ $self->patterns } } = @{ $self->initializers };
$self->map(\%map);
}
method call(Str $name, AI::MXNet::NDArray $arr)
{
for my $pattern (keys %{ $self->map })
{
if($name =~ /$pattern/)
{
&{$self->map->{$pattern}}($name, $arr);
return;
}
}
confess(
"Parameter name $name did not match any pattern. Consider"
."add a \".*\" pattern at the and with default Initializer."
);
}
package AI::MXNet::Zero;
use Mouse;
extends 'AI::MXNet::Initializer';
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
$arr .= 0;
}
__PACKAGE__->register;
package AI::MXNet::One;
use Mouse;
extends 'AI::MXNet::Initializer';
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
$arr .= 1;
}
__PACKAGE__->register;
package AI::MXNet::Constant;
use Mouse;
extends 'AI::MXNet::Initializer';
has 'value' => (is => 'ro', isa => 'Num', required => 1);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(value => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
$arr .= $self->value;
}
__PACKAGE__->register;
=head1 NAME
AI::MXNet::Uniform - Initialize the weight with uniform random values.
=cut
=head1 DESCRIPTION
Initialize the weight with uniform random values contained within of [-scale, scale]
Parameters
----------
scale : float, optional
The scale of the uniform distribution.
=cut
package AI::MXNet::Uniform;
use Mouse;
extends 'AI::MXNet::Initializer';
has "scale" => (is => "ro", isa => "Num", default => 0.7);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(scale => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
AI::MXNet::Random->uniform(-$self->scale, $self->scale, { out => $arr });
}
__PACKAGE__->register;
=head1 NAME
AI::MXNet::Normal - Initialize the weight with gaussian random values.
=cut
=head1 DESCRIPTION
Initialize the weight with gaussian random values contained within of [0, sigma]
Parameters
----------
sigma : float, optional
Standard deviation for the gaussian distribution.
=cut
package AI::MXNet::Normal;
use Mouse;
extends 'AI::MXNet::Initializer';
has "sigma" => (is => "ro", isa => "Num", default => 0.01);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(sigma => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
AI::MXNet::Random->normal(0, $self->sigma, { out => $arr });
}
__PACKAGE__->register;
=head1 NAME
AI::MXNet::Orthogonal - Intialize the weight as an Orthogonal matrix.
=cut
=head1 DESCRIPTION
Intialize weight as Orthogonal matrix
Parameters
----------
scale : float, optional
scaling factor of weight
rand_type: string optional
use "uniform" or "normal" random number to initialize weight
Reference
---------
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
arXiv preprint arXiv:1312.6120 (2013).
=cut
package AI::MXNet::Orthogonal;
use AI::MXNet::Base;
use Mouse;
use AI::MXNet::Types;
extends 'AI::MXNet::Initializer';
has "scale" => (is => "ro", isa => "Num", default => 1.414);
has "rand_type" => (is => "ro", isa => enum([qw/uniform normal/]), default => 'uniform');
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
my @shape = @{ $arr->shape };
my $nout = $shape[0];
my $nin = AI::MXNet::NDArray->size([@shape[1..$#shape]]);
my $tmp = AI::MXNet::NDArray->zeros([$nout, $nin]);
if($self->rand_type eq 'uniform')
{
AI::MXNet::Random->uniform(-1, 1, { out => $tmp });
}
else
{
AI::MXNet::Random->normal(0, 1, { out => $tmp });
}
$tmp = $tmp->aspdl;
my ($u, $s, $v) = svd($tmp);
my $q;
if(join(',', @{ $u->shape->unpdl }) eq join(',', @{ $tmp->shape->unpdl }))
{
$q = $u;
}
else
{
$q = $v;
}
$q = $self->scale * $q->reshape(reverse(@shape));
$arr .= $q;
}
*slice = *call;
__PACKAGE__->register;
=head1 NAME
AI::MXNet::Xavier - Initialize the weight with Xavier or similar initialization scheme.
=cut
=head1 DESCRIPTION
Parameters
----------
rnd_type: str, optional
Use gaussian or uniform.
factor_type: str, optional
Use avg, in, or out.
magnitude: float, optional
The scale of the random number range.
=cut
package AI::MXNet::Xavier;
use Mouse;
use AI::MXNet::Types;
extends 'AI::MXNet::Initializer';
has "magnitude" => (is => "rw", isa => "Num", default => 3);
has "rnd_type" => (is => "ro", isa => enum([qw/uniform gaussian/]), default => 'uniform');
has "factor_type" => (is => "ro", isa => enum([qw/avg in out/]), default => 'avg');
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
my @shape = @{ $arr->shape };
my $hw_scale = 1;
if(@shape > 2)
{
$hw_scale = AI::MXNet::NDArray->size([@shape[2..$#shape]]);
}
my ($fan_in, $fan_out) = ($shape[1] * $hw_scale, $shape[0] * $hw_scale);
my $factor;
if($self->factor_type eq "avg")
{
$factor = ($fan_in + $fan_out) / 2;
}
elsif($self->factor_type eq "in")
{
$factor = $fan_in;
}
else
{
$factor = $fan_out;
}
my $scale = sqrt($self->magnitude / $factor);
if($self->rnd_type eq "iniform")
{
AI::MXNet::Random->uniform(-$scale, $scale, { out => $arr });
}
else
{
AI::MXNet::Random->normal(0, $scale, { out => $arr });
}
}
__PACKAGE__->register;
=head1 NAME
AI::MXNet::MSRAPrelu - Custom initialization scheme.
=cut
=head1 DESCRIPTION
Initialize the weight with initialization scheme from
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
Parameters
----------
factor_type: str, optional
Use avg, in, or out.
slope: float, optional
initial slope of any PReLU (or similar) nonlinearities.
=cut
package AI::MXNet::MSRAPrelu;
use Mouse;
extends 'AI::MXNet::Xavier';
has '+rnd_type' => (default => "gaussian");
has '+factor_type' => (default => "avg");
has 'slope' => (is => 'ro', isa => 'Num', default => 0.25);
sub BUILD
{
my $self = shift;
my $magnitude = 2 / (1 + $self->slope ** 2);
$self->magnitude($magnitude);
$self->kwargs({ slope => $self->slope, factor_type => $self->factor_type });
}
__PACKAGE__->register;
package AI::MXNet::Bilinear;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::Initializer';
method _init_weight($name, $arr)
{
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ 'float32' });
my $weight = pzeros(
PDL::Type->new(DTYPE_MX_TO_PDL->{ 'float32' }),
$arr->size
);
my $shape = $arr->shape;
my $size = $arr->size;
my $f = pceil($shape->[3] / 2)->at(0);
my $c = (2 * $f - 1 - $f % 2) / (2 * $f);
for my $i (0..($size-1))
{
my $x = $i % $shape->[3];
my $y = ($i / $shape->[3]) % $shape->[2];
$weight->index($i) .= (1 - abs($x / $f - $c)) * (1 - abs($y / $f - $c));
}
$arr .= $weight->reshape(reverse @{ $shape });
}
__PACKAGE__->register;
package AI::MXNet::LSTMBias;
=head1 NAME
AI::MXNet::LSTMBias - Custom initializer for LSTM cells.
=cut
=head1 DESCRIPTION
Initializes all biases of an LSTMCell to 0.0 except for
the forget gate's bias that is set to a custom value.
Parameters
----------
forget_bias: float,a bias for the forget gate.
Jozefowicz et al. 2015 recommends setting this to 1.0.
=cut
use Mouse;
extends 'AI::MXNet::Initializer';
has 'forget_bias' => (is => 'ro', isa => 'Num', required => 1);
method _init_weight(Str $name, AI::MXNet::NDArray $arr)
{
$arr .= 0;
# in the case of LSTMCell the forget gate is the second
# gate of the 4 LSTM gates, we modify the according values.
my $num_hidden = int($arr->shape->[0] / 4);
$arr->slice([$num_hidden, 2*$num_hidden-1]) .= $self->forget_bias;
}
__PACKAGE__->register;
package AI::MXNet::FusedRNN;
use Mouse;
use JSON::PP;
extends 'AI::MXNet::Initializer';
=head1 NAME
AI::MXNet::FusedRNN - Custom initializer for fused RNN cells.
=cut
=head1 DESCRIPTION
Initializes parameters for fused rnn layer.
Parameters
----------
init : Initializer
initializer applied to unpacked weights.
