AES128
view release on metacpan or search on metacpan
#include "XSUB.h"
#include "ppport.h"
#include "aes.h"
#include "aes.c"
void make_aes_key(char *key, char *secret, size_t secret_size)
{
uint8_t i, m, n;
// make a 32 bytes key from secret.
if(secret_size >= 32) {
memcpy(key, secret, 32);
}
else {
m = 32 % secret_size;
n = (32 - m) / secret_size;
for(i = 0; i < n; i++) {
memcpy(key + secret_size * i, secret, secret_size);
}
memcpy(key + secret_size * i, secret, m);
}
}
MODULE = AES128 PACKAGE = AES128
TYPEMAP: <<END
const char * T_PV
const uint8_t * T_PV
uint8_t * T_PV
END
SV *
AES128_CTR_encrypt(SV *sv_plain_text, SV *sv_secret)
CODE:
STRLEN text_size, secret_size;
uint8_t i;
struct AES_ctx ctx;
char *plain_text, *secret, *output;
plain_text = (char *)SvPVbyte(sv_plain_text, text_size);
secret = (char *)SvPVbyte(sv_secret, secret_size);
char key[32];
make_aes_key(key, secret, secret_size);
uint8_t padding_len = 16 - text_size % 16;
output = (char *)malloc(text_size + padding_len);
memcpy(output, plain_text, text_size);
for(i = 0; i < padding_len; i++)
output[text_size + i] = padding_len;
AES_init_ctx_iv(&ctx, key, key + 16);
AES_CTR_xcrypt_buffer(&ctx, output, text_size + padding_len);
RETVAL = newSVpv(output, text_size + padding_len);
free(output);
OUTPUT:
RETVAL
SV *
AES128_CTR_decrypt(SV *sv_cipher_text, SV *sv_secret)
CODE:
STRLEN text_size, secret_size;
char *cipher_text, *secret;
struct AES_ctx ctx;
char key[32];
cipher_text = (char *)SvPVbyte(sv_cipher_text, text_size);
secret = (char *)SvPVbyte(sv_secret, secret_size);
if(text_size % 16 != 0)
croak("Corrupted cipher text!");
make_aes_key(key, secret, secret_size);
AES_init_ctx_iv(&ctx, key, key + 16);
AES_CTR_xcrypt_buffer(&ctx, cipher_text, text_size);
uint8_t padding_len = cipher_text[text_size -1];
RETVAL = newSVpv(cipher_text, text_size - padding_len);
OUTPUT:
RETVAL
Revision history for Perl extension AES128.
0.01 Fri Jan 25 15:37:49 2019
- original version; created by h2xs 1.23 with options
-A -n AES128
Makefile.PL view on Meta::CPAN
use 5.016001;
use ExtUtils::MakeMaker;
# See lib/ExtUtils/MakeMaker.pm for details of how to influence
# the contents of the Makefile that is written.
WriteMakefile(
NAME => 'AES128',
VERSION_FROM => 'lib/AES128.pm', # finds $VERSION, requires EU::MM from perl >= 5.5
PREREQ_PM => {}, # e.g., Module::Name => 1.1
ABSTRACT_FROM => 'lib/AES128.pm', # retrieve abstract from module
AUTHOR => 'Jeff Zhang <10395708@qq.com>',
#LICENSE => 'perl',
#Value must be from legacy list of licenses here
#http://search.cpan.org/perldoc?Module%3A%3ABuild%3A%3AAPI
LIBS => [''], # e.g., '-lm'
DEFINE => '', # e.g., '-DHAVE_SOMETHING'
INC => '-I. -I./tiny-AES-c', # e.g., '-I. -I/usr/include/other'
# Un-comment this if you add C files to link with later:
# OBJECT => '$(O_FILES)', # link all the C files too
);
A README file is required for CPAN modules since CPAN extracts the
README file from a module distribution so that people browsing the
archive can use it get an idea of the modules uses. It is usually a
good idea to provide version information here so that people can
decide whether fixes for the module are worth downloading.
INSTALLATION
To install this module type the following:
perl Makefile.PL
make
make test
make install
DEPENDENCIES
This module requires these other modules and libraries:
blah blah blah
COPYRIGHT AND LICENCE
Put the correct copyright and licence information here.
Copyright (C) 2019 by Jeff
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.26.1 or,
at your option, any later version of Perl 5 you may have available.
lib/AES128.pm view on Meta::CPAN
our @ISA = qw(Exporter);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
# This allows declaration use AES128 ':all';
# If you do not need this, moving things directly into @EXPORT or @EXPORT_OK
# will save memory.
our %EXPORT_TAGS = ( 'all' => [ qw(
AES128_CTR_encrypt AES128_CTR_decrypt
) ] );
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );
our @EXPORT = qw(
);
our $VERSION = '0.02';
require XSLoader;
XSLoader::load('AES128', $VERSION);
# Preloaded methods go here.
1;
__END__
# Below is stub documentation for your module. You'd better edit it!
=head1 NAME
AES128 - 128BIT CTR mode AES algorithm.
=head1 SYNOPSIS
# ------------------------ simple version ----------------------------------
use AES128 qw/:all/;
my $plain_text = "There's more than one way to do it.";
my $key = "my secret aes key.";
my $encrypted = AES128_CTR_encrypt($plain_text, $key);
my $plain = AES128_CTR_decrypt($encrypted, $key);
# ------------ server/client key exchange -----------------------------------
use MicroECC;
use AES128 qw/:all/;
use Digest::SHA qw/sha256/;
my $curve = MicroECC::secp256r1();
my ($server_pubkey, $server_privkey) = MicroECC::make_key($curve);
# Generate shared secret with client public key.
my $shared_secret = MicroECC::shared_secret($client_pubkey, $server_privkey);
my $key = sha256($shared_secret);
my $plain_text = "There's more than one way to do it.";
my $encrypted = AES128_CTR_encrypt($plain_text, $key);
my $plain = AES128_CTR_decrypt($encrypted, $key);
=head1 DESCRIPTION
Perl wrapper for the tiny-AES-c library (https://github.com/kokke/tiny-AES-c)
Since 128bit key length is secure enough for most applications and ECB is NOT secure,
this module supports 128bit key length and CTR mode only.
=head2 EXPORT
#if 0
<<'SKIP';
#endif
/*
----------------------------------------------------------------------
ppport.h -- Perl/Pollution/Portability Version 3.35
Automatically created by Devel::PPPort running under perl 5.026001.
Do NOT edit this file directly! -- Edit PPPort_pm.PL and the
includes in parts/inc/ instead.
Use 'perldoc ppport.h' to view the documentation below.
----------------------------------------------------------------------
SKIP
=pod
=head1 NAME
ppport.h - Perl/Pollution/Portability version 3.35
=head1 SYNOPSIS
perl ppport.h [options] [source files]
Searches current directory for files if no [source files] are given
--help show short help
--version show version
--patch=file write one patch file with changes
--copy=suffix write changed copies with suffix
--diff=program use diff program and options
--compat-version=version provide compatibility with Perl version
--cplusplus accept C++ comments
--quiet don't output anything except fatal errors
--nodiag don't show diagnostics
--nohints don't show hints
--nochanges don't suggest changes
--nofilter don't filter input files
--strip strip all script and doc functionality from
ppport.h
--list-provided list provided API
--list-unsupported list unsupported API
--api-info=name show Perl API portability information
=head1 COMPATIBILITY
This version of F<ppport.h> is designed to support operation with Perl
installations back to 5.003, and has been tested up to 5.20.
=head1 OPTIONS
=head2 --help
across differing versions of Perl itself, certain steps need to be taken.
=over 4
=item *
Including this header is the first major one. This alone will give you
access to a large part of the Perl API that hasn't been available in
earlier Perl releases. Use
perl ppport.h --list-provided
to see which API elements are provided by ppport.h.
=item *
You should avoid using deprecated parts of the API. For example, using
global Perl variables without the C<PL_> prefix is deprecated. Also,
some API functions used to have a C<perl_> prefix. Using this form is
also deprecated. You can safely use the supported API, as F<ppport.h>
will provide wrappers for older Perl versions.
These functions or variables will be marked C<explicit> in the list shown
by C<--list-provided>.
Depending on whether you module has a single or multiple files that
use such functions or variables, you want either C<static> or global
variants.
For a C<static> function or variable (used only in a single source
file), use:
#define NEED_function
#define NEED_variable
For a global function or variable (used in multiple source files),
use:
#define NEED_function_GLOBAL
#define NEED_variable_GLOBAL
Note that you mustn't have more than one global request for the
same function or variable in your project.
Function / Variable Static Request Global Request
-----------------------------------------------------------------------------------------
PL_parser NEED_PL_parser NEED_PL_parser_GLOBAL
PL_signals NEED_PL_signals NEED_PL_signals_GLOBAL
SvRX() NEED_SvRX NEED_SvRX_GLOBAL
caller_cx() NEED_caller_cx NEED_caller_cx_GLOBAL
eval_pv() NEED_eval_pv NEED_eval_pv_GLOBAL
grok_bin() NEED_grok_bin NEED_grok_bin_GLOBAL
grok_hex() NEED_grok_hex NEED_grok_hex_GLOBAL
grok_number() NEED_grok_number NEED_grok_number_GLOBAL
grok_numeric_radix() NEED_grok_numeric_radix NEED_grok_numeric_radix_GLOBAL
grok_oct() NEED_grok_oct NEED_grok_oct_GLOBAL
gv_fetchpvn_flags() NEED_gv_fetchpvn_flags NEED_gv_fetchpvn_flags_GLOBAL
load_module() NEED_load_module NEED_load_module_GLOBAL
mg_findext() NEED_mg_findext NEED_mg_findext_GLOBAL
my_snprintf() NEED_my_snprintf NEED_my_snprintf_GLOBAL
my_sprintf() NEED_my_sprintf NEED_my_sprintf_GLOBAL
my_strlcat() NEED_my_strlcat NEED_my_strlcat_GLOBAL
my_strlcpy() NEED_my_strlcpy NEED_my_strlcpy_GLOBAL
newCONSTSUB() NEED_newCONSTSUB NEED_newCONSTSUB_GLOBAL
newRV_noinc() NEED_newRV_noinc NEED_newRV_noinc_GLOBAL
newSV_type() NEED_newSV_type NEED_newSV_type_GLOBAL
newSVpvn_flags() NEED_newSVpvn_flags NEED_newSVpvn_flags_GLOBAL
newSVpvn_share() NEED_newSVpvn_share NEED_newSVpvn_share_GLOBAL
pv_display() NEED_pv_display NEED_pv_display_GLOBAL
pv_escape() NEED_pv_escape NEED_pv_escape_GLOBAL
pv_pretty() NEED_pv_pretty NEED_pv_pretty_GLOBAL
sv_2pv_flags() NEED_sv_2pv_flags NEED_sv_2pv_flags_GLOBAL
sv_2pvbyte() NEED_sv_2pvbyte NEED_sv_2pvbyte_GLOBAL
sv_catpvf_mg() NEED_sv_catpvf_mg NEED_sv_catpvf_mg_GLOBAL
sv_catpvf_mg_nocontext() NEED_sv_catpvf_mg_nocontext NEED_sv_catpvf_mg_nocontext_GLOBAL
sv_pvn_force_flags() NEED_sv_pvn_force_flags NEED_sv_pvn_force_flags_GLOBAL
sv_setpvf_mg() NEED_sv_setpvf_mg NEED_sv_setpvf_mg_GLOBAL
sv_setpvf_mg_nocontext() NEED_sv_setpvf_mg_nocontext NEED_sv_setpvf_mg_nocontext_GLOBAL
sv_unmagicext() NEED_sv_unmagicext NEED_sv_unmagicext_GLOBAL
vload_module() NEED_vload_module NEED_vload_module_GLOBAL
vnewSVpvf() NEED_vnewSVpvf NEED_vnewSVpvf_GLOBAL
warner() NEED_warner NEED_warner_GLOBAL
To avoid namespace conflicts, you can change the namespace of the
explicitly exported functions / variables using the C<DPPP_NAMESPACE>
macro. Just C<#define> the macro before including C<ppport.h>:
#define DPPP_NAMESPACE MyOwnNamespace_
#include "ppport.h"
The default namespace is C<DPPP_>.
=back
The good thing is that most of the above can be checked by running
F<ppport.h> on your source code. See the next section for
details.
=head1 EXAMPLES
To verify whether F<ppport.h> is needed for your module, whether you
should make any changes to your code, and whether any special defines
should be used, F<ppport.h> can be run as a Perl script to check your
source code. Simply say:
perl ppport.h
The result will usually be a list of patches suggesting changes
that should at least be acceptable, if not necessarily the most
efficient solution, or a fix for all possible problems.
If you know that your XS module uses features only available in
newer Perl releases, if you're aware that it uses C++ comments,
and if you want all suggestions as a single patch file, you could
use something like this:
perl ppport.h --compat-version=5.6.0 --cplusplus --patch=test.diff
If you only want your code to be scanned without any suggestions
for changes, use:
perl ppport.h --nochanges
You can specify a different C<diff> program or options, using
the C<--diff> option:
perl ppport.h --diff='diff -C 10'
This would output context diffs with 10 lines of context.
If you want to create patched copies of your files instead, use:
perl ppport.h --copy=.new
To display portability information for the C<newSVpvn> function,
use:
perl ppport.h --api-info=newSVpvn
Since the argument to C<--api-info> can be a regular expression,
you can use
perl ppport.h --api-info=/_nomg$/
to display portability information for all C<_nomg> functions or
perl ppport.h --api-info=/./
to display information for all known API elements.
=head1 BUGS
If this version of F<ppport.h> is causing failure during
the compilation of this module, please check if newer versions
of either this module or C<Devel::PPPort> are available on CPAN
before sending a bug report.