All parameters below must be exactly the same as ones passed to the
FusedRNNCell constructor.
num_hidden : int
num_layers : int
mode : str
bidirectional : bool
forget_bias : float
=cut
has 'init' => (is => 'rw', isa => 'Str|AI::MXNet::Initializer', required => 1);
has 'forget_bias' => (is => 'ro', isa => 'Num', default => 1);
has [qw/num_hidden
num_layers/] => (is => 'ro', isa => 'Int', required => 1);
has 'mode' => (is => 'ro', isa => 'Str', required => 1);
has 'bidirectional' => (is => 'ro', isa => 'Bool', default => 0);
sub BUILD
{
my $self = shift;
if(not blessed $self->init)
{
my ($klass, $kwargs);
eval {
($klass, $kwargs) = @{ decode_json($self->init) };
};
confess("FusedRNN failed to init $@") if $@;
$self->init($self->get_init_registry->{ lc $klass }->new(%$kwargs));
}
}
method _init_weight($name, $arr)
{
my $cell = AI::MXNet::RNN::FusedCell->new(
num_hidden => $self->num_hidden,
num_layers => $self->num_layers,
mode => $self->mode,
bidirectional => $self->bidirectional,
forget_bias => $self->forget_bias,
prefix => ''
);
my $args = $cell->unpack_weights({ parameters => $arr });
for my $name (keys %{ $args })
{
my $desc = AI::MXNet::InitDesc->new(name => $name);
# for lstm bias, we use a custom initializer
# which adds a bias to the forget gate
if($self->mode eq 'lstm' and $name =~ /f_bias$/)
{
$args->{$name} .= $self->forget_bias;
}
else
{
&{$self->init}($desc, $args->{$name});
}
}
$arr .= $cell->pack_weights($args)->{parameters};
}
__PACKAGE__->register;
1;
lib/AI/MXNet/KVStore.pm view on Meta::CPAN
use AI::MXNet::Base;
use AI::MXNet::NDArray;
use AI::MXNet::Optimizer;
use MIME::Base64;
use Storable;
use Mouse;
use AI::MXNet::Function::Parameters;
=head1 NAME
AI::MXNet::KVStore - Key value store interface of MXNet.
=head1 DESCRIPTION
Key value store interface of MXNet for parameter synchronization, over multiple devices.
=cut
has 'handle' => (is => 'ro', isa => 'KVStoreHandle', required => 1);
has '_updater' => (is => 'rw', isa => 'AI::MXNet::Updater');
has '_updater_func' => (is => 'rw', isa => 'CodeRef');
sub DEMOLISH
{
check_call(AI::MXNetCAPI::KVStoreFree(shift->handle));
}
=head2 init
Initialize a single or a sequence of key-value pairs into the store.
For each key, one must init it before push and pull.
Only worker 0's (rank == 0) data are used.
This function returns after data have been initialized successfully
Parameters
----------
key : str or an array ref of str
The keys.
value : NDArray or an array ref of NDArray objects
The values.
Examples
--------
>>> # init a single key-value pair
>>> $shape = [2,3]
>>> $kv = mx->kv->create('local')
>>> $kv->init(3, mx->nd->ones($shape)*2)
>>> $a = mx->nd->zeros($shape)
>>> $kv->pull(3, out=>$a)
>>> print $a->aspdl
[[ 2 2 2]
[ 2 2 2]]
>>> # init a list of key-value pairs
>>> $keys = [5, 7, 9]
>>> $kv->init(keys, [map { mx->nd->ones($shape) } 0..@$keys-1])
=cut
method init(
Str|ArrayRef[Str] $key,
AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] $value
)
{
my ($keys, $vals) = _key_value($key, $value);
check_call(
AI::MXNetCAPI::KVStoreInitEx(
$self->handle, scalar(@{ $keys }), $keys, $vals
)
);
}
=head2 push
Push a single or a sequence of key-value pairs into the store.
Data consistency:
1. this function returns after adding an operator to the engine.
2. push is always called after all previous push and pull on the same
key are finished.
3. there is no synchronization between workers. One can use _barrier()
to sync all workers.
Parameters
----------
key : str or array ref of str
value : NDArray or array ref of NDArray or array ref of array refs of NDArray
priority : int, optional
The priority of the push operation.
The higher the priority, the faster this action is likely
to be executed before other push actions.
Examples
--------
>>> # push a single key-value pair
>>> $kv->push(3, mx->nd->ones($shape)*8)
>>> $kv->pull(3, out=>$a) # pull out the value
>>> print $a->aspdl()
[[ 8. 8. 8.]
[ 8. 8. 8.]]
>>> # aggregate the value and the push
>>> $gpus = [map { mx->gpu($_) } 0..3]
>>> $b = [map { mx->nd->ones($shape, ctx => $_) } @$gpus]
>>> $kv->push(3, $b)
>>> $kv->pull(3, out=>$a)
>>> print $a->aspdl
[[ 4. 4. 4.]
[ 4. 4. 4.]]
>>> # push a list of keys.
>>> # single device
>>> $kv->push($keys, [map { mx->nd->ones($shape) } 0..@$keys-1)
>>> $b = [map { mx->nd->zeros(shape) } 0..@$keys-1]
>>> $kv->pull($keys, out=>$b)
>>> print $b->[1]->aspdl
[[ 1. 1. 1.]
[ 1. 1. 1.]]
>>> # multiple devices:
>>> $b = [map { [map { mx->nd->ones($shape, ctx => $_) } @$gpus] } @$keys-1]
>>> $kv->push($keys, $b)
>>> $kv->pull($keys, out=>$b)
>>> print $b->[1][1]->aspdl()
[[ 4. 4. 4.]
[ 4. 4. 4.]]
=cut
method push(
Str|ArrayRef[Str] $key,
AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] $value,
Int :$priority=0
)
{
my ($keys, $vals) = _key_value($key, $value);
check_call(
AI::MXNetCAPI::KVStorePushEx(
$self->handle, scalar(@{ $keys }), $keys, $vals, $priority
)
);
}
=head2 pull
Pull a single value or a sequence of values from the store.
Data consistency:
1. this function returns after adding an operator to the engine. But any
further read on out will be blocked until it is finished.
2. pull is always called after all previous push and pull on the same
key are finished.
3. It pulls the newest value from the store.
Parameters
----------
key : str or array ref of str
Keys
out: NDArray or array ref of NDArray or array ref of array refs of NDArray
According values
priority : int, optional
The priority of the push operation.
The higher the priority, the faster this action is likely
to be executed before other push actions.
Examples
--------
>>> # pull a single key-value pair
>>> $a = mx->nd->zeros($shape)
>>> $kv->pull(3, out=>$a)
>>> print $a->aspdl
[[ 2. 2. 2.]
[ 2. 2. 2.]]
>>> # pull into multiple devices
>>> $b = [map { mx->nd->ones($shape, $_) } @$gpus]
>>> $kv->pull(3, out=>$b)
>>> print $b->[1]->aspdl()
[[ 2. 2. 2.]
[ 2. 2. 2.]]
>>> # pull a list of key-value pairs.
>>> # On single device
>>> $keys = [5, 7, 9]
>>> $b = [map { mx->nd->zeros($shape) } 0..@$keys-1]
>>> $kv->pull($keys, out=>$b)
>>> print $b->[1]->aspdl()
[[ 2. 2. 2.]
[ 2. 2. 2.]]
>>> # On multiple devices
>>> $b = [map { [map { mx->nd->ones($shape, ctx => $_) } @$gpus ] } 0..@$keys-1]
>>> $kv->pull($keys, out=>$b)
>>> print $b->[1][1]->aspdl()
[[ 2. 2. 2.]
[ 2. 2. 2.]]
=cut
method pull(
Str|ArrayRef[Str] $key,
AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] :$out,
Int :$priority=0
)
{
my ($keys, $vals) = _key_value($key, $out);
check_call(
AI::MXNetCAPI::KVStorePullEx(
$self->handle, scalar(@{ $keys }), $keys, $vals, $priority
)
);
}
=head2 set_optimizer
Register an optimizer to the store
If there are multiple machines, this process (should be a worker node)
will pack this optimizer and send it to all servers. It returns after
this action is done.
Parameters
----------
optimizer : Optimizer
the optimizer
=cut
method set_optimizer(AI::MXNet::Optimizer $optimizer)
{
my $is_worker = check_call(AI::MXNetCAPI::KVStoreIsWorkerNode());
if($self->type eq 'dist' and $is_worker)
{
my $optim_str = MIME::Base64::encode_base64(Storable::freeze($optimizer), "");
$self->_send_command_to_servers(0, $optim_str);
}
else
{
$self->_updater(AI::MXNet::Optimizer->get_updater($optimizer));
$self->_set_updater(sub { &{$self->_updater}(@_) });
}
}
=head2 type
Get the type of this kvstore
Returns
-------
type : str
the string type
=cut
method type()
{
return scalar(check_call(AI::MXNetCAPI::KVStoreGetType($self->handle)));
}
=head2 rank
Get the rank of this worker node
Returns
-------
rank : int
The rank of this node, which is in [0, get_num_workers())
=cut
method rank()
{
return scalar(check_call(AI::MXNetCAPI::KVStoreGetRank($self->handle)));
}
=head2 num_workers
Get the number of worker nodes
Returns
-------
size :int
The number of worker nodes
=cut
method num_workers()
{
return scalar(check_call(AI::MXNetCAPI::KVStoreGetGroupSize($self->handle)));
}
=head2 save_optimizer_states
Save optimizer (updater) state to file
Parameters
----------
fname : str
Path to output states file.