=cut
use strict;
# Disable broken TRIE-optimization
BEGIN { eval '${^RE_TRIE_MAXBUF} = -1' if $] >= 5.009004 && $] <= 5.009005 }
my $VERSION = 3.35;
my %opt = (
quiet => 0,
diag => 1,
hints => 1,
changes => 1,
cplusplus => 0,
filter => 1,
strip => 0,
version => 0,
);
my($ppport) = $0 =~ /([\w.]+)$/;
my $LF = '(?:\r\n|[\r\n])'; # line feed
my $HS = "[ \t]"; # horizontal whitespace
# Never use C comments in this file!
my $ccs = '/'.'*';
my $cce = '*'.'/';
my $rccs = quotemeta $ccs;
my $rcce = quotemeta $cce;
eval {
require Getopt::Long;
Getopt::Long::GetOptions(\%opt, qw(
help quiet diag! filter! hints! changes! cplusplus strip version
patch=s copy=s diff=s compat-version=s
list-provided list-unsupported api-info=s
)) or usage();
};
if ($@ and grep /^-/, @ARGV) {
usage() if "@ARGV" =~ /^--?h(?:elp)?$/;
die "Getopt::Long not found. Please don't use any options.\n";
}
if ($opt{version}) {
print "This is $0 $VERSION.\n";
exit 0;
}
usage() if $opt{help};
strip() if $opt{strip};
if (exists $opt{'compat-version'}) {
my($r,$v,$s) = eval { parse_version($opt{'compat-version'}) };
if ($@) {
die "Invalid version number format: '$opt{'compat-version'}'\n";
}
die "Only Perl 5 is supported\n" if $r != 5;
die "Invalid version number: $opt{'compat-version'}\n" if $v >= 1000 || $s >= 1000;
$opt{'compat-version'} = sprintf "%d.%03d%03d", $r, $v, $s;
}
else {
$opt{'compat-version'} = 5;
}
my %API = map { /^(\w+)\|([^|]*)\|([^|]*)\|(\w*)$/
? ( $1 => {
($2 ? ( base => $2 ) : ()),
($3 ? ( todo => $3 ) : ()),
(index($4, 'v') >= 0 ? ( varargs => 1 ) : ()),
(index($4, 'p') >= 0 ? ( provided => 1 ) : ()),
(index($4, 'n') >= 0 ? ( nothxarg => 1 ) : ()),
} )
: die "invalid spec: $_" } qw(
ASCII_TO_NEED||5.007001|n
AvFILLp|5.004050||p
AvFILL|||
BhkDISABLE||5.024000|
BhkENABLE||5.024000|
BhkENTRY_set||5.024000|
BhkENTRY|||
BhkFLAGS|||
CALL_BLOCK_HOOKS|||
CLASS|||n
yyerror_pvn|||
yyerror_pv|||
yyerror|||
yylex|||
yyparse|||
yyunlex|||
yywarn|||
);
if (exists $opt{'list-unsupported'}) {
my $f;
for $f (sort { lc $a cmp lc $b } keys %API) {
next unless $API{$f}{todo};
print "$f ", '.'x(40-length($f)), " ", format_version($API{$f}{todo}), "\n";
}
exit 0;
}
# Scan for possible replacement candidates
my(%replace, %need, %hints, %warnings, %depends);
my $replace = 0;
my($hint, $define, $function);
sub find_api
{
my $code = shift;
$code =~ s{
/ (?: \*[^*]*\*+(?:[^$ccs][^*]*\*+)* / | /[^\r\n]*)
| "[^"\\]*(?:\\.[^"\\]*)*"
| '[^'\\]*(?:\\.[^'\\]*)*' }{}egsx;
grep { exists $API{$_} } $code =~ /(\w+)/mg;
}
while (<DATA>) {
if ($hint) {
my $h = $hint->[0] eq 'Hint' ? \%hints : \%warnings;
if (m{^\s*\*\s(.*?)\s*$}) {
for (@{$hint->[1]}) {
$h->{$_} ||= ''; # suppress warning with older perls
$h->{$_} .= "$1\n";
}
}
else { undef $hint }
}
$hint = [$1, [split /,?\s+/, $2]]
if m{^\s*$rccs\s+(Hint|Warning):\s+(\w+(?:,?\s+\w+)*)\s*$};
if ($define) {
if ($define->[1] =~ /\\$/) {
$define->[1] .= $_;
}
else {
if (exists $API{$define->[0]} && $define->[1] !~ /^DPPP_\(/) {
my @n = find_api($define->[1]);
push @{$depends{$define->[0]}}, @n if @n
}
undef $define;
}
}
$define = [$1, $2] if m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(.*)};
if ($function) {
if (/^}/) {
if (exists $API{$function->[0]}) {
my @n = find_api($function->[1]);
push @{$depends{$function->[0]}}, @n if @n
}
undef $function;
}
else {
$function->[1] .= $_;
}
}
$function = [$1, ''] if m{^DPPP_\(my_(\w+)\)};
$replace = $1 if m{^\s*$rccs\s+Replace:\s+(\d+)\s+$rcce\s*$};
$replace{$2} = $1 if $replace and m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(\w+)};
$replace{$2} = $1 if m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(\w+).*$rccs\s+Replace\s+$rcce};
$replace{$1} = $2 if m{^\s*$rccs\s+Replace (\w+) with (\w+)\s+$rcce\s*$};
if (m{^\s*$rccs\s+(\w+(\s*,\s*\w+)*)\s+depends\s+on\s+(\w+(\s*,\s*\w+)*)\s+$rcce\s*$}) {
my @deps = map { s/\s+//g; $_ } split /,/, $3;
my $d;
for $d (map { s/\s+//g; $_ } split /,/, $1) {
push @{$depends{$d}}, @deps;
}
}
$need{$1} = 1 if m{^#if\s+defined\(NEED_(\w+)(?:_GLOBAL)?\)};
}
for (values %depends) {
my %s;
$_ = [sort grep !$s{$_}++, @$_];
}
if (exists $opt{'api-info'}) {
my $f;
my $count = 0;
my $match = $opt{'api-info'} =~ m!^/(.*)/$! ? $1 : "^\Q$opt{'api-info'}\E\$";
for $f (sort { lc $a cmp lc $b } keys %API) {
next unless $f =~ /$match/;
print "\n=== $f ===\n\n";
my $info = 0;
if ($API{$f}{base} || $API{$f}{todo}) {
my $base = format_version($API{$f}{base} || $API{$f}{todo});
print "Supported at least starting from perl-$base.\n";
$info++;
}
if ($API{$f}{provided}) {
my $todo = $API{$f}{todo} ? format_version($API{$f}{todo}) : "5.003";
print "Support by $ppport provided back to perl-$todo.\n";
print "Support needs to be explicitly requested by NEED_$f.\n" if exists $need{$f};
print "Depends on: ", join(', ', @{$depends{$f}}), ".\n" if exists $depends{$f};
print "\n$hints{$f}" if exists $hints{$f};
print "\nWARNING:\n$warnings{$f}" if exists $warnings{$f};
$info++;
}
print "No portability information available.\n" unless $info;
$count++;
}
$count or print "Found no API matching '$opt{'api-info'}'.";
print "\n";
exit 0;
}
if (exists $opt{'list-provided'}) {
my $f;
for $f (sort { lc $a cmp lc $b } keys %API) {
next unless $API{$f}{provided};
my @flags;
push @flags, 'explicit' if exists $need{$f};
push @flags, 'depend' if exists $depends{$f};
push @flags, 'hint' if exists $hints{$f};
push @flags, 'warning' if exists $warnings{$f};
my $flags = @flags ? ' ['.join(', ', @flags).']' : '';
print "$f$flags\n";
}
exit 0;
}
my @files;
my @srcext = qw( .xs .c .h .cc .cpp -c.inc -xs.inc );
my $srcext = join '|', map { quotemeta $_ } @srcext;
if (@ARGV) {
my %seen;
for (@ARGV) {
if (-e) {
if (-f) {
push @files, $_ unless $seen{$_}++;
}
else { warn "'$_' is not a file.\n" }
}
else {
my @new = grep { -f } glob $_
or warn "'$_' does not exist.\n";
push @files, grep { !$seen{$_}++ } @new;
}
}
}
else {
eval {
require File::Find;
File::Find::find(sub {
$File::Find::name =~ /($srcext)$/i
and push @files, $File::Find::name;
}, '.');
};
if ($@) {
@files = map { glob "*$_" } @srcext;
}
}
if (!@ARGV || $opt{filter}) {
my(@in, @out);
my %xsc = map { /(.*)\.xs$/ ? ("$1.c" => 1, "$1.cc" => 1) : () } @files;
for (@files) {
my $out = exists $xsc{$_} || /\b\Q$ppport\E$/i || !/($srcext)$/i;
push @{ $out ? \@out : \@in }, $_;
}
if (@ARGV && @out) {
warning("Skipping the following files (use --nofilter to avoid this):\n| ", join "\n| ", @out);
}
@files = @in;
}
die "No input files given!\n" unless @files;
my(%files, %global, %revreplace);
%revreplace = reverse %replace;
my $filename;
my $patch_opened = 0;
for $filename (@files) {
unless (open IN, "<$filename") {
warn "Unable to read from $filename: $!\n";
next;
}
info("Scanning $filename ...");
my $c = do { local $/; <IN> };
close IN;
my %file = (orig => $c, changes => 0);
# Temporarily remove C/XS comments and strings from the code
my @ccom;
$c =~ s{
( ^$HS*\#$HS*include\b[^\r\n]+\b(?:\Q$ppport\E|XSUB\.h)\b[^\r\n]*
| ^$HS*\#$HS*(?:define|elif|if(?:def)?)\b[^\r\n]* )
| ( ^$HS*\#[^\r\n]*
| "[^"\\]*(?:\\.[^"\\]*)*"
| '[^'\\]*(?:\\.[^'\\]*)*'
| / (?: \*[^*]*\*+(?:[^$ccs][^*]*\*+)* / | /[^\r\n]* ) )
}{ defined $2 and push @ccom, $2;
defined $1 ? $1 : "$ccs$#ccom$cce" }mgsex;
$file{ccom} = \@ccom;
$file{code} = $c;
$file{has_inc_ppport} = $c =~ /^$HS*#$HS*include[^\r\n]+\b\Q$ppport\E\b/m;
my $func;
for $func (keys %API) {
my $match = $func;
$match .= "|$revreplace{$func}" if exists $revreplace{$func};
if ($c =~ /\b(?:Perl_)?($match)\b/) {
$file{uses_replace}{$1}++ if exists $revreplace{$func} && $1 eq $revreplace{$func};
$file{uses_Perl}{$func}++ if $c =~ /\bPerl_$func\b/;
if (exists $API{$func}{provided}) {
$file{uses_provided}{$func}++;
if (!exists $API{$func}{base} || $API{$func}{base} > $opt{'compat-version'}) {
$file{uses}{$func}++;
my @deps = rec_depend($func);
if (@deps) {
$file{uses_deps}{$func} = \@deps;
for (@deps) {
$file{uses}{$_} = 0 unless exists $file{uses}{$_};
}
}
for ($func, @deps) {
$file{needs}{$_} = 'static' if exists $need{$_};
}
}
}
if (exists $API{$func}{todo} && $API{$func}{todo} > $opt{'compat-version'}) {
if ($c =~ /\b$func\b/) {
$file{uses_todo}{$func}++;
}
}
}
}
while ($c =~ /^$HS*#$HS*define$HS+(NEED_(\w+?)(_GLOBAL)?)\b/mg) {
if (exists $need{$2}) {
$file{defined $3 ? 'needed_global' : 'needed_static'}{$2}++;
}
else { warning("Possibly wrong #define $1 in $filename") }
}
for (qw(uses needs uses_todo needed_global needed_static)) {
for $func (keys %{$file{$_}}) {
push @{$global{$_}{$func}}, $filename;
}
}
$files{$filename} = \%file;
}
# Globally resolve NEED_'s
my $need;
for $need (keys %{$global{needs}}) {
if (@{$global{needs}{$need}} > 1) {
my @targets = @{$global{needs}{$need}};
my @t = grep $files{$_}{needed_global}{$need}, @targets;
@targets = @t if @t;
@t = grep /\.xs$/i, @targets;
@targets = @t if @t;
my $target = shift @targets;
$files{$target}{needs}{$need} = 'global';
for (@{$global{needs}{$need}}) {
$files{$_}{needs}{$need} = 'extern' if $_ ne $target;
}
}
}
for $filename (@files) {
exists $files{$filename} or next;
info("=== Analyzing $filename ===");
my %file = %{$files{$filename}};
my $func;
my $c = $file{code};
my $warnings = 0;
for $func (sort keys %{$file{uses_Perl}}) {
if ($API{$func}{varargs}) {
unless ($API{$func}{nothxarg}) {
my $changes = ($c =~ s{\b(Perl_$func\s*\(\s*)(?!aTHX_?)(\)|[^\s)]*\))}
{ $1 . ($2 eq ')' ? 'aTHX' : 'aTHX_ ') . $2 }ge);
if ($changes) {
warning("Doesn't pass interpreter argument aTHX to Perl_$func");
$file{changes} += $changes;
}
}
}
else {
warning("Uses Perl_$func instead of $func");
$file{changes} += ($c =~ s{\bPerl_$func(\s*)\((\s*aTHX_?)?\s*}
{$func$1(}g);
}
}
for $func (sort keys %{$file{uses_replace}}) {
warning("Uses $func instead of $replace{$func}");
$file{changes} += ($c =~ s/\b$func\b/$replace{$func}/g);
}
for $func (sort keys %{$file{uses_provided}}) {
if ($file{uses}{$func}) {
if (exists $file{uses_deps}{$func}) {