=cut
method save_optimizer_states(Str $fname)
{
confess("Cannot save states for distributed training")
unless defined $self->_updater;
open(F, ">:raw", "$fname") or confess("can't open $fname for writing: $!");
print F $self->_updater->get_states();
close(F);
}
=head2 load_optimizer_states
Load optimizer (updater) state from file.
Parameters
----------
fname : str
Path to input states file.
=cut
method load_optimizer_states(Str $fname)
{
confess("Cannot save states for distributed training")
unless defined $self->_updater;
open(F, "<:raw", "$fname") or confess("can't open $fname for reading: $!");
my $data;
{ local($/) = undef; $data = <F>; }
close(F);
$self->_updater->set_states($data);
}
=head2 _set_updater
Set a push updater into the store.
This function only changes the local store. Use set_optimizer for
multi-machines.
Parameters
----------
updater : function
the updater function
Examples
--------
>>> my $update = sub { my ($key, input, stored) = @_;
... print "update on key: $key\n";
... $stored += $input * 2; };
>>> $kv->_set_updater($update)
>>> $kv->pull(3, out=>$a)
>>> print $a->aspdl()
[[ 4. 4. 4.]
[ 4. 4. 4.]]
>>> $kv->push(3, mx->nd->ones($shape))
update on key: 3
>>> $kv->pull(3, out=>$a)
>>> print $a->aspdl()
[[ 6. 6. 6.]
[ 6. 6. 6.]]
=cut
method _set_updater(CodeRef $updater_func)
{
$self->_updater_func(
sub {
my ($index, $input_handle, $storage_handle) = @_;
$updater_func->(
$index,
AI::MXNet::NDArray->new(handle => $input_handle),
AI::MXNet::NDArray->new(handle => $storage_handle)
);
}
);
check_call(
AI::MXNetCAPI::KVStoreSetUpdater(
$self->handle,
$self->_updater_func
)
);
}
=head2 _barrier
Global barrier between all worker nodes.
For example, assume there are n machines, we want to let machine 0 first
init the values, and then pull the inited value to all machines. Before
pulling, we can place a barrier to guarantee that the initialization is
finished.
=cut
method _barrier()
{
check_call(AI::MXNetCAPI::KVStoreBarrier($self->handle));
}
=head2 _send_command_to_servers
Send a command to all server nodes
Send a command to all server nodes, which will make each server node run
KVStoreServer.controller
This function returns after the command has been executed in all server
nodes.
Parameters
----------
head : int
the head of the command
body : str
the body of the command
=cut
method _send_command_to_servers(Int $head, Str $body)
{
check_call(
AI::MXNetCAPI::KVStoreSendCommmandToServers(
$self->handle,
$head,
$body
)
);
}
=head2 create
Create a new KVStore.
Parameters
----------
name : {'local'}
The type of KVStore
- local works for multiple devices on a single machine (single process)
- dist works for multi-machines (multiple processes)
Returns
-------
kv : KVStore
The created AI::MXNet::KVStore
=cut
method create(Str $name='local')
{
my $handle = check_call(AI::MXNetCAPI::KVStoreCreate($name));
return __PACKAGE__->new(handle => $handle);
}
sub _key_value
{
my ($keys, $vals) = @_;
if(not ref $keys)
{
if(blessed $vals)
{
return ([$keys], [$vals->handle]);
}
else
{
for my $value (@{ $vals })
{
assert(blessed($value) and $value->isa('AI::MXNet::NDArray'));
return ([($keys)x@$vals], [map { $_->handle } @$vals]);
}
}
}
else
{
assert(not blessed($vals) and @$keys == @$vals);
my @c_keys;
my @c_vals;
zip(sub {
my ($key, $val) = @_;
my ($c_key, $c_val) = _key_value($key, $val);
push @c_keys, @$c_key;
push @c_vals, @$c_val;
}, $keys, $vals);
return (\@c_keys, \@c_vals);
}
}
1;
lib/AI/MXNet/KVStoreServer.pm view on Meta::CPAN
use warnings;
use AI::MXNet::Base;
use AI::MXNet::KVStore;
use Storable;
use MIME::Base64;
use Mouse;
use AI::MXNet::Function::Parameters;
=head1 NAME
AI::MXNet::KVStoreServer - The key-value store server
=cut
=head2 new
Initialize a new KVStoreServer.
Parameters
----------
kvstore : KVStore
=cut
has 'kvstore' => (is => 'ro', isa => 'AI::MXNet::KVStore', required => 1);
has 'handle' => (is => 'ro', isa => 'KVStoreHandle', default => sub { shift->kvstore->handle }, lazy => 1);
has 'init_logging' => (is => 'rw', isa => 'Int', default => 0);
# return the server controller
method _controller()
{
return sub {
my ($cmd_id, $cmd_body) = @_;
if (not $self->init_logging)
{
## TODO write logging
$self->init_logging(1);
}
if($cmd_id == 0)
{
my $optimizer = Storable::thaw(MIME::Base64::decode_base64($cmd_body));
$self->kvstore->set_optimizer($optimizer);
}
else
{
my $rank = $self->kvstore->rank;
print("server $rank, unknown command ($cmd_id, $cmd_body)\n");
}
}
}
=head2 run
run the server, whose behavior is like
>>> while receive(x):
... if is_command x: controller(x)
... else if is_key_value x: updater(x)
=cut
method run()
{
check_call(AI::MXNetCAPI::KVStoreRunServer($self->handle, $self->_controller));
}
# Start server/scheduler
func _init_kvstore_server_module()
{
my $is_worker = check_call(AI::MXNetCAPI::KVStoreIsWorkerNode());
if($is_worker == 0)
{
my $kvstore = AI::MXNet::KVStore->create('dist');
my $server = __PACKAGE__->new(kvstore => $kvstore);
$server->run();
exit(0);
}
}
_init_kvstore_server_module();
1;
lib/AI/MXNet/LRScheduler.pm view on Meta::CPAN
package AI::MXNet::LRScheduler;
use strict;
use warnings;
use Mouse;
use AI::MXNet::Function::Parameters;
use AI::MXNet::Logging;
use overload "&{}" => sub { my $self = shift; sub { $self->call(@_) } },
fallback => 1;
=head1 NAME
AI::MXNet::LRScheduler - The adaptive scheduler of the learning rate.
=cut
=head1 DESCRIPTION
Learning rate scheduler, which adaptively changes the learning rate based on the
progress.
=cut
=head2 new
base_lr : float (optional, default 0.01)
the initial learning rate
=cut
has 'base_lr' => (is => 'rw', isa => 'Num', default => 0.01);
=head2 call
Call to schedule current learning rate
The training progress is presented by num_update, which can be roughly
viewed as the number of minibatches executed so far. Its value is
non-decreasing, and increases at most by one.
The exact value is the upper bound of the number of updates applied to
a weight/index
See more details in https://github.com/dmlc/mxnet/issues/625
Parameters
----------
num_update: int
the maximal number of updates applied to a weight.
=cut
package AI::MXNet::FactorScheduler;
=head1 NAME
AI::MXNet::FactorScheduler - Reduces the learning rate by a factor.
=head1 DESCRIPTION
Reduces the learning rate by a factor each step.
Assume the weight has been updated by n times, then the learning rate will
be base_lr * factor^(floor(n/step))
Parameters
----------
step: int
schedule the learning rate update after n updates
factor: float
the factor by which to reduce the learning rate.
=cut
use Mouse;
extends 'AI::MXNet::LRScheduler';
has 'step' => (is => 'ro', isa => 'Int', required => 1);
has 'factor' => (is => 'ro', isa => 'Num', default => 1);
has 'count' => (is => 'rw', isa => 'Int', default => 1);
has 'stop_factor_lr' => (is => 'ro', isa => 'Num', default => 1e-8);
sub BUILD
{
my $self = shift;
confess("Schedule step must be greater or equal than 1")
if $self->step < 1;
confess("Factor must be no more than 1 to make lr reduce")
if $self->factor > 1;
}
method call(Int $num_update)
{
# NOTE: use while rather than if (for continuing training via load_epoch)
while($num_update > $self->count + $self->step)
{
$self->count($self->count + $self->step);
$self->base_lr($self->base_lr * $self->factor);
if($self->base_lr < $self->stop_factor_lr)
{
$self->base_lr($self->stop_factor_lr);
AI::MXNet::Logging->info(
"Update[%d]: now learning rate arrived at %0.5e, will not "
."change in the future", $num_update, $self->base_lr
);
}
else
{
AI::MXNet::Logging->info(
"Update[%d]: Changed learning rate to %0.5e",
$num_update, $self->base_lr
);
}
}
return $self->base_lr;
}
package AI::MXNet::MultiFactorScheduler;
=head1 NAME
AI::MXNet::MultiFactorScheduler - Reduces the learning rate by an array ref of factors.
=head1 DESCRIPTION
Reduces a learning rate in factor at steps specified in an array ref.
Assume the weight has been updated by n times, then the learning rate will
be base_lr * factor^(sum((step/n)<=1)) # step is an array.
Parameters
----------
step: array ref of int
schedule learning rate after n updates
factor: float
the factor for reducing the learning rate
=cut
use Mouse;
extends 'AI::MXNet::LRScheduler';
has 'step' => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'factor' => (is => 'ro', isa => 'Num', default => 1);
has 'cur_step_ind' => (is => 'rw', isa => 'Int', default => 0);
has 'count' => (is => 'rw', isa => 'Int', default => 0);
sub BUILD
{
my $self = shift;
confess("step array must have at least one member")
unless @{ $self->step } >=1 ;
for (my $i = 0; $i < @{ $self->step }; $i++)
{
confess("Schedule step must be an increasing integer list")
if($i and $self->step->[$i] <= $self->step->[$i-1]);
confess("Schedule step must be greater or equal than 1")
if $self->step->[$i] < 1;
}
confess("Factor must be no more than 1 to make lr reduce")
if $self->factor > 1;
}
method call(Int $num_update)
{
# NOTE: use while rather than if (for continuing training via load_epoch)
while($self->cur_step_ind < @{ $self->step })
{
if($num_update > $self->step->[$self->cur_step_ind])
{
$self->count($self->step->[$self->cur_step_ind]);
$self->cur_step_ind($self->cur_step_ind + 1);
$self->base_lr($self->base_lr * $self->factor);
AI::MXNet::Logging->info(
"Update[%d]: Changed learning rate to %0.5e",
$num_update, $self->base_lr
);
}
else
{
return $self->base_lr;
}
}
return $self->base_lr;
}
1;
lib/AI/MXNet/Metric.pm view on Meta::CPAN
package AI::MXNet::Metric;
use strict;
use warnings;
use AI::MXNet::Function::Parameters;
use Scalar::Util qw/blessed/;
=head1 NAME
AI::MXNet::Metric - Online evaluation metric module.
=cut
# Check to see if the two arrays are the same size.
sub _calculate_shape
{
my $input = shift;
my ($shape);
if(blessed($input))
{
if($input->isa('PDL'))
{
$shape = $input->shape->at(-1);
}
else
{
$shape = $input->shape->[0];
}
}
else
{
$shape = @{ $input };
}
return $shape;
}
func check_label_shapes(
ArrayRef|AI::MXNet::NDArray|PDL $labels,
ArrayRef|AI::MXNet::NDArray|PDL $preds
)
{
my ($label_shape, $pred_shape) = (_calculate_shape($labels), _calculate_shape($preds));
Carp::confess(
"Shape of labels $label_shape does not "
."match shape of predictions $pred_shape"
) unless $pred_shape == $label_shape;
}
=head1 DESCRIPTION
Base class of all evaluation metrics.
=cut
package AI::MXNet::EvalMetric;
use Mouse;
use overload '""' => sub {
return "EvalMetric: "
.Data::Dumper->new(
[shift->get_name_value()]
)->Purity(1)->Deepcopy(1)->Terse(1)->Dump
}, fallback => 1;
has 'name' => (is => 'rw', isa => 'Str');
has 'num' => (is => 'rw', isa => 'Int');
has 'num_inst' => (is => 'rw', isa => 'Maybe[Int|ArrayRef[Int]]');
has 'sum_metric' => (is => 'rw', isa => 'Maybe[Num|ArrayRef[Num]]');
sub BUILD
{
shift->reset;
}
method update($label, $pred)
{
confess('NotImplemented');
}
method reset()
{
if(not defined $self->num)
{
$self->num_inst(0);
$self->sum_metric(0);
}
else
{
$self->num_inst([(0) x $self->num]);
$self->sum_metric([(0) x $self->num]);
}
}
method get()
{
if(not defined $self->num)
{
if($self->num_inst == 0)
{
return ($self->name, 'nan');
}
else
{
return ($self->name, $self->sum_metric / $self->num_inst);
}
}
else
{
my $names = [map { sprintf('%s_%d', $self->name, $_) } 0..$self->num-1];
my $values = [];
for (my $i = 0; $i < @{ $self->sum_metric }; $i++)
{
my ($x, $y) = ($self->sum_metric->[$i], $self->num_inst->[$i]);
if($y != 0)
{
push (@$values, $x/$y);
}
else
{
push (@$values, 'nan');
}
}
return ($names, $values);
}
}
method get_name_value()
{
my ($name, $value) = $self->get;
$name = [$name] unless ref $name;
$value = [$value] unless ref $value;
my %ret;
@ret{ @$name } = @$value;
return \%ret;
}
package AI::MXNet::CompositeEvalMetric;
use Mouse;
extends 'AI::MXNet::EvalMetric';
has 'metrics' => (is => 'rw', isa => 'ArrayRef[AI::MXNet::EvalMetric]', default => sub { [] });
has '+name' => (default => 'composite');
# Add a child metric.
method add(AI::MXNet::EvalMetric $metric)
{
push @{ $self->metrics }, $metric;
}
# Get a child metric.
method get_metric(int $index)
{
my $max = @{ $self->metrics } - 1;
confess("Metric index $index is out of range 0 and $max")
if $index > $max;
return $self->metrics->[$index];
}
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
for my $metric (@{ $self->metrics })
{
$metric->update($labels, $preds);
}
}
method reset()
{
for my $metric (@{ $self->metrics })
{
$metric->reset;
}
}
method get()
{
my $names = [];
my $results = [];
for my $metric (@{ $self->metrics })
{
my ($name, $result) = $metric->get;
$name = [$name] unless ref $name;
$result = [$result] unless ref $result;
push @$names, @$name;
push @$results, @$result;
}
return ($names, $results);
}
########################
# CLASSIFICATION METRICS
########################
package AI::MXNet::Accuracy;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'accuracy');
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred_label) = @_;
if(join(',', @{$pred_label->shape}) ne join(',', @{$label->shape}))
{
$pred_label = AI::MXNet::NDArray->argmax_channel($pred_label);
}
AI::MXNet::Metric::check_label_shapes($label, $pred_label);
my $sum = ($pred_label->aspdl->flat == $label->aspdl->flat)->sum;
$self->sum_metric($self->sum_metric + $sum);
$self->num_inst($self->num_inst + $pred_label->size);
}, $labels, $preds);
}
package AI::MXNet::TopKAccuracy;
use Mouse;
use List::Util qw/min/;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'top_k_accuracy');
has 'top_k' => (is => 'rw', isa => 'int', default => 1);
sub BUILD
{
my $self = shift;
confess("Please use Accuracy if top_k is no more than 1")
unless $self->top_k > 1;
$self->name($self->name . "_" . $self->top_k);
}
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred_label) = @_;
confess('Predictions should be no more than 2 dims')
unless @{ $pred_label->shape } <= 2;
$pred_label = $pred_label->aspdl->qsorti;
$label = $label->astype('int32')->aspdl;
AI::MXNet::Metric::check_label_shapes($label, $pred_label);
my $num_samples = $pred_label->shape->at(-1);
my $num_dims = $pred_label->ndims;
if($num_dims == 1)
{
my $sum = ($pred_label->flat == $label->flat)->sum;
$self->sum_metric($self->sum_metric + $sum);
}
elsif($num_dims == 2)
{
my $num_classes = $pred_label->shape->at(0);
my $top_k = min($num_classes, $self->top_k);
for my $j (0..$top_k-1)
{
my $sum = ($pred_label->slice($num_classes -1 - $j, 'X')->flat == $label->flat)->sum;
$self->sum_metric($self->sum_metric + $sum);
}
}
$self->num_inst($self->num_inst + $num_samples);
}, $labels, $preds);
}
# Calculate the F1 score of a binary classification problem.
package AI::MXNet::F1;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'f1');
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred_label) = @_;
AI::MXNet::Metric::check_label_shapes($label, $pred_label);
$pred_label = $pred_label->aspdl->maximum_ind;
$label = $label->astype('int32')->aspdl;
confess("F1 currently only supports binary classification.")
if $label->uniq->shape->at(0) > 2;
my ($true_positives, $false_positives, $false_negatives) = (0,0,0);
zip(sub{
my ($y_pred, $y_true) = @_;
if($y_pred == 1 and $y_true == 1)
{
$true_positives += 1;
}
elsif($y_pred == 1 and $y_true == 0)
{
$false_positives += 1;
}
elsif($y_pred == 0 and $y_true == 1)
{
$false_negatives += 1;
}
}, $pred_label->unpdl, $label->unpdl);
my $precision;
my $recall;
if($true_positives + $false_positives > 0)
{
$precision = $true_positives / ($true_positives + $false_positives);
}
else
{
$precision = 0;
}
if($true_positives + $false_negatives > 0)
{
$recall = $true_positives / ($true_positives + $false_negatives);
}
else
{
$recall = 0;
}
my $f1_score;
if($precision + $recall > 0)
{
$f1_score = 2 * $precision * $recall / ($precision + $recall);
}
else
{
$f1_score = 0;
}
$self->sum_metric($self->sum_metric + $f1_score);
$self->num_inst($self->num_inst + 1);
}, $labels, $preds);
}
package AI::MXNet::Perplexity;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'Perplexity');
has 'ignore_label' => (is => 'ro', isa => 'Maybe[Int]');
has 'axis' => (is => 'ro', isa => 'Int', default => -1);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(ignore_label => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
=head1 NAME
AI::MXNet::Perplexity
=cut
=head1 DESCRIPTION
Calculate perplexity.