diag("Uses $func, which depends on ", join(', ', @{$file{uses_deps}{$func}}));
}
else {
diag("Uses $func");
}
}
$warnings += hint($func);
}
unless ($opt{quiet}) {
for $func (sort keys %{$file{uses_todo}}) {
print "*** WARNING: Uses $func, which may not be portable below perl ",
format_version($API{$func}{todo}), ", even with '$ppport'\n";
$warnings++;
}
}
for $func (sort keys %{$file{needed_static}}) {
my $message = '';
if (not exists $file{uses}{$func}) {
$message = "No need to define NEED_$func if $func is never used";
}
elsif (exists $file{needs}{$func} && $file{needs}{$func} ne 'static') {
$message = "No need to define NEED_$func when already needed globally";
}
if ($message) {
diag($message);
$file{changes} += ($c =~ s/^$HS*#$HS*define$HS+NEED_$func\b.*$LF//mg);
}
}
for $func (sort keys %{$file{needed_global}}) {
my $message = '';
if (not exists $global{uses}{$func}) {
$message = "No need to define NEED_${func}_GLOBAL if $func is never used";
}
elsif (exists $file{needs}{$func}) {
if ($file{needs}{$func} eq 'extern') {
$message = "No need to define NEED_${func}_GLOBAL when already needed globally";
}
elsif ($file{needs}{$func} eq 'static') {
$message = "No need to define NEED_${func}_GLOBAL when only used in this file";
}
}
if ($message) {
diag($message);
$file{changes} += ($c =~ s/^$HS*#$HS*define$HS+NEED_${func}_GLOBAL\b.*$LF//mg);
}
}
$file{needs_inc_ppport} = keys %{$file{uses}};
if ($file{needs_inc_ppport}) {
my $pp = '';
for $func (sort keys %{$file{needs}}) {
my $type = $file{needs}{$func};
next if $type eq 'extern';
my $suffix = $type eq 'global' ? '_GLOBAL' : '';
unless (exists $file{"needed_$type"}{$func}) {
if ($type eq 'global') {
diag("Files [@{$global{needs}{$func}}] need $func, adding global request");
}
else {
diag("File needs $func, adding static request");
}
$pp .= "#define NEED_$func$suffix\n";
}
}
if ($pp && ($c =~ s/^(?=$HS*#$HS*define$HS+NEED_\w+)/$pp/m)) {
$pp = '';
$file{changes}++;
}
unless ($file{has_inc_ppport}) {
diag("Needs to include '$ppport'");
$pp .= qq(#include "$ppport"\n)
}
if ($pp) {
$file{changes} += ($c =~ s/^($HS*#$HS*define$HS+NEED_\w+.*?)^/$1$pp/ms)
|| ($c =~ s/^(?=$HS*#$HS*include.*\Q$ppport\E)/$pp/m)
|| ($c =~ s/^($HS*#$HS*include.*XSUB.*\s*?)^/$1$pp/m)
|| ($c =~ s/^/$pp/);
}
}
else {
if ($file{has_inc_ppport}) {
diag("No need to include '$ppport'");
$file{changes} += ($c =~ s/^$HS*?#$HS*include.*\Q$ppport\E.*?$LF//m);
}
}
# put back in our C comments
my $ix;
my $cppc = 0;
my @ccom = @{$file{ccom}};
for $ix (0 .. $#ccom) {
if (!$opt{cplusplus} && $ccom[$ix] =~ s!^//!!) {
$cppc++;
$file{changes} += $c =~ s/$rccs$ix$rcce/$ccs$ccom[$ix] $cce/;
}
else {
$c =~ s/$rccs$ix$rcce/$ccom[$ix]/;
}
}
if ($cppc) {
my $s = $cppc != 1 ? 's' : '';
warning("Uses $cppc C++ style comment$s, which is not portable");
}
my $s = $warnings != 1 ? 's' : '';
my $warn = $warnings ? " ($warnings warning$s)" : '';
info("Analysis completed$warn");
if ($file{changes}) {
if (exists $opt{copy}) {
my $newfile = "$filename$opt{copy}";
if (-e $newfile) {
error("'$newfile' already exists, refusing to write copy of '$filename'");
}
else {
local *F;
if (open F, ">$newfile") {
info("Writing copy of '$filename' with changes to '$newfile'");
print F $c;
close F;
}
else {
error("Cannot open '$newfile' for writing: $!");
}
}
}
elsif (exists $opt{patch} || $opt{changes}) {
if (exists $opt{patch}) {
unless ($patch_opened) {
if (open PATCH, ">$opt{patch}") {
$patch_opened = 1;
}
else {
error("Cannot open '$opt{patch}' for writing: $!");
delete $opt{patch};
$opt{changes} = 1;
goto fallback;
}
}
mydiff(\*PATCH, $filename, $c);
}
else {
fallback:
info("Suggested changes:");
mydiff(\*STDOUT, $filename, $c);
}
}
else {
my $s = $file{changes} == 1 ? '' : 's';
info("$file{changes} potentially required change$s detected");
}
}
else {
info("Looks good");
}
}
close PATCH if $patch_opened;
exit 0;
sub try_use { eval "use @_;"; return $@ eq '' }
sub mydiff
{
local *F = shift;
my($file, $str) = @_;
my $diff;
if (exists $opt{diff}) {
$diff = run_diff($opt{diff}, $file, $str);
}
if (!defined $diff and try_use('Text::Diff')) {
$diff = Text::Diff::diff($file, \$str, { STYLE => 'Unified' });
$diff = <<HEADER . $diff;
--- $file
+++ $file.patched
HEADER
}
if (!defined $diff) {
$diff = run_diff('diff -u', $file, $str);
}
if (!defined $diff) {
$diff = run_diff('diff', $file, $str);
}
if (!defined $diff) {
error("Cannot generate a diff. Please install Text::Diff or use --copy.");
return;
}
print F $diff;
}
sub run_diff
{
my($prog, $file, $str) = @_;
my $tmp = 'dppptemp';
my $suf = 'aaa';
my $diff = '';
local *F;
while (-e "$tmp.$suf") { $suf++ }
$tmp = "$tmp.$suf";
if (open F, ">$tmp") {
print F $str;
close F;
if (open F, "$prog $file $tmp |") {
while (<F>) {
s/\Q$tmp\E/$file.patched/;
$diff .= $_;
}
close F;
unlink $tmp;
return $diff;
}
unlink $tmp;
}
else {
error("Cannot open '$tmp' for writing: $!");
}
return undef;
}
sub rec_depend
{
my($func, $seen) = @_;
return () unless exists $depends{$func};
$seen = {%{$seen||{}}};
return () if $seen->{$func}++;
my %s;
grep !$s{$_}++, map { ($_, rec_depend($_, $seen)) } @{$depends{$func}};
}
sub parse_version
{
my $ver = shift;
if ($ver =~ /^(\d+)\.(\d+)\.(\d+)$/) {
return ($1, $2, $3);
}
elsif ($ver !~ /^\d+\.[\d_]+$/) {
die "cannot parse version '$ver'\n";
}
$ver =~ s/_//g;
$ver =~ s/$/000000/;
my($r,$v,$s) = $ver =~ /(\d+)\.(\d{3})(\d{3})/;
$v = int $v;
$s = int $s;
if ($r < 5 || ($r == 5 && $v < 6)) {
if ($s % 10) {
die "cannot parse version '$ver'\n";
}
}
return ($r, $v, $s);
}
sub format_version
{
my $ver = shift;
$ver =~ s/$/000000/;
my($r,$v,$s) = $ver =~ /(\d+)\.(\d{3})(\d{3})/;
$v = int $v;
$s = int $s;
if ($r < 5 || ($r == 5 && $v < 6)) {
if ($s % 10) {
die "invalid version '$ver'\n";
}
$s /= 10;
$ver = sprintf "%d.%03d", $r, $v;
$s > 0 and $ver .= sprintf "_%02d", $s;
return $ver;
}
return sprintf "%d.%d.%d", $r, $v, $s;
}
sub info
{
$opt{quiet} and return;
print @_, "\n";
}
sub diag
{
$opt{quiet} and return;
$opt{diag} and print @_, "\n";
}
sub warning
{
$opt{quiet} and return;
print "*** ", @_, "\n";
}
sub error
{
print "*** ERROR: ", @_, "\n";
}
my %given_hints;
my %given_warnings;
sub hint
{
$opt{quiet} and return;
my $func = shift;
my $rv = 0;
if (exists $warnings{$func} && !$given_warnings{$func}++) {
my $warn = $warnings{$func};
$warn =~ s!^!*** !mg;
print "*** WARNING: $func\n", $warn;
$rv++;
}
if ($opt{hints} && exists $hints{$func} && !$given_hints{$func}++) {
my $hint = $hints{$func};
$hint =~ s/^/ /mg;
print " --- hint for $func ---\n", $hint;
}
$rv;
}
sub usage
{
my($usage) = do { local(@ARGV,$/)=($0); <> } =~ /^=head\d$HS+SYNOPSIS\s*^(.*?)\s*^=/ms;
my %M = ( 'I' => '*' );
$usage =~ s/^\s*perl\s+\S+/$^X $0/;
$usage =~ s/([A-Z])<([^>]+)>/$M{$1}$2$M{$1}/g;
print <<ENDUSAGE;
Usage: $usage
See perldoc $0 for details.
ENDUSAGE
exit 2;
}
sub strip
{
my $self = do { local(@ARGV,$/)=($0); <> };
my($copy) = $self =~ /^=head\d\s+COPYRIGHT\s*^(.*?)^=\w+/ms;
$copy =~ s/^(?=\S+)/ /gms;
$self =~ s/^$HS+Do NOT edit.*?(?=^-)/$copy/ms;
$self =~ s/^SKIP.*(?=^__DATA__)/SKIP
if (\@ARGV && \$ARGV[0] eq '--unstrip') {
eval { require Devel::PPPort };
\$@ and die "Cannot require Devel::PPPort, please install.\\n";
if (eval \$Devel::PPPort::VERSION < $VERSION) {
die "$0 was originally generated with Devel::PPPort $VERSION.\\n"
. "Your Devel::PPPort is only version \$Devel::PPPort::VERSION.\\n"
. "Please install a newer version, or --unstrip will not work.\\n";
}
Devel::PPPort::WriteFile(\$0);
exit 0;
}
print <<END;
Sorry, but this is a stripped version of \$0.
To be able to use its original script and doc functionality,
please try to regenerate this file using:
\$^X \$0 --unstrip
END
/ms;
my($pl, $c) = $self =~ /(.*^__DATA__)(.*)/ms;
$c =~ s{
/ (?: \*[^*]*\*+(?:[^$ccs][^*]*\*+)* / | /[^\r\n]*)
| ( "[^"\\]*(?:\\.[^"\\]*)*"
| '[^'\\]*(?:\\.[^'\\]*)*' )
| ($HS+) }{ defined $2 ? ' ' : ($1 || '') }gsex;
$c =~ s!\s+$!!mg;
$c =~ s!^$LF!!mg;
$c =~ s!^\s*#\s*!#!mg;
$c =~ s!^\s+!!mg;
open OUT, ">$0" or die "cannot strip $0: $!\n";
print OUT "$pl$c\n";
exit 0;
}
__DATA__
*/
#ifndef _P_P_PORTABILITY_H_
#define _P_P_PORTABILITY_H_
#ifndef DPPP_NAMESPACE
# define DPPP_NAMESPACE DPPP_
#ifndef PERL_REVISION
# if !defined(__PATCHLEVEL_H_INCLUDED__) && !(defined(PATCHLEVEL) && defined(SUBVERSION))
# define PERL_PATCHLEVEL_H_IMPLICIT
# include <patchlevel.h>
# endif
# if !(defined(PERL_VERSION) || (defined(SUBVERSION) && defined(PATCHLEVEL)))
# include <could_not_find_Perl_patchlevel.h>
# endif
# ifndef PERL_REVISION
# define PERL_REVISION (5)
/* Replace: 1 */
# define PERL_VERSION PATCHLEVEL
# define PERL_SUBVERSION SUBVERSION
/* Replace PERL_PATCHLEVEL with PERL_VERSION */
/* Replace: 0 */
# endif
#endif
#define _dpppDEC2BCD(dec) ((((dec)/100)<<8)|((((dec)%100)/10)<<4)|((dec)%10))
#define PERL_BCDVERSION ((_dpppDEC2BCD(PERL_REVISION)<<24)|(_dpppDEC2BCD(PERL_VERSION)<<12)|_dpppDEC2BCD(PERL_SUBVERSION))
/* It is very unlikely that anyone will try to use this with Perl 6
(or greater), but who knows.
*/
#if PERL_REVISION != 5
# error ppport.h only works with Perl version 5
#endif /* PERL_REVISION != 5 */
#ifndef dTHR
# define dTHR dNOOP
#endif
#ifndef dTHX
# define dTHX dNOOP
#endif
#endif
#ifndef UVTYPE
# define UVTYPE unsigned IVTYPE
#endif
#ifndef UVSIZE
# define UVSIZE IVSIZE
#endif
#ifndef sv_setuv
# define sv_setuv(sv, uv) \
STMT_START { \
UV TeMpUv = uv; \
if (TeMpUv <= IV_MAX) \
sv_setiv(sv, TeMpUv); \
else \
sv_setnv(sv, (double)TeMpUv); \
} STMT_END
#endif
#ifndef newSVuv
# define newSVuv(uv) ((uv) <= IV_MAX ? newSViv((IV)uv) : newSVnv((NV)uv))
#endif
#ifndef sv_2uv
# define sv_2uv(sv) ((PL_Sv = (sv)), (UV) (SvNOK(PL_Sv) ? SvNV(PL_Sv) : sv_2nv(PL_Sv)))
#endif
#ifndef SvUVX
# define SvUVX(sv) ((UV)SvIVX(sv))
#ifndef SvUV
# define SvUV(sv) (SvIOK(sv) ? SvUVX(sv) : sv_2uv(sv))
#endif
#ifndef SvUVx
# define SvUVx(sv) ((PL_Sv = (sv)), SvUV(PL_Sv))
#endif
/* Hint: sv_uv
* Always use the SvUVx() macro instead of sv_uv().