Parameters
----------
ignore_label : int or undef
index of invalid label to ignore when
counting. usually should be -1. Include
all entries if undef.
axis : int (default -1)
The axis from prediction that was used to
compute softmax. By default uses the last
axis.
=cut
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
my ($loss, $num) = (0, 0);
zip(sub {
my ($label, $pred) = @_;
my $label_shape = $label->shape;
my $pred_shape = $pred->shape;
assert(
(product(@{ $label_shape }) == product(@{ $pred_shape })/$pred_shape->[-1]),
"shape mismatch: (@$label_shape) vs. (@$pred_shape)"
);
$label = $label->as_in_context($pred->context)->reshape([$label->size]);
$pred = AI::MXNet::NDArray->pick($pred, $label->astype('int32'), { axis => $self->axis });
if(defined $self->ignore_label)
{
my $ignore = ($label == $self->ignore_label);
$num -= $ignore->sum->asscalar;
$pred = $pred*(1-$ignore) + $ignore;
}
$loss -= $pred->maximum(1e-10)->log->sum->asscalar;
$num += $pred->size;
}, $labels, $preds);
$self->sum_metric($self->sum_metric + $loss);
$self->num_inst($self->num_inst + $num);
}
method get()
{
return ($self->name, exp($self->sum_metric / $self->num_inst));
}
####################
# REGRESSION METRICS
####################
# Calculate Mean Absolute Error loss
package AI::MXNet::MAE;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'mae');
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred) = @_;
$label = $label->aspdl;
$pred = $pred->aspdl;
if($label->ndims == 1)
{
$label = $label->reshape(1, $label->shape->at(0));
}
$self->sum_metric($self->sum_metric + ($label - $pred)->abs->avg);
$self->num_inst($self->num_inst + 1);
}, $labels, $preds);
}
# Calculate Mean Squared Error loss
package AI::MXNet::MSE;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'mse');
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred) = @_;
$label = $label->aspdl;
$pred = $pred->aspdl;
if($label->ndims == 1)
{
$label = $label->reshape(1, $label->shape->at(0));
}
$self->sum_metric($self->sum_metric + (($label - $pred)**2)->avg);
$self->num_inst($self->num_inst + 1);
}, $labels, $preds);
}
# Calculate Root Mean Squred Error loss
package AI::MXNet::RMSE;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'rmse');
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred) = @_;
$label = $label->aspdl;
$pred = $pred->aspdl;
if($label->ndims == 1)
{
$label = $label->reshape(1, $label->shape->at(0));
}
$self->sum_metric($self->sum_metric + sqrt((($label - $pred)**2)->avg));
$self->num_inst($self->num_inst + 1);
}, $labels, $preds);
}
# Calculate Cross Entropy loss
package AI::MXNet::CrossEntropy;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'cross-entropy');
has 'eps' => (is => 'ro', isa => 'Num', default => 1e-8);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
return $class->$orig(eps => $_[0]) if @_ == 1;
return $class->$orig(@_);
};
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred) = @_;
$label = $label->aspdl->flat;
$pred = $pred->aspdl;
my $label_shape = $label->shape->at(0);
my $pred_shape = $pred->shape->at(-1);
confess(
"Size of label $label_shape and
.first dimension of pred $pred_shape do not match"
) unless $label_shape == $pred_shape;
my $prob = $pred->index($label);
$self->sum_metric($self->sum_metric + (-($prob + $self->eps)->log)->sum);
$self->num_inst($self->num_inst + $label_shape);
}, $labels, $preds);
}
package AI::MXNet::PearsonCorrelation;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has '+name' => (default => 'pearson-correlation');
=head1 NAME
AI::MXNet::PearsonCorrelation
=cut
=head1 DESCRIPTION
Computes Pearson correlation.
Parameters
----------
name : str
Name of this metric instance for display.
Examples
--------
>>> $predicts = [mx->nd->array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])]
>>> $labels = [mx->nd->array([[1, 0], [0, 1], [0, 1]])]
>>> $pr = mx->metric->PearsonCorrelation()
>>> $pr->update($labels, $predicts)
>>> print pr->get()
('pearson-correlation', '0.421637061887229')
=cut
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds);
zip(sub {
my ($label, $pred) = @_;
AI::MXNet::Metric::check_label_shapes($label, $pred);
$label = $label->aspdl->flat;
$pred = $pred->aspdl->flat;
my ($label_mean, $label_stdv) = ($label->stats)[0, 6];
my ($pred_mean, $pred_stdv) = ($pred->stats)[0, 6];
$self->sum_metric(
$self->sum_metric
+
((($label-$label_mean)*($pred-$pred_mean))->sum/$label->nelem)/(($label_stdv*$pred_stdv)->at(0))
);
$self->num_inst($self->num_inst + 1);
}, $labels, $preds);
}
=head1 DESCRIPTION
Custom evaluation metric that takes a sub ref.
Parameters
----------
eval_function : subref
Customized evaluation function.
name : str, optional
The name of the metric
allow_extra_outputs : bool
If true, the prediction outputs can have extra outputs.
This is useful in RNN, where the states are also produced
in outputs for forwarding.
=cut
package AI::MXNet::CustomMetric;
use Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::EvalMetric';
has 'eval_function' => (is => 'ro', isa => 'CodeRef');
has 'allow_extra_outputs' => (is => 'ro', isa => 'Int', default => 0);
method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
AI::MXNet::Metric::check_label_shapes($labels, $preds)
unless $self->allow_extra_outputs;
zip(sub {
my ($label, $pred) = @_;
$label = $label->aspdl;
$pred = $pred->aspdl;
my $value = $self->eval_function->($label, $pred);
my $sum_metric = ref $value ? $value->[0] : $value;
my $num_inst = ref $value ? $value->[1] : 1;
$self->sum_metric($self->sum_metric + $sum_metric);
$self->num_inst($self->num_inst + $num_inst);
}, $labels, $preds);
}
package AI::MXNet::Metric;
=head2 create
Create an evaluation metric.
Parameters
----------
metric : str or sub ref
The name of the metric, or a function
providing statistics given pred, label NDArray.
=cut
my %metrics = qw/
acc AI::MXNet::Accuracy
accuracy AI::MXNet::Accuracy
ce AI::MXNet::CrossEntropy
f1 AI::MXNet::F1
mae AI::MXNet::MAE
mse AI::MXNet::MSE
rmse AI::MXNet::RMSE
top_k_accuracy AI::MXNet::TopKAccuracy
Perplexity AI::MXNet::Perplexity
perplexity AI::MXNet::Perplexity
pearsonr AI::MXNet::PearsonCorrelation
/;
method create(Metric|ArrayRef[Metric] $metric, %kwargs)
{
Carp::confess("metric must be defined") unless defined $metric;
if(my $ref = ref $metric)
{
if($ref eq 'ARRAY')
{
my $composite_metric = AI::MXNet::CompositeEvalMetric->new();
for my $child_metric (@{ $metric })
{
$composite_metric->add(__PACKAGE__->create($child_metric, %kwargs))
}
return $composite_metric;
}
else
{
return AI::MXNet::CustomMetric->new(eval_function => $metric, %kwargs);
}
}
else
{
if(not exists $metrics{ lc($metric) })
{
my @metrics = keys %metrics;
Carp::confess("Metric must be either subref or one of [@metrics]");
}
return $metrics{ lc($metric) }->new(%kwargs);
}
}
{
no strict 'refs';
no warnings 'redefine';
for my $metric (values %metrics)
{
my ($name) = $metric =~ /(\w+)$/;
*{__PACKAGE__."::$name"} = sub { shift; $metric->new(@_); };
}
}
1;
lib/AI/MXNet/Module.pm view on Meta::CPAN
## TODO
## this class is here because of https://github.com/gfx/p5-Mouse/pull/67
## once 2.4.7 version of Mouse in Ubuntu for affected Perl version
## these accessors should be merged into main class
package AI::MXNet::Module::Private;
use Mouse;
has [qw/_param_names _fixed_param_names
_aux_names _data_names _label_names _state_names
_output_names _arg_params _aux_params
_params_dirty _optimizer _kvstore
_update_on_kvstore _updater _work_load_list
_preload_opt_states _exec_group
_data_shapes _label_shapes _context _grad_req/
] => (is => 'rw', init_arg => undef);
package AI::MXNet::Module;
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
use List::Util qw(max);
use Data::Dumper ();
use Mouse;
func _create_kvstore(
Maybe[Str|AI::MXNet::KVStore] $kvstore,
Int $num_device,
HashRef[AI::MXNet::NDArray] $arg_params
)
{
my $update_on_kvstore = 1;
my $kv;
if(defined $kvstore)
{
if(blessed $kvstore)
{
$kv = $kvstore;
}
else
{
# create kvstore using the string type
if($num_device == 1 and $kvstore !~ /dist/)
{
# no need to use kv for single device and single machine
}
else
{
$kv = AI::MXNet::KVStore->create($kvstore);
if($kvstore eq 'local')
{
# automatically select a proper local
my $max_size = max(map { product(@{ $_->shape }) } values %{ $arg_params });
if($max_size > 1024 * 1024 * 16)
{
$update_on_kvstore = 0;
}
}
}
}
}
$update_on_kvstore = 0 if not $kv;
return ($kv, $update_on_kvstore);
}
func _initialize_kvstore(
AI::MXNet::KVStore :$kvstore,
HashRef[AI::MXNet::NDArray] :$arg_params,
ArrayRef[Str] :$param_names,
Bool :$update_on_kvstore,
ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] :$param_arrays
)
{
enumerate(sub{
my ($idx, $param_on_devs) = @_;
my $name = $param_names->[$idx];
$kvstore->init($name, $arg_params->{ $name });
if($update_on_kvstore)
{
$kvstore->pull($name, out => $param_on_devs, priority => -$idx);
}
}, $param_arrays);
}
func _update_params_on_kvstore(
ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] $param_arrays,
ArrayRef[AI::MXNet::NDArray]|ArrayRef[ArrayRef[AI::MXNet::NDArray]] $grad_arrays,
AI::MXNet::KVStore $kvstore,
ArrayRef[Str] $param_names
)
{
enumerate(sub{
my ($index, $arg_list, $grad_list) = @_;
if(ref $grad_list eq 'ARRAY' and not defined $grad_list->[0])
{
return;
}
my $name = $param_names->[$index];
# push gradient, priority is negative index
$kvstore->push($name, $grad_list, priority => -$index);
# pull back the weights
$kvstore->pull($name, out => $arg_list, priority => -$index);
}, $param_arrays, $grad_arrays);
}
func _update_params(
ArrayRef[ArrayRef[AI::MXNet::NDArray]] $param_arrays,
ArrayRef[ArrayRef[AI::MXNet::NDArray]] $grad_arrays,
AI::MXNet::Updater $updater,
Int $num_device,
Maybe[AI::MXNet::KVStore] $kvstore=,
Maybe[ArrayRef[Str]] $param_names=
)
{
enumerate(sub{
my ($index, $arg_list, $grad_list) = @_;
if(not defined $grad_list->[0])
{
return;
}
if($kvstore)
{
my $name = $param_names->[$index];
# push gradient, priority is negative index
$kvstore->push($name, $grad_list, priority => -$index);