*/
#ifndef sv_uv
# define sv_uv(sv) SvUVx(sv)
#endif
#if !defined(SvUOK) && defined(SvIOK_UV)
# define SvUOK(sv) SvIOK_UV(sv)
#endif
#ifndef XST_mUV
# define XST_mUV(i,v) (ST(i) = sv_2mortal(newSVuv(v)) )
#endif
# define memNE(s1,s2,l) (bcmp(s1,s2,l))
#endif
#ifndef memEQ
# define memEQ(s1,s2,l) (!bcmp(s1,s2,l))
#endif
#endif
#ifndef memEQs
# define memEQs(s1, l, s2) \
(sizeof(s2)-1 == l && memEQ(s1, (s2 ""), (sizeof(s2)-1)))
#endif
#ifndef memNEs
# define memNEs(s1, l, s2) !memEQs(s1, l, s2)
#endif
#ifndef MoveD
# define MoveD(s,d,n,t) memmove((char*)(d),(char*)(s), (n) * sizeof(t))
#endif
#ifndef CopyD
#ifdef SvRX
# undef SvRX
#endif
#define SvRX(a) DPPP_(my_SvRX)(aTHX_ a)
#if defined(NEED_SvRX) || defined(NEED_SvRX_GLOBAL)
void *
DPPP_(my_SvRX)(pTHX_ SV *rv)
{
if (SvROK(rv)) {
SV *sv = SvRV(rv);
if (SvMAGICAL(sv)) {
MAGIC *mg = mg_find(sv, PERL_MAGIC_qr);
if (mg && mg->mg_obj) {
return mg->mg_obj;
}
}
}
return 0;
}
#endif
#endif
#ifndef SvRXOK
# define SvRXOK(sv) (!!SvRX(sv))
#endif
#ifndef PERL_UNUSED_DECL
# ifdef HASATTRIBUTE
# if (defined(__GNUC__) && defined(__cplusplus)) || defined(__INTEL_COMPILER)
/* Older perls (<=5.003) lack AvFILLp */
#ifndef AvFILLp
# define AvFILLp AvFILL
#endif
#ifndef ERRSV
# define ERRSV get_sv("@",FALSE)
#endif
/* Hint: gv_stashpvn
* This function's backport doesn't support the length parameter, but
* rather ignores it. Portability can only be ensured if the length
* parameter is used for speed reasons, but the length can always be
* correctly computed from the string argument.
*/
#ifndef gv_stashpvn
# define gv_stashpvn(str,len,create) gv_stashpv(str,create)
#endif
/* Replace: 1 */
#ifndef get_cv
# define get_cv perl_get_cv
#endif
#ifndef get_sv
#endif
#ifndef dITEMS
# define dITEMS I32 items = SP - MARK
#endif
#ifndef dXSTARG
# define dXSTARG SV * targ = sv_newmortal()
#endif
#ifndef dAXMARK
# define dAXMARK I32 ax = POPMARK; \
register SV ** const mark = PL_stack_base + ax++
#endif
#ifndef XSprePUSH
# define XSprePUSH (sp = PL_stack_base + ax - 1)
#endif
#if (PERL_BCDVERSION < 0x5005000)
# undef XSRETURN
# define XSRETURN(off) \
STMT_START { \
PL_stack_sp = PL_stack_base + ax + ((off) - 1); \
return; \
} STMT_END
#endif
#ifndef XSPROTO
# define XSPROTO(name) void name(pTHX_ CV* cv)
#endif
#ifndef SVfARG
# define SVfARG(p) ((void*)(p))
#endif
#ifndef PERL_ABS
# define PERL_ABS(x) ((x) < 0 ? -(x) : (x))
# define SVf "_"
#endif
#ifndef UTF8_MAXBYTES
# define UTF8_MAXBYTES UTF8_MAXLEN
#endif
#ifndef CPERLscope
# define CPERLscope(x) x
#endif
#ifndef PERL_HASH
# define PERL_HASH(hash,str,len) \
STMT_START { \
const char *s_PeRlHaSh = str; \
I32 i_PeRlHaSh = len; \
U32 hash_PeRlHaSh = 0; \
while (i_PeRlHaSh--) \
hash_PeRlHaSh = hash_PeRlHaSh * 33 + *s_PeRlHaSh++; \
(hash) = hash_PeRlHaSh; \
} STMT_END
#endif
#ifndef PERLIO_FUNCS_DECL
# ifdef PERLIO_FUNCS_CONST
# define PERLIO_FUNCS_DECL(funcs) const PerlIO_funcs funcs
# define PERLIO_FUNCS_CAST(funcs) (PerlIO_funcs*)(funcs)
# else
# define PERLIO_FUNCS_DECL(funcs) PerlIO_funcs funcs
# define PERLIO_FUNCS_CAST(funcs) (funcs)
# endif
# define isPUNCT(c) ispunct(c)
#endif
#ifndef isXDIGIT
# define isXDIGIT(c) isxdigit(c)
#endif
#else
# if (PERL_BCDVERSION < 0x5010000)
/* Hint: isPRINT
* The implementation in older perl versions includes all of the
* isSPACE() characters, which is wrong. The version provided by
* Devel::PPPort always overrides a present buggy version.
*/
# undef isPRINT
# endif
#ifdef HAS_QUAD
# ifdef U64TYPE
# define WIDEST_UTYPE U64TYPE
# else
# define WIDEST_UTYPE Quad_t
# endif
#else
#ifndef isXDIGIT
# define isXDIGIT(c) (isDIGIT(c) || ((c) >= 'a' && (c) <= 'f') || ((c) >= 'A' && (c) <= 'F'))
#endif
#endif
/* Until we figure out how to support this in older perls... */
#if (PERL_BCDVERSION >= 0x5008000)
#ifndef HeUTF8
# define HeUTF8(he) ((HeKLEN(he) == HEf_SVKEY) ? \
SvUTF8(HeKEY_sv(he)) : \
(U32)HeKUTF8(he))
#endif
#endif
#ifndef C_ARRAY_LENGTH
# define C_ARRAY_LENGTH(a) (sizeof(a)/sizeof((a)[0]))
#endif
#ifndef C_ARRAY_END
# define C_ARRAY_END(a) ((a) + C_ARRAY_LENGTH(a))
#endif
#elif defined(NEED_PL_signals_GLOBAL)
U32 DPPP_(my_PL_signals) = D_PPP_PERL_SIGNALS_INIT;
#else
extern U32 DPPP_(my_PL_signals);
#endif
#define PL_signals DPPP_(my_PL_signals)
#endif
/* Hint: PL_ppaddr
* Calling an op via PL_ppaddr requires passing a context argument
* for threaded builds. Since the context argument is different for
* 5.005 perls, you can use aTHXR (supplied by ppport.h), which will
* automatically be defined as the correct argument.
*/
#if (PERL_BCDVERSION <= 0x5005005)
/* Replace: 1 */
# define PL_ppaddr ppaddr
# define PL_no_modify no_modify
/* Replace: 0 */
#endif
#if (PERL_BCDVERSION <= 0x5004005)
/* Replace: 1 */
# define PL_sv_no sv_no
# define PL_sv_undef sv_undef
# define PL_sv_yes sv_yes
# define PL_tainted tainted
# define PL_tainting tainting
# define PL_tokenbuf tokenbuf
/* Replace: 0 */
#endif
/* Warning: PL_parser
* For perl versions earlier than 5.9.5, this is an always
* non-NULL dummy. Also, it cannot be dereferenced. Don't
* use it if you can avoid is and unless you absolutely know
* what you're doing.
* If you always check that PL_parser is non-NULL, you can
* define DPPP_PL_parser_NO_DUMMY to avoid the creation of
* a dummy parser structure.
*/
#if (PERL_BCDVERSION >= 0x5009005)
# ifdef DPPP_PL_parser_NO_DUMMY
# define D_PPP_my_PL_parser_var(var) ((PL_parser ? PL_parser : \
(croak("panic: PL_parser == NULL in %s:%d", \
__FILE__, __LINE__), (yy_parser *) NULL))->var)
# else
# ifdef DPPP_PL_parser_NO_DUMMY_WARNING
# define D_PPP_parser_dummy_warning(var)
# else
# define D_PPP_parser_dummy_warning(var) \
warn("warning: dummy PL_" #var " used in %s:%d", __FILE__, __LINE__),
# endif
# define D_PPP_my_PL_parser_var(var) ((PL_parser ? PL_parser : \
(D_PPP_parser_dummy_warning(var) &DPPP_(dummy_PL_parser)))->var)
#if defined(NEED_PL_parser)
static yy_parser DPPP_(dummy_PL_parser);
#elif defined(NEED_PL_parser_GLOBAL)
yy_parser DPPP_(dummy_PL_parser);
#else
extern yy_parser DPPP_(dummy_PL_parser);
#endif
# endif
/* PL_expect, PL_copline, PL_rsfp, PL_rsfp_filters, PL_linestr, PL_bufptr, PL_bufend, PL_lex_state, PL_lex_stuff, PL_tokenbuf depends on PL_parser */
/* Warning: PL_expect, PL_copline, PL_rsfp, PL_rsfp_filters, PL_linestr, PL_bufptr, PL_bufend, PL_lex_state, PL_lex_stuff, PL_tokenbuf
* Do not use this variable unless you know exactly what you're
* doing. It is internal to the perl parser and may change or even
* be removed in the future. As of perl 5.9.5, you have to check
* for (PL_parser != NULL) for this variable to have any effect.
* An always non-NULL PL_parser dummy is provided for earlier
* perl versions.
* If PL_parser is NULL when you try to access this variable, a
* dummy is being accessed instead and a warning is issued unless
* you define DPPP_PL_parser_NO_DUMMY_WARNING.
* If DPPP_PL_parser_NO_DUMMY is defined, the code trying to access
* this variable will croak with a panic message.
*/
# define PL_expect D_PPP_my_PL_parser_var(expect)
# define PL_copline D_PPP_my_PL_parser_var(copline)
# define PL_rsfp D_PPP_my_PL_parser_var(rsfp)
# define PL_rsfp_filters D_PPP_my_PL_parser_var(rsfp_filters)
# define PL_linestr D_PPP_my_PL_parser_var(linestr)
# define PL_bufptr D_PPP_my_PL_parser_var(bufptr)
# define PL_bufend D_PPP_my_PL_parser_var(bufend)
# define PL_lex_state D_PPP_my_PL_parser_var(lex_state)
# define PL_lex_stuff D_PPP_my_PL_parser_var(lex_stuff)
# define PERL_LOADMOD_IMPORT_OPS 0x4
#endif
#ifndef G_METHOD
# define G_METHOD 64
# ifdef call_sv
# undef call_sv
# endif
# if (PERL_BCDVERSION < 0x5006000)
# define call_sv(sv, flags) ((flags) & G_METHOD ? perl_call_method((char *) SvPV_nolen_const(sv), \
(flags) & ~G_METHOD) : perl_call_sv(sv, flags))
# else
# define call_sv(sv, flags) ((flags) & G_METHOD ? Perl_call_method(aTHX_ (char *) SvPV_nolen_const(sv), \
(flags) & ~G_METHOD) : Perl_call_sv(aTHX_ sv, flags))
# endif
#endif
/* Replace perl_eval_pv with eval_pv */
#ifndef eval_pv
#if defined(NEED_eval_pv)
static SV* DPPP_(my_eval_pv)(char *p, I32 croak_on_error);
static
#else
# undef eval_pv
#endif
#define eval_pv(a,b) DPPP_(my_eval_pv)(aTHX_ a,b)
#define Perl_eval_pv DPPP_(my_eval_pv)
#if defined(NEED_eval_pv) || defined(NEED_eval_pv_GLOBAL)
SV*
DPPP_(my_eval_pv)(char *p, I32 croak_on_error)
{
dSP;
SV* sv = newSVpv(p, 0);
PUSHMARK(sp);
eval_sv(sv, G_SCALAR);
SvREFCNT_dec(sv);
SPAGAIN;
sv = POPs;
PUTBACK;
if (croak_on_error && SvTRUE(GvSV(errgv)))
croak(SvPVx(GvSV(errgv), na));
return sv;
}
#endif
#endif
#ifndef vload_module
#if defined(NEED_vload_module)
static void DPPP_(my_vload_module)(U32 flags, SV *name, SV *ver, va_list *args);
static
#else
# undef vload_module
#endif
#define vload_module(a,b,c,d) DPPP_(my_vload_module)(aTHX_ a,b,c,d)
#define Perl_vload_module DPPP_(my_vload_module)
#if defined(NEED_vload_module) || defined(NEED_vload_module_GLOBAL)
void
DPPP_(my_vload_module)(U32 flags, SV *name, SV *ver, va_list *args)
{
dTHR;
dVAR;
OP *veop, *imop;
OP * const modname = newSVOP(OP_CONST, 0, name);
/* 5.005 has a somewhat hacky force_normal that doesn't croak on
SvREADONLY() if PL_compling is true. Current perls take care in
ck_require() to correctly turn off SvREADONLY before calling
force_normal_flags(). This seems a better fix than fudging PL_compling
*/
SvREADONLY_off(((SVOP*)modname)->op_sv);
modname->op_private |= OPpCONST_BARE;
if (ver) {
veop = newSVOP(OP_CONST, 0, ver);
}
else
veop = NULL;
if (flags & PERL_LOADMOD_NOIMPORT) {
imop = sawparens(newNULLLIST());
}
else if (flags & PERL_LOADMOD_IMPORT_OPS) {
imop = va_arg(*args, OP*);
}
else {
SV *sv;
imop = NULL;
sv = va_arg(*args, SV*);
while (sv) {
imop = append_elem(OP_LIST, imop, newSVOP(OP_CONST, 0, sv));
sv = va_arg(*args, SV*);
}
}
{
const line_t ocopline = PL_copline;
COP * const ocurcop = PL_curcop;
const int oexpect = PL_expect;
#if (PERL_BCDVERSION >= 0x5004000)
utilize(!(flags & PERL_LOADMOD_DENY), start_subparse(FALSE, 0),
veop, modname, imop);
#elif (PERL_BCDVERSION > 0x5003000)
utilize(!(flags & PERL_LOADMOD_DENY), start_subparse(),
veop, modname, imop);
#else
utilize(!(flags & PERL_LOADMOD_DENY), start_subparse(),
modname, imop);
#endif
PL_expect = oexpect;
PL_copline = ocopline;
PL_curcop = ocurcop;
}
}
#endif
#endif
#ifndef load_module
#if defined(NEED_load_module)
static void DPPP_(my_load_module)(U32 flags, SV *name, SV *ver, ...);
static
#else
# undef load_module
#endif
#define load_module DPPP_(my_load_module)
#define Perl_load_module DPPP_(my_load_module)
#if defined(NEED_load_module) || defined(NEED_load_module_GLOBAL)
void
DPPP_(my_load_module)(U32 flags, SV *name, SV *ver, ...)
{
va_list args;
va_start(args, ver);
vload_module(flags, name, ver, &args);
va_end(args);
}
#endif
#endif
#ifndef newRV_inc
# define newRV_inc(sv) newRV(sv) /* Replace */
#endif
#ifndef newRV_noinc
#if defined(NEED_newRV_noinc)
#ifdef newRV_noinc
# undef newRV_noinc
#endif
#define newRV_noinc(a) DPPP_(my_newRV_noinc)(aTHX_ a)
#define Perl_newRV_noinc DPPP_(my_newRV_noinc)
#if defined(NEED_newRV_noinc) || defined(NEED_newRV_noinc_GLOBAL)
SV *
DPPP_(my_newRV_noinc)(SV *sv)
{
SV *rv = (SV *)newRV(sv);
SvREFCNT_dec(sv);
return rv;
}
#endif
#endif
/* Hint: newCONSTSUB
* Returns a CV* as of perl-5.7.1. This return value is not supported
* by Devel::PPPort.
*/
/* newCONSTSUB from IO.xs is in the core starting with 5.004_63 */
#if (PERL_BCDVERSION < 0x5004063) && (PERL_BCDVERSION != 0x5004005)
#if defined(NEED_newCONSTSUB)
static void DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv);
static
#else
extern void DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv);
#endif
#if defined(NEED_newCONSTSUB) || defined(NEED_newCONSTSUB_GLOBAL)
/* This is just a trick to avoid a dependency of newCONSTSUB on PL_parser */
/* (There's no PL_parser in perl < 5.005, so this is completely safe) */
#define D_PPP_PL_copline PL_copline
void
DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv)
{
U32 oldhints = PL_hints;
HV *old_cop_stash = PL_curcop->cop_stash;
HV *old_curstash = PL_curstash;
line_t oldline = PL_curcop->cop_line;
PL_curcop->cop_line = D_PPP_PL_copline;
PL_hints &= ~HINT_BLOCK_SCOPE;
if (stash)
PL_curstash = PL_curcop->cop_stash = stash;
newSUB(
#if (PERL_BCDVERSION < 0x5003022)
start_subparse(),
#elif (PERL_BCDVERSION == 0x5003022)
start_subparse(0),
#else /* 5.003_23 onwards */
start_subparse(FALSE, 0),
#endif
newSVOP(OP_CONST, 0, newSVpv((char *) name, 0)),
newSVOP(OP_CONST, 0, &PL_sv_no), /* SvPV(&PL_sv_no) == "" -- GMB */
newSTATEOP(0, Nullch, newSVOP(OP_CONST, 0, sv))
);
PL_hints = oldhints;
PL_curcop->cop_stash = old_cop_stash;
PL_curstash = old_curstash;
PL_curcop->cop_line = oldline;
}
#endif
#endif
/*
* Boilerplate macros for initializing and accessing interpreter-local
* data from C. All statics in extensions should be reworked to use
* this, if you want to make the extension thread-safe. See ext/re/re.xs
* for an example of the use of these macros.
*
* Code that uses these macros is responsible for the following:
* 1. #define MY_CXT_KEY to a unique string, e.g. "DynaLoader_guts"
* 2. Declare a typedef named my_cxt_t that is a structure that contains
* all the data that needs to be interpreter-local.
* 3. Use the START_MY_CXT macro after the declaration of my_cxt_t.
* 4. Use the MY_CXT_INIT macro such that it is called exactly once
* (typically put in the BOOT: section).
* 5. Use the members of the my_cxt_t structure everywhere as
* MY_CXT.member.
* 6. Use the dMY_CXT macro (a declaration) in all the functions that
* access MY_CXT.
*/
#if defined(MULTIPLICITY) || defined(PERL_OBJECT) || \
defined(PERL_CAPI) || defined(PERL_IMPLICIT_CONTEXT)
#ifndef START_MY_CXT
/* This must appear in all extensions that define a my_cxt_t structure,
* right after the definition (i.e. at file scope). The non-threads
* case below uses it to declare the data as static. */
#define START_MY_CXT
#if (PERL_BCDVERSION < 0x5004068)
/* Fetches the SV that keeps the per-interpreter data. */
#define dMY_CXT_SV \
SV *my_cxt_sv = get_sv(MY_CXT_KEY, FALSE)
#else /* >= perl5.004_68 */
#define dMY_CXT_SV \
SV *my_cxt_sv = *hv_fetch(PL_modglobal, MY_CXT_KEY, \
sizeof(MY_CXT_KEY)-1, TRUE)
#endif /* < perl5.004_68 */
/* This declaration should be used within all functions that use the
* interpreter-local data. */
#define dMY_CXT \
dMY_CXT_SV; \
my_cxt_t *my_cxtp = INT2PTR(my_cxt_t*,SvUV(my_cxt_sv))
/* Creates and zeroes the per-interpreter data.
* (We allocate my_cxtp in a Perl SV so that it will be released when
* the interpreter goes away.) */
#define MY_CXT_INIT \
dMY_CXT_SV; \
/* newSV() allocates one more than needed */ \
my_cxt_t *my_cxtp = (my_cxt_t*)SvPVX(newSV(sizeof(my_cxt_t)-1));\
Zero(my_cxtp, 1, my_cxt_t); \
sv_setuv(my_cxt_sv, PTR2UV(my_cxtp))
/* This macro must be used to access members of the my_cxt_t structure.
* e.g. MYCXT.some_data */
#define MY_CXT (*my_cxtp)
/* Judicious use of these macros can reduce the number of times dMY_CXT
* is used. Use is similar to pTHX, aTHX etc. */
#define pMY_CXT my_cxt_t *my_cxtp
#define pMY_CXT_ pMY_CXT,
#define _pMY_CXT ,pMY_CXT
#define aMY_CXT my_cxtp
#define aMY_CXT_ aMY_CXT,
#define _aMY_CXT ,aMY_CXT
#endif /* START_MY_CXT */
#ifndef MY_CXT_CLONE
/* Clones the per-interpreter data. */
#define MY_CXT_CLONE \
dMY_CXT_SV; \
my_cxt_t *my_cxtp = (my_cxt_t*)SvPVX(newSV(sizeof(my_cxt_t)-1));\
Copy(INT2PTR(my_cxt_t*, SvUV(my_cxt_sv)), my_cxtp, 1, my_cxt_t);\
sv_setuv(my_cxt_sv, PTR2UV(my_cxtp))
#endif
#else /* single interpreter */
#ifndef START_MY_CXT
#define START_MY_CXT static my_cxt_t my_cxt;
#define dMY_CXT_SV dNOOP
#define dMY_CXT dNOOP
#define MY_CXT_INIT NOOP
# define UVof "o"
# define UVxf "x"
# define UVXf "X"
# else
# error "cannot define IV/UV formats"
# endif
#endif
#ifndef NVef
# if defined(USE_LONG_DOUBLE) && defined(HAS_LONG_DOUBLE) && \
defined(PERL_PRIfldbl) && (PERL_BCDVERSION != 0x5006000)
/* Not very likely, but let's try anyway. */
# define NVef PERL_PRIeldbl
# define NVff PERL_PRIfldbl
# define NVgf PERL_PRIgldbl
# else
# define NVef "e"
# define NVff "f"
# define NVgf "g"
# endif
#endif
#ifndef SvREFCNT_inc
# ifdef PERL_USE_GCC_BRACE_GROUPS
# define SvREFCNT_inc(sv) \
({ \
SV * const _sv = (SV*)(sv); \
if (_sv) \
(SvREFCNT(_sv))++; \
_sv; \
})
# else
# define SvREFCNT_inc(sv) \
((PL_Sv=(SV*)(sv)) ? (++(SvREFCNT(PL_Sv)),PL_Sv) : NULL)
# endif
#endif
#ifndef SvREFCNT_inc_simple
# ifdef PERL_USE_GCC_BRACE_GROUPS
# define SvREFCNT_inc_simple(sv) \
({ \
if (sv) \
(SvREFCNT(sv))++; \
(SV *)(sv); \
})
# else
# define SvREFCNT_inc_simple(sv) \
((sv) ? (SvREFCNT(sv)++,(SV*)(sv)) : NULL)
# endif
#endif
#ifndef SvREFCNT_inc_NN
# ifdef PERL_USE_GCC_BRACE_GROUPS
# define SvREFCNT_inc_NN(sv) \
({ \
SV * const _sv = (SV*)(sv); \
SvREFCNT(_sv)++; \
_sv; \
})
# else
# define SvREFCNT_inc_NN(sv) \
(PL_Sv=(SV*)(sv),++(SvREFCNT(PL_Sv)),PL_Sv)
# endif
#endif
#ifndef SvREFCNT_inc_void
# ifdef PERL_USE_GCC_BRACE_GROUPS
# define SvREFCNT_inc_void(sv) \
({ \
SV * const _sv = (SV*)(sv); \
if (_sv) \
(void)(SvREFCNT(_sv)++); \
})
# else
# define SvREFCNT_inc_void(sv) \
(void)((PL_Sv=(SV*)(sv)) ? ++(SvREFCNT(PL_Sv)) : 0)
# endif
#endif
#ifndef SvREFCNT_inc_simple_void
# define SvREFCNT_inc_simple_void(sv) STMT_START { if (sv) SvREFCNT(sv)++; } STMT_END
#endif
#ifndef SvREFCNT_inc_simple_NN
# define SvREFCNT_inc_simple_NN(sv) (++SvREFCNT(sv), (SV*)(sv))
#endif
# undef newSV_type
#endif
#define newSV_type(a) DPPP_(my_newSV_type)(aTHX_ a)
#define Perl_newSV_type DPPP_(my_newSV_type)
#if defined(NEED_newSV_type) || defined(NEED_newSV_type_GLOBAL)
SV*
DPPP_(my_newSV_type)(pTHX_ svtype const t)
{
SV* const sv = newSV(0);
sv_upgrade(sv, t);
return sv;
}
#endif
#endif
#if (PERL_BCDVERSION < 0x5006000)
# define D_PPP_CONSTPV_ARG(x) ((char *) (x))
#else
# define D_PPP_CONSTPV_ARG(x) (x)
#endif
#ifndef newSVpvn
# define newSVpvn(data,len) ((data) \
? ((len) ? newSVpv((data), (len)) : newSVpv("", 0)) \
: newSV(0))
#endif
#ifndef newSVpvn_utf8
# define newSVpvn_utf8(s, len, u) newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)
#endif
#ifndef SVf_UTF8
# define SVf_UTF8 0
#endif
#ifndef newSVpvn_flags
# undef newSVpvn_flags
#endif
#define newSVpvn_flags(a,b,c) DPPP_(my_newSVpvn_flags)(aTHX_ a,b,c)
#define Perl_newSVpvn_flags DPPP_(my_newSVpvn_flags)
#if defined(NEED_newSVpvn_flags) || defined(NEED_newSVpvn_flags_GLOBAL)
SV *
DPPP_(my_newSVpvn_flags)(pTHX_ const char *s, STRLEN len, U32 flags)
{
SV *sv = newSVpvn(D_PPP_CONSTPV_ARG(s), len);
SvFLAGS(sv) |= (flags & SVf_UTF8);
return (flags & SVs_TEMP) ? sv_2mortal(sv) : sv;
}
#endif
#endif
/* Backwards compatibility stuff... :-( */
#if !defined(NEED_sv_2pv_flags) && defined(NEED_sv_2pv_nolen)
# define NEED_sv_2pv_flags
#endif
#if !defined(NEED_sv_2pv_flags_GLOBAL) && defined(NEED_sv_2pv_nolen_GLOBAL)
# define NEED_sv_2pv_flags_GLOBAL
#endif
/* Hint: sv_2pv_nolen
* Use the SvPV_nolen() or SvPV_nolen_const() macros instead of sv_2pv_nolen().
*/
#ifndef sv_2pv_nolen
# define sv_2pv_nolen(sv) SvPV_nolen(sv)
#endif
#ifdef SvPVbyte
/* Hint: SvPVbyte
* Does not work in perl-5.6.1, ppport.h implements a version
* borrowed from perl-5.7.3.
*/
#if (PERL_BCDVERSION < 0x5007000)
#if defined(NEED_sv_2pvbyte)
static char * DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp);
static
#else
extern char * DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp);
#endif
# undef sv_2pvbyte
#endif
#define sv_2pvbyte(a,b) DPPP_(my_sv_2pvbyte)(aTHX_ a,b)
#define Perl_sv_2pvbyte DPPP_(my_sv_2pvbyte)
#if defined(NEED_sv_2pvbyte) || defined(NEED_sv_2pvbyte_GLOBAL)
char *
DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp)
{
sv_utf8_downgrade(sv,0);
return SvPV(sv,*lp);
}
#endif
/* Hint: sv_2pvbyte
* Use the SvPVbyte() macro instead of sv_2pvbyte().