# pull back the sum gradients, to the same locations.
$kvstore->pull($name, out => $grad_list, priority => -$index);
}
enumerate(sub {
my ($k, $w, $g) = @_;
# faked an index here, to make optimizer create diff
# state for the same index but on diff devs, TODO(mli)
# use a better solution later
&{$updater}($index*$num_device+$k, $g, $w);
}, $arg_list, $grad_list);
}, $param_arrays, $grad_arrays);
}
method load_checkpoint(Str $prefix, Int $epoch)
{
my $symbol = AI::MXNet::Symbol->load("$prefix-symbol.json");
my %save_dict = %{ AI::MXNet::NDArray->load(sprintf('%s-%04d.params', $prefix, $epoch)) };
my %arg_params;
my %aux_params;
while(my ($k, $v) = each %save_dict)
{
my ($tp, $name) = split(/:/, $k, 2);
if($tp eq 'arg')
{
$arg_params{$name} = $v;
}
if($tp eq 'aux')
{
$aux_params{$name} = $v;
}
}
return ($symbol, \%arg_params, \%aux_params);
}
=head1 NAME
AI::MXNet::Module - FeedForward interface of MXNet.
See AI::MXNet::Module::Base for the details.
=cut
extends 'AI::MXNet::Module::Base';
has '_symbol' => (is => 'ro', init_arg => 'symbol', isa => 'AI::MXNet::Symbol', required => 1);
has '_data_names' => (is => 'ro', init_arg => 'data_names', isa => 'ArrayRef[Str]');
has '_label_names' => (is => 'ro', init_arg => 'label_names', isa => 'Maybe[ArrayRef[Str]]');
has 'work_load_list' => (is => 'rw', isa => 'Maybe[ArrayRef[Int]]');
has 'fixed_param_names' => (is => 'rw', isa => 'Maybe[ArrayRef[Str]]');
has 'state_names' => (is => 'rw', isa => 'Maybe[ArrayRef[Str]]');
has 'logger' => (is => 'ro', default => sub { AI::MXNet::Logging->get_logger });
has '_p' => (is => 'rw', init_arg => undef);
has 'context' => (
is => 'ro',
isa => 'AI::MXNet::Context|ArrayRef[AI::MXNet::Context]',
default => sub { AI::MXNet::Context->cpu }
);
around BUILDARGS => sub {
my $orig = shift;
my $class = shift;
if(@_%2)
{
my $symbol = shift;
return $class->$orig(symbol => $symbol, @_);
}
return $class->$orig(@_);
};
sub BUILD
{
my $self = shift;
$self->_p(AI::MXNet::Module::Private->new);
my $context = $self->context;
if(blessed $context)
{
$context = [$context];
}
$self->_p->_context($context);
my $work_load_list = $self->work_load_list;
if(not defined $work_load_list)
{
$work_load_list = [(1)x@{$self->_p->_context}];
}
assert(@{ $work_load_list } == @{ $self->_p->_context });
$self->_p->_work_load_list($work_load_list);
my @data_names = @{ $self->_data_names//['data'] };
my @label_names = @{ $self->_label_names//['softmax_label'] };
my @state_names = @{ $self->state_names//[] };
my $arg_names = $self->_symbol->list_arguments;
my @input_names = (@data_names, @label_names, @state_names);
my %input_names = map { $_ => 1 } @input_names;
$self->_p->_param_names([grep { not exists $input_names{$_} } @{ $arg_names }]);
$self->_p->_fixed_param_names($self->fixed_param_names//[]);
$self->_p->_state_names(\@state_names);
$self->_p->_aux_names($self->_symbol->list_auxiliary_states);
$self->_p->_data_names(\@data_names);
$self->_p->_label_names(\@label_names);
$self->_p->_output_names($self->_symbol->list_outputs);
$self->_p->_params_dirty(0);
$self->_check_input_names($self->_symbol, $self->_p->_data_names, "data", 1);
$self->_check_input_names($self->_symbol, $self->_p->_label_names, "label", 0);
$self->_check_input_names($self->_symbol, $self->_p->_state_names, "state", 1);
$self->_check_input_names($self->_symbol, $self->_p->_fixed_param_names, "fixed_param", 1);
}
method Module(@args) { return @args ? __PACKAGE__->new(@args) : __PACKAGE__ }
method BucketingModule(@args) { return AI::MXNet::Module::Bucketing->new(@args) }
=head2 load
Create a model from previously saved checkpoint.
Parameters
----------
prefix : str
path prefix of saved model files. You should have
"prefix-symbol.json", "prefix-xxxx.params", and
optionally "prefix-xxxx.states", where xxxx is the
epoch number.
epoch : int
epoch to load.
load_optimizer_states : bool
whether to load optimizer states. Checkpoint needs
to have been made with save_optimizer_states=True.
data_names : array ref of str
Default is ['data'] for a typical model used in image classification.
label_names : array ref of str
Default is ['softmax_label'] for a typical model used in image
classification.
logger : Logger
Default is AI::MXNet::Logging.
context : Context or list of Context
Default is cpu(0).
work_load_list : array ref of number
Default is undef, indicating an uniform workload.
fixed_param_names: array ref of str
Default is undef, indicating no network parameters are fixed.
=cut
method load(
Str $prefix,
Int $epoch,
Bool $load_optimizer_states=0,
%kwargs
)
{
my ($sym, $args, $auxs) = __PACKAGE__->load_checkpoint($prefix, $epoch);
my $mod = $self->new(symbol => $sym, %kwargs);
$mod->_p->_arg_params($args);
$mod->_p->_aux_params($auxs);
$mod->params_initialized(1);
if($load_optimizer_states)
{
$mod->_p->_preload_opt_states(sprintf('%s-%04d.states', $prefix, $epoch));
}
return $mod;
}
=head2 save_checkpoint
Save current progress to a checkpoint.
Use mx->callback->module_checkpoint as epoch_end_callback to save during training.
Parameters
----------
prefix : str
The file prefix to checkpoint to
epoch : int
The current epoch number
save_optimizer_states : bool
Whether to save optimizer states for later training
=cut
method save_checkpoint(Str $prefix, Int $epoch, Bool $save_optimizer_states=0)
{
$self->_symbol->save("$prefix-symbol.json");
my $param_name = sprintf('%s-%04d.params', $prefix, $epoch);
$self->save_params($param_name);
AI::MXNet::Logging->info('Saved checkpoint to "%s"', $param_name);
if($save_optimizer_states)
{
my $state_name = sprintf('%s-%04d.states', $prefix, $epoch);
$self->save_optimizer_states($state_name);
AI::MXNet::Logging->info('Saved optimizer state to "%s"', $state_name);
}
}
=head2 model_save_checkpoint
Checkpoint the model data into file.