*/
#undef SvPVbyte
#define SvPVbyte(sv, lp) \
((SvFLAGS(sv) & (SVf_POK|SVf_UTF8)) == (SVf_POK) \
? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_2pvbyte(sv, &lp))
#endif
#else
# define SvPVbyte SvPV
# define sv_2pvbyte sv_2pv
#endif
#ifndef sv_2pvbyte_nolen
# define sv_2pvbyte_nolen(sv) sv_2pv_nolen(sv)
#endif
/* Hint: sv_pvn
* Always use the SvPV() macro instead of sv_pvn().
*/
/* Hint: sv_pvn_force
* Always use the SvPV_force() macro instead of sv_pvn_force().
*/
/* If these are undefined, they're not handled by the core anyway */
#ifndef SV_IMMEDIATE_UNREF
# define SV_IMMEDIATE_UNREF 0
#endif
#ifndef SV_GMAGIC
# define SV_GMAGIC 0
#endif
# undef sv_2pv_flags
#endif
#define sv_2pv_flags(a,b,c) DPPP_(my_sv_2pv_flags)(aTHX_ a,b,c)
#define Perl_sv_2pv_flags DPPP_(my_sv_2pv_flags)
#if defined(NEED_sv_2pv_flags) || defined(NEED_sv_2pv_flags_GLOBAL)
char *
DPPP_(my_sv_2pv_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags)
{
STRLEN n_a = (STRLEN) flags;
return sv_2pv(sv, lp ? lp : &n_a);
}
#endif
#if defined(NEED_sv_pvn_force_flags)
static char * DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags);
static
#else
extern char * DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags);
#endif
# undef sv_pvn_force_flags
#endif
#define sv_pvn_force_flags(a,b,c) DPPP_(my_sv_pvn_force_flags)(aTHX_ a,b,c)
#define Perl_sv_pvn_force_flags DPPP_(my_sv_pvn_force_flags)
#if defined(NEED_sv_pvn_force_flags) || defined(NEED_sv_pvn_force_flags_GLOBAL)
char *
DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags)
{
STRLEN n_a = (STRLEN) flags;
return sv_pvn_force(sv, lp ? lp : &n_a);
}
#endif
#endif
#if (PERL_BCDVERSION < 0x5008008) || ( (PERL_BCDVERSION >= 0x5009000) && (PERL_BCDVERSION < 0x5009003) )
# define DPPP_SVPV_NOLEN_LP_ARG &PL_na
#else
# define DPPP_SVPV_NOLEN_LP_ARG 0
#endif
#ifndef SvPV_const
# define SvPV_const(sv, lp) SvPV_flags_const(sv, lp, SV_GMAGIC)
#endif
#ifndef SvPV_mutable
# define SvPV_mutable(sv, lp) SvPV_flags_mutable(sv, lp, SV_GMAGIC)
#endif
#ifndef SvPV_flags
# define SvPV_flags(sv, lp, flags) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_2pv_flags(sv, &lp, flags))
#endif
#ifndef SvPV_flags_const
# define SvPV_flags_const(sv, lp, flags) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? ((lp = SvCUR(sv)), SvPVX_const(sv)) : \
(const char*) sv_2pv_flags(sv, &lp, flags|SV_CONST_RETURN))
#endif
#ifndef SvPV_flags_const_nolen
# define SvPV_flags_const_nolen(sv, flags) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? SvPVX_const(sv) : \
(const char*) sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, flags|SV_CONST_RETURN))
#endif
#ifndef SvPV_flags_mutable
# define SvPV_flags_mutable(sv, lp, flags) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? ((lp = SvCUR(sv)), SvPVX_mutable(sv)) : \
sv_2pv_flags(sv, &lp, flags|SV_MUTABLE_RETURN))
#endif
#ifndef SvPV_force
# define SvPV_force(sv, lp) SvPV_force_flags(sv, lp, SV_GMAGIC)
#endif
#ifndef SvPV_force_nolen
# define SvPV_force_nolen(sv) SvPV_force_flags_nolen(sv, SV_GMAGIC)
#endif
#ifndef SvPV_force_mutable
#ifndef SvPV_force_nomg
# define SvPV_force_nomg(sv, lp) SvPV_force_flags(sv, lp, 0)
#endif
#ifndef SvPV_force_nomg_nolen
# define SvPV_force_nomg_nolen(sv) SvPV_force_flags_nolen(sv, 0)
#endif
#ifndef SvPV_force_flags
# define SvPV_force_flags(sv, lp, flags) \
((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \
? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_pvn_force_flags(sv, &lp, flags))
#endif
#ifndef SvPV_force_flags_nolen
# define SvPV_force_flags_nolen(sv, flags) \
((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \
? SvPVX(sv) : sv_pvn_force_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, flags))
#endif
#ifndef SvPV_force_flags_mutable
# define SvPV_force_flags_mutable(sv, lp, flags) \
((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \
? ((lp = SvCUR(sv)), SvPVX_mutable(sv)) \
: sv_pvn_force_flags(sv, &lp, flags|SV_MUTABLE_RETURN))
#endif
#ifndef SvPV_nolen
# define SvPV_nolen(sv) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? SvPVX(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, SV_GMAGIC))
#endif
#ifndef SvPV_nolen_const
# define SvPV_nolen_const(sv) \
((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? SvPVX_const(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, SV_GMAGIC|SV_CONST_RETURN))
#endif
#ifndef SvPV_nomg
# define SvPV_nomg(sv, lp) SvPV_flags(sv, lp, 0)
#endif
#ifndef SvPV_nomg_const
# define SvPV_nomg_const(sv, lp) SvPV_flags_const(sv, lp, 0)
#endif
#ifndef SvPV_nomg_const_nolen
# define SvPV_nomg_const_nolen(sv) SvPV_flags_const_nolen(sv, 0)
#endif
#ifndef SvPV_nomg_nolen
# define SvPV_nomg_nolen(sv) ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \
? SvPVX(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, 0))
#endif
#ifndef SvPV_renew
# define SvPV_renew(sv,n) STMT_START { SvLEN_set(sv, n); \
SvPV_set((sv), (char *) saferealloc( \
(Malloc_t)SvPVX(sv), (MEM_SIZE)((n)))); \
} STMT_END
#endif
#ifndef SvMAGIC_set
# define SvMAGIC_set(sv, val) \
STMT_START { assert(SvTYPE(sv) >= SVt_PVMG); \
(((XPVMG*) SvANY(sv))->xmg_magic = (val)); } STMT_END
#endif
#if (PERL_BCDVERSION < 0x5009003)
#ifndef SvPVX_const
# define SvPVX_const(sv) ((const char*) (0 + SvPVX(sv)))
#endif
#ifndef SvPVX_mutable
# define SvPVX_mutable(sv) (0 + SvPVX(sv))
#endif
#ifndef SvRV_set
# define SvRV_set(sv, val) \
STMT_START { assert(SvTYPE(sv) >= SVt_RV); \
(((XRV*) SvANY(sv))->xrv_rv = (val)); } STMT_END
#endif
#else
#ifndef SvPVX_const
# define SvPVX_const(sv) ((const char*)((sv)->sv_u.svu_pv))
#endif
#ifndef SvPVX_mutable
# define SvPVX_mutable(sv) ((sv)->sv_u.svu_pv)
#endif
#ifndef SvRV_set
# define SvRV_set(sv, val) \
STMT_START { assert(SvTYPE(sv) >= SVt_RV); \
((sv)->sv_u.svu_rv = (val)); } STMT_END
#endif
#endif
#ifndef SvSTASH_set
# define SvSTASH_set(sv, val) \
STMT_START { assert(SvTYPE(sv) >= SVt_PVMG); \
(((XPVMG*) SvANY(sv))->xmg_stash = (val)); } STMT_END
#endif
#if (PERL_BCDVERSION < 0x5004000)
#ifndef SvUV_set
# define SvUV_set(sv, val) \
STMT_START { assert(SvTYPE(sv) == SVt_IV || SvTYPE(sv) >= SVt_PVIV); \
(((XPVIV*) SvANY(sv))->xiv_iv = (IV) (val)); } STMT_END
#endif
#else
#ifndef SvUV_set
# define SvUV_set(sv, val) \
STMT_START { assert(SvTYPE(sv) == SVt_IV || SvTYPE(sv) >= SVt_PVIV); \
(((XPVUV*) SvANY(sv))->xuv_uv = (val)); } STMT_END
#endif
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(vnewSVpvf)
#if defined(NEED_vnewSVpvf)
static SV * DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args);
static
#else
extern SV * DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args);
# undef vnewSVpvf
#endif
#define vnewSVpvf(a,b) DPPP_(my_vnewSVpvf)(aTHX_ a,b)
#define Perl_vnewSVpvf DPPP_(my_vnewSVpvf)
#if defined(NEED_vnewSVpvf) || defined(NEED_vnewSVpvf_GLOBAL)
SV *
DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args)
{
register SV *sv = newSV(0);
sv_vsetpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*));
return sv;
}
#endif
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vcatpvf)
# define sv_vcatpvf(sv, pat, args) sv_vcatpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*))
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vsetpvf)
extern void DPPP_(my_sv_catpvf_mg)(pTHX_ SV *sv, const char *pat, ...);
#endif
#define Perl_sv_catpvf_mg DPPP_(my_sv_catpvf_mg)
#if defined(NEED_sv_catpvf_mg) || defined(NEED_sv_catpvf_mg_GLOBAL)
void
DPPP_(my_sv_catpvf_mg)(pTHX_ SV *sv, const char *pat, ...)
{
va_list args;
va_start(args, pat);
sv_vcatpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*));
SvSETMAGIC(sv);
va_end(args);
}
#endif
#endif
#ifdef PERL_IMPLICIT_CONTEXT
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_catpvf_mg_nocontext)
#if defined(NEED_sv_catpvf_mg_nocontext)
static void DPPP_(my_sv_catpvf_mg_nocontext)(SV *sv, const char *pat, ...);
static
#endif
#define sv_catpvf_mg_nocontext DPPP_(my_sv_catpvf_mg_nocontext)
#define Perl_sv_catpvf_mg_nocontext DPPP_(my_sv_catpvf_mg_nocontext)
#if defined(NEED_sv_catpvf_mg_nocontext) || defined(NEED_sv_catpvf_mg_nocontext_GLOBAL)
void
DPPP_(my_sv_catpvf_mg_nocontext)(SV *sv, const char *pat, ...)
{
dTHX;
va_list args;
va_start(args, pat);
sv_vcatpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*));
SvSETMAGIC(sv);
va_end(args);
}
#endif
#endif
#endif
/* sv_catpvf_mg depends on sv_catpvf_mg_nocontext */
#ifndef sv_catpvf_mg
# ifdef PERL_IMPLICIT_CONTEXT
# define sv_catpvf_mg Perl_sv_catpvf_mg_nocontext
# else
# define sv_catpvf_mg Perl_sv_catpvf_mg
# endif
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vcatpvf_mg)
# define sv_vcatpvf_mg(sv, pat, args) \
STMT_START { \
sv_vcatpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)); \
SvSETMAGIC(sv); \
} STMT_END
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_setpvf_mg)
#if defined(NEED_sv_setpvf_mg)
static void DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...);
static
#else
extern void DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...);
#endif
#define Perl_sv_setpvf_mg DPPP_(my_sv_setpvf_mg)
#if defined(NEED_sv_setpvf_mg) || defined(NEED_sv_setpvf_mg_GLOBAL)
void
DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...)
{
va_list args;
va_start(args, pat);
sv_vsetpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*));
SvSETMAGIC(sv);
va_end(args);
}
#endif
#endif
#ifdef PERL_IMPLICIT_CONTEXT
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_setpvf_mg_nocontext)
#if defined(NEED_sv_setpvf_mg_nocontext)
static void DPPP_(my_sv_setpvf_mg_nocontext)(SV *sv, const char *pat, ...);
static
#endif
#define sv_setpvf_mg_nocontext DPPP_(my_sv_setpvf_mg_nocontext)
#define Perl_sv_setpvf_mg_nocontext DPPP_(my_sv_setpvf_mg_nocontext)
#if defined(NEED_sv_setpvf_mg_nocontext) || defined(NEED_sv_setpvf_mg_nocontext_GLOBAL)
void
DPPP_(my_sv_setpvf_mg_nocontext)(SV *sv, const char *pat, ...)
{
dTHX;
va_list args;
va_start(args, pat);
sv_vsetpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*));
SvSETMAGIC(sv);
va_end(args);
}
#endif
#endif
#endif
/* sv_setpvf_mg depends on sv_setpvf_mg_nocontext */
#ifndef sv_setpvf_mg
# ifdef PERL_IMPLICIT_CONTEXT
# define sv_setpvf_mg Perl_sv_setpvf_mg_nocontext
# else
# define sv_setpvf_mg Perl_sv_setpvf_mg
# endif
#endif
#if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vsetpvf_mg)
# define sv_vsetpvf_mg(sv, pat, args) \
STMT_START { \
sv_vsetpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)); \
SvSETMAGIC(sv); \
} STMT_END
#endif
/* Hint: newSVpvn_share
* The SVs created by this function only mimic the behaviour of
* shared PVs without really being shared. Only use if you know
* what you're doing.
*/
#ifndef newSVpvn_share
#if defined(NEED_newSVpvn_share)
static SV * DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash);
static
#else
extern SV * DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash);
#endif
# undef newSVpvn_share
#endif
#define newSVpvn_share(a,b,c) DPPP_(my_newSVpvn_share)(aTHX_ a,b,c)
#define Perl_newSVpvn_share DPPP_(my_newSVpvn_share)
#if defined(NEED_newSVpvn_share) || defined(NEED_newSVpvn_share_GLOBAL)
SV *
DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash)
{
SV *sv;
if (len < 0)
len = -len;
if (!hash)
PERL_HASH(hash, (char*) src, len);
sv = newSVpvn((char *) src, len);
sv_upgrade(sv, SVt_PVIV);
SvIVX(sv) = hash;
SvREADONLY_on(sv);
SvPOK_on(sv);
return sv;
}
#endif
#endif
#ifndef SvSHARED_HASH
# define SvSHARED_HASH(sv) (0 + SvUVX(sv))
#endif
#ifndef HvNAME_get
# define HvNAME_get(hv) HvNAME(hv)
#ifdef gv_fetchpvn_flags
# undef gv_fetchpvn_flags
#endif
#define gv_fetchpvn_flags(a,b,c,d) DPPP_(my_gv_fetchpvn_flags)(aTHX_ a,b,c,d)
#define Perl_gv_fetchpvn_flags DPPP_(my_gv_fetchpvn_flags)
#if defined(NEED_gv_fetchpvn_flags) || defined(NEED_gv_fetchpvn_flags_GLOBAL)
GV*
DPPP_(my_gv_fetchpvn_flags)(pTHX_ const char* name, STRLEN len, int flags, int types) {
char *namepv = savepvn(name, len);
GV* stash = gv_fetchpv(namepv, TRUE, SVt_PVHV);
Safefree(namepv);
return stash;
}
#endif
#endif
#ifndef GvSVn
# define GvSVn(gv) GvSV(gv)
#endif
#ifndef isGV_with_GP
# define isGV_with_GP(gv) isGV(gv)
extern void DPPP_(my_warner)(U32 err, const char *pat, ...);
#endif
#define Perl_warner DPPP_(my_warner)
#if defined(NEED_warner) || defined(NEED_warner_GLOBAL)
void
DPPP_(my_warner)(U32 err, const char *pat, ...)
{
SV *sv;
va_list args;
PERL_UNUSED_ARG(err);
va_start(args, pat);
sv = vnewSVpvf(pat, &args);
va_end(args);
sv_2mortal(sv);
warn("%s", SvPV_nolen(sv));
}
#define warner Perl_warner
#define Perl_warner_nocontext Perl_warner
#endif
#endif
/* concatenating with "" ensures that only literal strings are accepted as argument
* note that STR_WITH_LEN() can't be used as argument to macros or functions that
* under some configurations might be macros
*/
#ifndef STR_WITH_LEN
# define STR_WITH_LEN(s) (s ""), (sizeof(s)-1)
#endif
#ifndef newSVpvs
# define newSVpvs(str) newSVpvn(str "", sizeof(str) - 1)
#endif
#ifndef newSVpvs_flags
# define newSVpvs_flags(str, flags) newSVpvn_flags(str "", sizeof(str) - 1, flags)
#endif
# define gv_stashpvs(name, flags) gv_stashpvn(name "", sizeof(name) - 1, flags)
#endif
#ifndef get_cvs
# define get_cvs(name, flags) get_cvn_flags(name "", sizeof(name)-1, flags)
#endif
#ifndef SvGETMAGIC
# define SvGETMAGIC(x) STMT_START { if (SvGMAGICAL(x)) mg_get(x); } STMT_END
#endif
/* Some random bits for sv_unmagicext. These should probably be pulled in for
real and organized at some point */
#ifndef HEf_SVKEY
# define HEf_SVKEY -2
#endif
#ifndef MUTABLE_PTR
#if defined(__GNUC__) && !defined(PERL_GCC_BRACE_GROUPS_FORBIDDEN)
# define MUTABLE_PTR(p) ({ void *_p = (p); _p; })
#else
# define MUTABLE_PTR(p) ((void *) (p))
#endif
#ifndef SvIV_nomg
# define SvIV_nomg SvIV
#endif
#ifndef SvUV_nomg
# define SvUV_nomg SvUV
#endif
#ifndef sv_catpv_mg
# define sv_catpv_mg(sv, ptr) \
STMT_START { \
SV *TeMpSv = sv; \
sv_catpv(TeMpSv,ptr); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_catpvn_mg
# define sv_catpvn_mg(sv, ptr, len) \
STMT_START { \
SV *TeMpSv = sv; \
sv_catpvn(TeMpSv,ptr,len); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_catsv_mg
# define sv_catsv_mg(dsv, ssv) \
STMT_START { \
SV *TeMpSv = dsv; \
sv_catsv(TeMpSv,ssv); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setiv_mg
# define sv_setiv_mg(sv, i) \
STMT_START { \
SV *TeMpSv = sv; \
sv_setiv(TeMpSv,i); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setnv_mg
# define sv_setnv_mg(sv, num) \
STMT_START { \
SV *TeMpSv = sv; \
sv_setnv(TeMpSv,num); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setpv_mg
# define sv_setpv_mg(sv, ptr) \
STMT_START { \
SV *TeMpSv = sv; \
sv_setpv(TeMpSv,ptr); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setpvn_mg
# define sv_setpvn_mg(sv, ptr, len) \
STMT_START { \
SV *TeMpSv = sv; \
sv_setpvn(TeMpSv,ptr,len); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setsv_mg
# define sv_setsv_mg(dsv, ssv) \
STMT_START { \
SV *TeMpSv = dsv; \
sv_setsv(TeMpSv,ssv); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_setuv_mg
# define sv_setuv_mg(sv, i) \
STMT_START { \
SV *TeMpSv = sv; \
sv_setuv(TeMpSv,i); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef sv_usepvn_mg
# define sv_usepvn_mg(sv, ptr, len) \
STMT_START { \
SV *TeMpSv = sv; \
sv_usepvn(TeMpSv,ptr,len); \
SvSETMAGIC(TeMpSv); \
} STMT_END
#endif
#ifndef SvVSTRING_mg
# define SvVSTRING_mg(sv) (SvMAGICAL(sv) ? mg_find(sv, PERL_MAGIC_vstring) : NULL)
#endif
/* Hint: sv_magic_portable
* This is a compatibility function that is only available with
* Devel::PPPort. It is NOT in the perl core.
* Its purpose is to mimic the 5.8.0 behaviour of sv_magic() when
* it is being passed a name pointer with namlen == 0. In that
* case, perl 5.8.0 and later store the pointer, not a copy of it.
* The compatibility can be provided back to perl 5.004. With
* earlier versions, the code will not compile.
*/
#if (PERL_BCDVERSION < 0x5004000)
/* code that uses sv_magic_portable will not compile */
#elif (PERL_BCDVERSION < 0x5008000)
# define sv_magic_portable(sv, obj, how, name, namlen) \
STMT_START { \
SV *SvMp_sv = (sv); \
char *SvMp_name = (char *) (name); \
I32 SvMp_namlen = (namlen); \
if (SvMp_name && SvMp_namlen == 0) \
{ \
MAGIC *mg; \
sv_magic(SvMp_sv, obj, how, 0, 0); \
mg = SvMAGIC(SvMp_sv); \
mg->mg_len = -42; /* XXX: this is the tricky part */ \
mg->mg_ptr = SvMp_name; \
} \
else \
{ \
sv_magic(SvMp_sv, obj, how, SvMp_name, SvMp_namlen); \
} \
} STMT_END
#else
# define sv_magic_portable(a, b, c, d, e) sv_magic(a, b, c, d, e)
#endif
#if !defined(mg_findext)
#if defined(NEED_mg_findext)
static MAGIC * DPPP_(my_mg_findext)(SV * sv, int type, const MGVTBL *vtbl);
extern MAGIC * DPPP_(my_mg_findext)(SV * sv, int type, const MGVTBL *vtbl);
#endif
#define mg_findext DPPP_(my_mg_findext)
#define Perl_mg_findext DPPP_(my_mg_findext)
#if defined(NEED_mg_findext) || defined(NEED_mg_findext_GLOBAL)
MAGIC *
DPPP_(my_mg_findext)(SV * sv, int type, const MGVTBL *vtbl) {
if (sv) {
MAGIC *mg;
#ifdef AvPAD_NAMELIST
assert(!(SvTYPE(sv) == SVt_PVAV && AvPAD_NAMELIST(sv)));
#endif
for (mg = SvMAGIC (sv); mg; mg = mg->mg_moremagic) {
if (mg->mg_type == type && mg->mg_virtual == vtbl)
return mg;
}
}
return NULL;
}
#endif
#endif
#if !defined(sv_unmagicext)
#if defined(NEED_sv_unmagicext)
static int DPPP_(my_sv_unmagicext)(pTHX_ SV * const sv, const int type, MGVTBL * vtbl);
static
#else
# undef sv_unmagicext
#endif
#define sv_unmagicext(a,b,c) DPPP_(my_sv_unmagicext)(aTHX_ a,b,c)
#define Perl_sv_unmagicext DPPP_(my_sv_unmagicext)
#if defined(NEED_sv_unmagicext) || defined(NEED_sv_unmagicext_GLOBAL)
int
DPPP_(my_sv_unmagicext)(pTHX_ SV *const sv, const int type, MGVTBL *vtbl)
{
MAGIC* mg;
MAGIC** mgp;
if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
return 0;
mgp = &(SvMAGIC(sv));
for (mg = *mgp; mg; mg = *mgp) {
const MGVTBL* const virt = mg->mg_virtual;
if (mg->mg_type == type && virt == vtbl) {
*mgp = mg->mg_moremagic;
if (virt && virt->svt_free)
virt->svt_free(aTHX_ sv, mg);
if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
if (mg->mg_len > 0)
Safefree(mg->mg_ptr);
else if (mg->mg_len == HEf_SVKEY) /* Questionable on older perls... */
SvREFCNT_dec(MUTABLE_SV(mg->mg_ptr));
else if (mg->mg_type == PERL_MAGIC_utf8)
Safefree(mg->mg_ptr);
}
if (mg->mg_flags & MGf_REFCOUNTED)
SvREFCNT_dec(mg->mg_obj);
Safefree(mg);
}
else
mgp = &mg->mg_moremagic;
}
if (SvMAGIC(sv)) {
if (SvMAGICAL(sv)) /* if we're under save_magic, wait for restore_magic; */
mg_magical(sv); /* else fix the flags now */
}
else {
SvMAGICAL_off(sv);
SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
}
return 0;
}
#endif
#endif
#ifdef USE_ITHREADS
#ifndef CopFILE
# define CopFILE(c) ((c)->cop_file)
#endif
#ifndef CopSTASH
# define CopSTASH(c) (CopSTASHPV(c) ? gv_stashpv(CopSTASHPV(c),GV_ADD) : Nullhv)
#endif
#ifndef CopSTASH_set
# define CopSTASH_set(c,hv) CopSTASHPV_set(c, (hv) ? HvNAME(hv) : Nullch)
#endif
#ifndef CopSTASH_eq
# define CopSTASH_eq(c,hv) ((hv) && (CopSTASHPV(c) == HvNAME(hv) \
|| (CopSTASHPV(c) && HvNAME(hv) \
&& strEQ(CopSTASHPV(c), HvNAME(hv)))))
#endif
#else
#ifndef CopFILEGV
# define CopFILEGV(c) ((c)->cop_filegv)
#endif
#ifndef CopFILEGV_set
# define CopFILEGV_set(c,gv) ((c)->cop_filegv = (GV*)SvREFCNT_inc(gv))
#endif
#endif /* USE_ITHREADS */
#if (PERL_BCDVERSION >= 0x5006000)
#ifndef caller_cx
# if defined(NEED_caller_cx) || defined(NEED_caller_cx_GLOBAL)
static I32
DPPP_dopoptosub_at(const PERL_CONTEXT *cxstk, I32 startingblock)
{
I32 i;
for (i = startingblock; i >= 0; i--) {
register const PERL_CONTEXT * const cx = &cxstk[i];
switch (CxTYPE(cx)) {
default:
continue;
case CXt_EVAL:
case CXt_SUB:
case CXt_FORMAT:
return i;
}
}
return i;
}
# endif
# if defined(NEED_caller_cx)
static const PERL_CONTEXT * DPPP_(my_caller_cx)(pTHX_ I32 count, const PERL_CONTEXT **dbcxp);
static
#else
extern const PERL_CONTEXT * DPPP_(my_caller_cx)(pTHX_ I32 count, const PERL_CONTEXT **dbcxp);
#endif
# undef caller_cx
#endif
#define caller_cx(a,b) DPPP_(my_caller_cx)(aTHX_ a,b)
#define Perl_caller_cx DPPP_(my_caller_cx)
#if defined(NEED_caller_cx) || defined(NEED_caller_cx_GLOBAL)
const PERL_CONTEXT *
DPPP_(my_caller_cx)(pTHX_ I32 count, const PERL_CONTEXT **dbcxp)
{
register I32 cxix = DPPP_dopoptosub_at(cxstack, cxstack_ix);
register const PERL_CONTEXT *cx;
register const PERL_CONTEXT *ccstack = cxstack;
const PERL_SI *top_si = PL_curstackinfo;
for (;;) {
/* we may be in a higher stacklevel, so dig down deeper */
while (cxix < 0 && top_si->si_type != PERLSI_MAIN) {
top_si = top_si->si_prev;
ccstack = top_si->si_cxstack;
cxix = DPPP_dopoptosub_at(ccstack, top_si->si_cxix);
}
if (cxix < 0)
return NULL;
/* caller() should not report the automatic calls to &DB::sub */
if (PL_DBsub && GvCV(PL_DBsub) && cxix >= 0 &&
ccstack[cxix].blk_sub.cv == GvCV(PL_DBsub))
count++;
if (!count--)
break;
cxix = DPPP_dopoptosub_at(ccstack, cxix - 1);
}
cx = &ccstack[cxix];
if (dbcxp) *dbcxp = cx;
if (CxTYPE(cx) == CXt_SUB || CxTYPE(cx) == CXt_FORMAT) {
const I32 dbcxix = DPPP_dopoptosub_at(ccstack, cxix - 1);
/* We expect that ccstack[dbcxix] is CXt_SUB, anyway, the
field below is defined for any cx. */
/* caller() should not report the automatic calls to &DB::sub */
if (PL_DBsub && GvCV(PL_DBsub) && dbcxix >= 0 && ccstack[dbcxix].blk_sub.cv == GvCV(PL_DBsub))
cx = &ccstack[dbcxix];
}
return cx;
}
# endif
#endif /* caller_cx */
#endif /* 5.6.0 */
#ifndef IN_PERL_COMPILETIME
# define IN_PERL_COMPILETIME (PL_curcop == &PL_compiling)
#endif
#ifndef IN_LOCALE_RUNTIME
#endif
#define grok_numeric_radix(a,b) DPPP_(my_grok_numeric_radix)(aTHX_ a,b)
#define Perl_grok_numeric_radix DPPP_(my_grok_numeric_radix)
#if defined(NEED_grok_numeric_radix) || defined(NEED_grok_numeric_radix_GLOBAL)
bool
DPPP_(my_grok_numeric_radix)(pTHX_ const char **sp, const char *send)
{
#ifdef USE_LOCALE_NUMERIC
#ifdef PL_numeric_radix_sv
if (PL_numeric_radix_sv && IN_LOCALE) {
STRLEN len;
char* radix = SvPV(PL_numeric_radix_sv, len);
if (*sp + len <= send && memEQ(*sp, radix, len)) {
*sp += len;
return TRUE;
}
}
#else
/* older perls don't have PL_numeric_radix_sv so the radix
* must manually be requested from locale.h
*/
#include <locale.h>
dTHR; /* needed for older threaded perls */
struct lconv *lc = localeconv();
char *radix = lc->decimal_point;
if (radix && IN_LOCALE) {
STRLEN len = strlen(radix);
if (*sp + len <= send && memEQ(*sp, radix, len)) {
*sp += len;
return TRUE;
}
}
#endif
#endif /* USE_LOCALE_NUMERIC */
/* always try "." if numeric radix didn't match because
* we may have data from different locales mixed */
if (*sp < send && **sp == '.') {
++*sp;
return TRUE;
}
return FALSE;
}
#endif
#endif
#ifndef grok_number
#if defined(NEED_grok_number)
static int DPPP_(my_grok_number)(pTHX_ const char * pv, STRLEN len, UV * valuep);
static
#else
extern int DPPP_(my_grok_number)(pTHX_ const char * pv, STRLEN len, UV * valuep);
#ifdef grok_number
# undef grok_number
#endif
#define grok_number(a,b,c) DPPP_(my_grok_number)(aTHX_ a,b,c)
#define Perl_grok_number DPPP_(my_grok_number)
#if defined(NEED_grok_number) || defined(NEED_grok_number_GLOBAL)
int
DPPP_(my_grok_number)(pTHX_ const char *pv, STRLEN len, UV *valuep)
{
const char *s = pv;
const char *send = pv + len;
const UV max_div_10 = UV_MAX / 10;
const char max_mod_10 = UV_MAX % 10;
int numtype = 0;
int sawinf = 0;
int sawnan = 0;
while (s < send && isSPACE(*s))
s++;
if (s == send) {
return 0;
} else if (*s == '-') {
s++;
numtype = IS_NUMBER_NEG;
}
else if (*s == '+')
s++;
if (s == send)
return 0;
/* next must be digit or the radix separator or beginning of infinity */
if (isDIGIT(*s)) {
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
overflow. */
UV value = *s - '0';
/* This construction seems to be more optimiser friendly.