Parameters
----------
prefix : str
Prefix of model name.
epoch : int
The epoch number of the model.
symbol : AI::MXNet::Symbol
The input symbol
arg_params : hash ref of str to AI::MXNet::NDArray
Model parameter, hash ref of name to AI::MXNet::NDArray of net's weights.
aux_params : hash ref of str to NDArray
Model parameter, hash ref of name to AI::MXNet::NDArray of net's auxiliary states.
Notes
-----
- prefix-symbol.json will be saved for symbol.
- prefix-epoch.params will be saved for parameters.
=cut
method model_save_checkpoint(
Str $prefix,
Int $epoch,
Maybe[AI::MXNet::Symbol] $symbol,
HashRef[AI::MXNet::NDArray] $arg_params,
HashRef[AI::MXNet::NDArray] $aux_params
)
{
if(defined $symbol)
{
$symbol->save("$prefix-symbol.json");
}
my $param_name = sprintf('%s-%04d.params', $prefix, $epoch);
$self->save_params($param_name, $arg_params, $aux_params);
AI::MXNet::Logging->info('Saved checkpoint to "%s"', $param_name);
}
# Internal function to reset binded state.
method _reset_bind()
{
$self->binded(0);
$self->_p->_exec_group(undef);
$self->_p->_data_shapes(undef);
$self->_p->_label_shapes(undef);
}
method data_names()
{
return $self->_p->_data_names;
}
method label_names()
{
return $self->_p->_label_names;
}
method output_names()
{
return $self->_p->_output_names;
}
method data_shapes()
{
assert($self->binded);
return $self->_p->_data_shapes;
}
method label_shapes()
{
assert($self->binded);
return $self->_p->_label_shapes;
}
method output_shapes()
{
assert($self->binded);
return $self->_p->_exec_group->get_output_shapes;
}
method get_params()
{
assert($self->binded and $self->params_initialized);
if($self->_p->_params_dirty)
{
$self->_sync_params_from_devices();
}
return ($self->_p->_arg_params, $self->_p->_aux_params);
}
method init_params(
Maybe[AI::MXNet::Initializer] :$initializer=AI::MXNet::Initializer->Uniform(scale => 0.01),
Maybe[HashRef[AI::MXNet::NDArray]] :$arg_params=,
Maybe[HashRef[AI::MXNet::NDArray]] :$aux_params=,
Bool :$allow_missing=0,
Bool :$force_init=0,
Bool :$allow_extra=0
)
{
if($self->params_initialized and not $force_init)
{
AI::MXNet::Logging->warning(
"Parameters already initialized and force_init=0. "
."init_params call ignored."
);
return;
}
assert($self->binded, 'call bind before initializing the parameters');
my $_impl = sub {
my ($name, $arr, $cache) = @_;
# Internal helper for parameter initialization
if(defined $cache)
{
if(exists $cache->{$name})
{
my $cache_arr = $cache->{$name};
# just in case the cached array is just the target itself
if($cache_arr->handle ne $arr->handle)
{
$cache_arr->copyto($arr);
}
}
else
{
if(not $allow_missing)
{
confess("$name is not presented");
}
if(defined $initializer)
{
&{$initializer}($name, $arr);
}
}
}
else
{
&{$initializer}($name, $arr) if defined $initializer;
}
};
my $attrs = $self->_symbol->attr_dict;
while(my ($name, $arr) = each %{ $self->_p->_arg_params })
{
$_impl->(
AI::MXNet::InitDesc->new(
name => $name,
($attrs->{$name} ? (attrs => $attrs->{$name}) : ())
),
$arr, $arg_params
);
}
while(my ($name, $arr) = each %{ $self->_p->_aux_params })
{
$_impl->(
AI::MXNet::InitDesc->new(
name => $name,
($attrs->{$name} ? (attrs => $attrs->{$name}) : ())
),
$arr, $aux_params
);
}
$self->params_initialized(1);
$self->_p->_params_dirty(0);
# copy the initialized parameters to devices
$self->_p->_exec_group->set_params($self->_p->_arg_params, $self->_p->_aux_params, $allow_extra);
}
method set_params(
HashRef[AI::MXNet::NDArray] $arg_params,
HashRef[AI::MXNet::NDArray] $aux_params,
Bool :$allow_missing=0,
Bool :$force_init=1,
Bool :$allow_extra=0
)
{
if(not $allow_missing)
{
$self->init_params(
arg_params => $arg_params, aux_params => $aux_params,
allow_missing => $allow_missing, force_init => $force_init,
allow_extra => $allow_extra
);
return;
}
if($self->params_initialized and not $force_init)
{
AI::MXNet::Logging->warning(
"Parameters already initialized and force_init=False. "
."set_params call ignored."
);
return;
}
$self->_p->_exec_group->set_params($arg_params, $aux_params, $allow_extra);
$self->_p->_params_dirty(1);
$self->params_initialized(1);
}
=head2 bind
Bind the symbols to construct executors. This is necessary before one
can perform computation with the module.
Parameters
----------
:$data_shapes : ArrayRef[AI::MXNet::DataDesc|NameShape]
Typically is $data_iter->provide_data.
:$label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]]
Typically is $data_iter->provide_label.
:$for_training : bool
Default is 1. Whether the executors should be bind for training.
:$inputs_need_grad : bool
Default is 0. Whether the gradients to the input data need to be computed.
Typically this is not needed. But this might be needed when implementing composition
of modules.
:$force_rebind : bool
Default is 0. This function does nothing if the executors are already
binded. But with this 1, the executors will be forced to rebind.
:$shared_module : Module
Default is undef. This is used in bucketing. When not undef, the shared module
essentially corresponds to a different bucket -- a module with different symbol
but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
=cut
method bind(
ArrayRef[AI::MXNet::DataDesc|NameShape] :$data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]] :$label_shapes=,
Bool :$for_training=1,
Bool :$inputs_need_grad=0,
Bool :$force_rebind=0,
Maybe[AI::MXNet::Module] :$shared_module=,
GradReq|HashRef[GradReq]|ArrayRef[GradReq] :$grad_req='write',
Maybe[ArrayRef[Str]] :$state_names=$self->_p->_state_names
)
{
# force rebinding is typically used when one want to switch from
# training to prediction phase.
if($force_rebind)
{
$self->_reset_bind();
}
if($self->binded)
{
$self->logger->warning('Already binded, ignoring bind()');
return;
}
$self->for_training($for_training);
$self->inputs_need_grad($inputs_need_grad);
$self->binded(1);
$self->_p->_grad_req($grad_req);
if(not $for_training)
{
assert(not $inputs_need_grad);
}
($data_shapes, $label_shapes) = $self->_parse_data_desc(
$self->data_names, $self->label_names, $data_shapes, $label_shapes
);
$self->_p->_data_shapes($data_shapes);
$self->_p->_label_shapes($label_shapes);
my $shared_group;
if($shared_module)
{
assert($shared_module->binded and $shared_module->params_initialized);
$shared_group = $shared_module->_p->_exec_group;
}
$self->_p->_exec_group(
AI::MXNet::DataParallelExecutorGroup->new(
symbol => $self->_symbol,
contexts => $self->_p->_context,
workload => $self->_p->_work_load_list,
data_shapes => $self->_p->_data_shapes,
label_shapes => $self->_p->_label_shapes,
param_names => $self->_p->_param_names,
state_names => $state_names,
for_training => $for_training,
inputs_need_grad => $inputs_need_grad,
shared_group => $shared_group,
logger => $self->logger,
fixed_param_names => $self->_p->_fixed_param_names,
grad_req => $grad_req
)
);
if($shared_module)
{
$self->params_initialized(1);
$self->_p->_arg_params($shared_module->_p->_arg_params);
$self->_p->_aux_params($shared_module->_p->_aux_params);
}
elsif($self->params_initialized)
{
# if the parameters are already initialized, we are re-binding
# so automatically copy the already initialized params
$self->_p->_exec_group->set_params($self->_p->_arg_params, $self->_p->_aux_params);
}
else
{
assert(not defined $self->_p->_arg_params and not $self->_p->_aux_params);
my @param_arrays = (
map { AI::MXNet::NDArray->zeros($_->[0]->shape, dtype => $_->[0]->dtype) }
@{ $self->_p->_exec_group->_p->param_arrays }
);
my %arg_params;
@arg_params{ @{ $self->_p->_param_names } } = @param_arrays;
$self->_p->_arg_params(\%arg_params);
my @aux_arrays = (
map { AI::MXNet::NDArray->zeros($_->[0]->shape, dtype => $_->[0]->dtype) }
@{ $self->_p->_exec_group->_p->aux_arrays }
);
my %aux_params;
@aux_params{ @{ $self->_p->_aux_names } } = @aux_arrays;
$self->_p->_aux_params(\%aux_params);
}
if($shared_module and $shared_module->optimizer_initialized)
{
$self->borrow_optimizer($shared_module)
}
}
=head2 reshape
Reshape the module for new input shapes.
Parameters
----------
:$data_shapes : ArrayRef[AI::MXNet::DataDesc]
Typically is $data_iter->provide_data.
:$label_shapes= : Maybe[ArrayRef[AI::MXNet::DataDesc]]
Typically is $data_iter->provide_label.
=cut
method reshape(
ArrayRef[AI::MXNet::DataDesc|NameShape] :$data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]] :$label_shapes=
)
{
assert($self->binded);
($data_shapes, $label_shapes) = $self->_parse_data_desc(
$self->data_names, $self->label_names, $data_shapes, $label_shapes
);
$self->_p->_data_shapes($data_shapes);
$self->_p->_label_shapes($label_shapes);
$self->_p->_exec_group->reshape($self->_p->_data_shapes, $self->_p->_label_shapes);
}
method init_optimizer(
Str|AI::MXNet::KVStore :$kvstore='local',
Optimizer :$optimizer='sgd',
HashRef :$optimizer_params={ learning_rate => 0.01 },
Bool :$force_init=0
)
{
assert($self->binded and $self->params_initialized);
if($self->optimizer_initialized and not $force_init)
{
$self->logger->warning('optimizer already initialized, ignoring...');
return;
}
if($self->_p->_params_dirty)
{
$self->_sync_params_from_devices;
}
my ($kvstore, $update_on_kvstore) = _create_kvstore(
$kvstore,
scalar(@{$self->_p->_context}),
$self->_p->_arg_params
);
my $batch_size = $self->_p->_exec_group->_p->batch_size;
if($kvstore and $kvstore->type =~ /dist/ and $kvstore->type =~ /_sync/)
{
$batch_size *= $kvstore->num_workers;
}
my $rescale_grad = 1/$batch_size;
if(not blessed $optimizer)
{
my %idx2name;
if($update_on_kvstore)
{
@idx2name{ 0..@{$self->_p->_exec_group->param_names}-1 } = @{$self->_p->_exec_group->param_names};
}
else
{
for my $k (0..@{$self->_p->_context}-1)
{
@idx2name{ map { $_ + $k } 0..@{$self->_p->_exec_group->param_names}-1 } = @{$self->_p->_exec_group->param_names};
}
}
if(not exists $optimizer_params->{rescale_grad})
{
$optimizer_params->{rescale_grad} = $rescale_grad;
}
$optimizer = AI::MXNet::Optimizer->create(
$optimizer,
sym => $self->symbol,
param_idx2name => \%idx2name,
%{ $optimizer_params }
);
if($optimizer->rescale_grad != $rescale_grad)
{
AI::MXNet::Logging->warning(
"Optimizer created manually outside Module but rescale_grad "
."is not normalized to 1.0/batch_size/num_workers (%s vs. %s). "
."Is this intended?",
$optimizer->rescale_grad, $rescale_grad
);
}
}
$self->_p->_optimizer($optimizer);
$self->_p->_kvstore($kvstore);
$self->_p->_update_on_kvstore($update_on_kvstore);
$self->_p->_updater(undef);
if($kvstore)
{
# copy initialized local parameters to kvstore
_initialize_kvstore(
kvstore => $kvstore,
param_arrays => $self->_p->_exec_group->_p->param_arrays,
arg_params => $self->_p->_arg_params,
param_names => $self->_p->_param_names,
update_on_kvstore => $update_on_kvstore
);
}
if($update_on_kvstore)
{
$kvstore->set_optimizer($self->_p->_optimizer);
}
else
{
$self->_p->_updater(AI::MXNet::Optimizer->get_updater($optimizer));
}
$self->optimizer_initialized(1);
if($self->_p->_preload_opt_states)
{
$self->load_optimizer_states($self->_p->_preload_opt_states);
$self->_p->_preload_opt_states(undef);
}
}
=head2 borrow_optimizer
Borrow optimizer from a shared module. Used in bucketing, where exactly the same
optimizer (esp. kvstore) is used.
Parameters
----------
shared_module : AI::MXNet::Module
=cut
method borrow_optimizer(AI::MXNet::Module $shared_module)
{
assert($shared_module->optimizer_initialized);
$self->_p->_optimizer($shared_module->_p->_optimizer);
$self->_p->_kvstore($shared_module->_p->_kvstore);
$self->_p->_update_on_kvstore($shared_module->_p->_update_on_kvstore);
$self->_p->_updater($shared_module->_p->_updater);
$self->optimizer_initialized(1);
}
method forward(
AI::MXNet::DataBatch $data_batch,
Maybe[Bool] :$is_train=
)
{
assert($self->binded and $self->params_initialized);
my @curr_data_shapes = map { $_->shape } @{ $self->data_shapes };
my @new_data_shapes = map { $_->shape } @{ $data_batch->data };
if(Data::Dumper->Dump(\@curr_data_shapes) ne Data::Dumper->Dump(\@new_data_shapes))
{
my $new_dshape;
if($data_batch->can('provide_data') and $data_batch->provide_data)
{
$new_dshape = $data_batch->provide_data;
}
else
{
$new_dshape = [];
zip(sub {
my ($i, $shape) = @_;
push @{ $new_dshape }, AI::MXNet::DataDesc->new(
$i->name, $shape, $i->dtype, $i->layout
);
}, $self->data_shapes, \@new_data_shapes);
}
my $new_lshape;
if($data_batch->can('provide_label') and $data_batch->provide_label)
{
$new_lshape = $data_batch->provide_label;
}
elsif($data_batch->can('label') and $data_batch->label)
{
$new_lshape = [];
zip(sub {
my ($i, $j) = @_;
push @{ $new_lshape }, AI::MXNet::DataDesc->new(
$i->name, $j->shape, $i->dtype, $i->layout
);
}, $self->label_shapes, $data_batch->label);
}
$self->reshape(data_shapes => $new_dshape, label_shapes => $new_lshape);
}
$self->_p->_exec_group->forward($data_batch, $is_train);
}
method backward(Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]] $out_grads=)
{
assert($self->binded and $self->params_initialized);
$self->_p->_exec_group->backward($out_grads);
}
method update()
{
assert($self->binded and $self->params_initialized and $self->optimizer_initialized);
$self->_p->_params_dirty(1);
if($self->_p->_update_on_kvstore)
{
_update_params_on_kvstore(
$self->_p->_exec_group->_p->param_arrays,
$self->_p->_exec_group->_p->grad_arrays,
$self->_p->_kvstore,
$self->_p->_exec_group->param_names
);
}
else
{
_update_params(
$self->_p->_exec_group->_p->param_arrays,
$self->_p->_exec_group->_p->grad_arrays,
$self->_p->_updater,
scalar(@{ $self->_p->_context}),
$self->_p->_kvstore,
$self->_p->_exec_group->param_names
);
}
}
method get_outputs(Bool $merge_multi_context=1)
{
assert($self->binded and $self->params_initialized);
return $self->_p->_exec_group->get_outputs($merge_multi_context);
}
method get_input_grads(Bool $merge_multi_context=1)
{
assert($self->binded and $self->params_initialized and $self->inputs_need_grad);
return $self->_p->_exec_group->get_input_grads($merge_multi_context);
}
method get_states(Bool $merge_multi_context=1)
{
assert($self->binded and $self->params_initialized);
return $self->_p->_exec_group->get_states($merge_multi_context);
}
method set_states(:$states=, :$value=)
{
assert($self->binded and $self->params_initialized);
return $self->_p->_exec_group->set_states($states, $value);
}
method update_metric(
AI::MXNet::EvalMetric $eval_metric,
ArrayRef[AI::MXNet::NDArray] $labels
)
{
$self->_p->_exec_group->update_metric($eval_metric, $labels);
}
=head2 _sync_params_from_devices
Synchronize parameters from devices to CPU. This function should be called after
calling 'update' that updates the parameters on the devices, before one can read the
latest parameters from $self->_arg_params and $self->_aux_params.
=cut
method _sync_params_from_devices()
{
$self->_p->_exec_group->get_params($self->_p->_arg_params, $self->_p->_aux_params);
$self->_p->_params_dirty(0);
}
method save_optimizer_states(Str $fname)
{
assert($self->optimizer_initialized);
if($self->_p->_update_on_kvstore)
{
$self->_p->_kvstore->save_optimizer_states($fname);
}
else
{
open(F, ">:raw", "$fname") or confess("can't open $fname for writing: $!");
print F $self->_p->_updater->get_states();
close(F);
}
}
method load_optimizer_states(Str $fname)
{
assert($self->optimizer_initialized);
if($self->_p->_update_on_kvstore)
{
$self->_p->_kvstore->load_optimizer_states($fname);
}
else
{
open(F, "<:raw", "$fname") or confess("can't open $fname for reading: $!");
my $data;
{ local($/) = undef; $data = <F>; }
close(F);
$self->_p->_updater->set_states($data);
}
}
method install_monitor(AI::MXNet::Monitor $mon)
{
assert($self->binded);
$self->_p->_exec_group->install_monitor($mon);
}
method _updater()
{
$self->_p->_updater;
}
method _kvstore()
{
$self->_p->_kvstore;
}
1;