(without it gcc does the isDIGIT test and the *s - '0' separately)
With it gcc on arm is managing 6 instructions (6 cycles) per digit.
In theory the optimiser could deduce how far to unroll the loop
before checking for overflow. */
if (++s < send) {
int digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
digit = *s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (++s < send) {
/* Now got 9 digits, so need to check
each time for overflow. */
digit = *s - '0';
while (digit >= 0 && digit <= 9
&& (value < max_div_10
|| (value == max_div_10
&& digit <= max_mod_10))) {
value = value * 10 + digit;
if (++s < send)
digit = *s - '0';
else
break;
}
if (digit >= 0 && digit <= 9
&& (s < send)) {
/* value overflowed.
skip the remaining digits, don't
worry about setting *valuep. */
do {
s++;
} while (s < send && isDIGIT(*s));
numtype |=
IS_NUMBER_GREATER_THAN_UV_MAX;
goto skip_value;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
numtype |= IS_NUMBER_IN_UV;
if (valuep)
*valuep = value;
skip_value:
if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT;
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
s++;
}
}
else if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
/* no digits before the radix means we need digits after it */
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
if (valuep) {
/* integer approximation is valid - it's 0. */
*valuep = 0;
}
}
else
return 0;
} else if (*s == 'I' || *s == 'i') {
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
s++; if (s < send && (*s == 'I' || *s == 'i')) {
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
s++;
}
sawinf = 1;
} else if (*s == 'N' || *s == 'n') {
/* XXX TODO: There are signaling NaNs and quiet NaNs. */
s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
s++;
sawnan = 1;
} else
return 0;
if (sawinf) {
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
} else if (sawnan) {
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
} else if (s < send) {
/* we can have an optional exponent part */
if (*s == 'e' || *s == 'E') {
/* The only flag we keep is sign. Blow away any "it's UV" */
numtype &= IS_NUMBER_NEG;
numtype |= IS_NUMBER_NOT_INT;
s++;
if (s < send && (*s == '-' || *s == '+'))
s++;
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
}
else
return 0;
}
}
while (s < send && isSPACE(*s))
s++;
if (s >= send)
return numtype;
if (len == 10 && memEQ(pv, "0 but true", 10)) {
if (valuep)
*valuep = 0;
return IS_NUMBER_IN_UV;
}
return 0;
}
#endif
#endif
/*
* The grok_* routines have been modified to use warn() instead of
* Perl_warner(). Also, 'hexdigit' was the former name of PL_hexdigit,
* which is why the stack variable has been renamed to 'xdigit'.
*/
#ifndef grok_bin
#if defined(NEED_grok_bin)
static UV DPPP_(my_grok_bin)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
static
#else
extern UV DPPP_(my_grok_bin)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
#endif
#ifdef grok_bin
# undef grok_bin
#endif
#define grok_bin(a,b,c,d) DPPP_(my_grok_bin)(aTHX_ a,b,c,d)
#define Perl_grok_bin DPPP_(my_grok_bin)
#if defined(NEED_grok_bin) || defined(NEED_grok_bin_GLOBAL)
UV
DPPP_(my_grok_bin)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
const char *s = start;
STRLEN len = *len_p;
UV value = 0;
NV value_nv = 0;
const UV max_div_2 = UV_MAX / 2;
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
bool overflowed = FALSE;
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
/* strip off leading b or 0b.
for compatibility silently suffer "b" and "0b" as valid binary
numbers. */
if (len >= 1) {
if (s[0] == 'b') {
s++;
len--;
}
else if (len >= 2 && s[0] == '0' && s[1] == 'b') {
s+=2;
len-=2;
}
}
}
for (; len-- && *s; s++) {
char bit = *s;
if (bit == '0' || bit == '1') {
/* Write it in this wonky order with a goto to attempt to get the
compiler to make the common case integer-only loop pretty tight.
With gcc seems to be much straighter code than old scan_bin. */
redo:
if (!overflowed) {
if (value <= max_div_2) {
value = (value << 1) | (bit - '0');
continue;
}
/* Bah. We're just overflowed. */
warn("Integer overflow in binary number");
overflowed = TRUE;
value_nv = (NV) value;
}
value_nv *= 2.0;
/* If an NV has not enough bits in its mantissa to
* represent a UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply value_nv by the
* right amount. */
value_nv += (NV)(bit - '0');
continue;
}
if (bit == '_' && len && allow_underscores && (bit = s[1])
&& (bit == '0' || bit == '1'))
{
--len;
++s;
goto redo;
}
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
warn("Illegal binary digit '%c' ignored", *s);
break;
}
if ( ( overflowed && value_nv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && value > 0xffffffff )
#endif
) {
warn("Binary number > 0b11111111111111111111111111111111 non-portable");
}
*len_p = s - start;
if (!overflowed) {
*flags = 0;
return value;
}
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
if (result)
*result = value_nv;
return UV_MAX;
}
#endif
#endif
#ifndef grok_hex
#if defined(NEED_grok_hex)
static UV DPPP_(my_grok_hex)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
static
#else
extern UV DPPP_(my_grok_hex)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
#ifdef grok_hex
# undef grok_hex
#endif
#define grok_hex(a,b,c,d) DPPP_(my_grok_hex)(aTHX_ a,b,c,d)
#define Perl_grok_hex DPPP_(my_grok_hex)
#if defined(NEED_grok_hex) || defined(NEED_grok_hex_GLOBAL)
UV
DPPP_(my_grok_hex)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
const char *s = start;
STRLEN len = *len_p;
UV value = 0;
NV value_nv = 0;
const UV max_div_16 = UV_MAX / 16;
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
bool overflowed = FALSE;
const char *xdigit;
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
/* strip off leading x or 0x.
for compatibility silently suffer "x" and "0x" as valid hex numbers.
*/
if (len >= 1) {
if (s[0] == 'x') {
s++;
len--;
}
else if (len >= 2 && s[0] == '0' && s[1] == 'x') {
s+=2;
len-=2;
}
}
}
for (; len-- && *s; s++) {
xdigit = strchr((char *) PL_hexdigit, *s);
if (xdigit) {
/* Write it in this wonky order with a goto to attempt to get the
compiler to make the common case integer-only loop pretty tight.
With gcc seems to be much straighter code than old scan_hex. */
redo:
if (!overflowed) {
if (value <= max_div_16) {
value = (value << 4) | ((xdigit - PL_hexdigit) & 15);
continue;
}
warn("Integer overflow in hexadecimal number");
overflowed = TRUE;
value_nv = (NV) value;
}
value_nv *= 16.0;
/* If an NV has not enough bits in its mantissa to
* represent a UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply value_nv by the
* right amount of 16-tuples. */
value_nv += (NV)((xdigit - PL_hexdigit) & 15);
continue;
}
if (*s == '_' && len && allow_underscores && s[1]
&& (xdigit = strchr((char *) PL_hexdigit, s[1])))
{
--len;
++s;
goto redo;
}
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
warn("Illegal hexadecimal digit '%c' ignored", *s);
break;
}
if ( ( overflowed && value_nv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && value > 0xffffffff )
#endif
) {
warn("Hexadecimal number > 0xffffffff non-portable");
}
*len_p = s - start;
if (!overflowed) {
*flags = 0;
return value;
}
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
if (result)
*result = value_nv;
return UV_MAX;
}
#endif
#endif
#ifndef grok_oct
#if defined(NEED_grok_oct)
static UV DPPP_(my_grok_oct)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
static
#else
extern UV DPPP_(my_grok_oct)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result);
#ifdef grok_oct
# undef grok_oct
#endif
#define grok_oct(a,b,c,d) DPPP_(my_grok_oct)(aTHX_ a,b,c,d)
#define Perl_grok_oct DPPP_(my_grok_oct)
#if defined(NEED_grok_oct) || defined(NEED_grok_oct_GLOBAL)
UV
DPPP_(my_grok_oct)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
const char *s = start;
STRLEN len = *len_p;
UV value = 0;
NV value_nv = 0;
const UV max_div_8 = UV_MAX / 8;
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
bool overflowed = FALSE;
for (; len-- && *s; s++) {
/* gcc 2.95 optimiser not smart enough to figure that this subtraction
out front allows slicker code. */
int digit = *s - '0';
if (digit >= 0 && digit <= 7) {
/* Write it in this wonky order with a goto to attempt to get the
compiler to make the common case integer-only loop pretty tight.
*/
redo:
if (!overflowed) {
if (value <= max_div_8) {
value = (value << 3) | digit;
continue;
}
/* Bah. We're just overflowed. */
warn("Integer overflow in octal number");
overflowed = TRUE;
value_nv = (NV) value;
}
value_nv *= 8.0;
/* If an NV has not enough bits in its mantissa to
* represent a UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply value_nv by the
* right amount of 8-tuples. */
value_nv += (NV)digit;
continue;
}
if (digit == ('_' - '0') && len && allow_underscores
&& (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
{
--len;
++s;
goto redo;
}
/* Allow \octal to work the DWIM way (that is, stop scanning
* as soon as non-octal characters are seen, complain only iff
* someone seems to want to use the digits eight and nine). */
if (digit == 8 || digit == 9) {
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
warn("Illegal octal digit '%c' ignored", *s);
}
break;
}
if ( ( overflowed && value_nv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && value > 0xffffffff )
#endif
) {
warn("Octal number > 037777777777 non-portable");
}
*len_p = s - start;
if (!overflowed) {
*flags = 0;
return value;
}
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
if (result)
*result = value_nv;
return UV_MAX;
}
#endif
#endif
#if !defined(my_snprintf)
#if defined(NEED_my_snprintf)
static int DPPP_(my_my_snprintf)(char * buffer, const Size_t len, const char * format, ...);
static
#else
extern int DPPP_(my_my_snprintf)(char * buffer, const Size_t len, const char * format, ...);
#endif
#define my_snprintf DPPP_(my_my_snprintf)
#define Perl_my_snprintf DPPP_(my_my_snprintf)
#if defined(NEED_my_snprintf) || defined(NEED_my_snprintf_GLOBAL)
int
DPPP_(my_my_snprintf)(char *buffer, const Size_t len, const char *format, ...)
{
dTHX;
int retval;
va_list ap;
va_start(ap, format);
#ifdef HAS_VSNPRINTF
retval = vsnprintf(buffer, len, format, ap);
#else
retval = vsprintf(buffer, format, ap);
#endif
va_end(ap);
if (retval < 0 || (len > 0 && (Size_t)retval >= len))
Perl_croak(aTHX_ "panic: my_snprintf buffer overflow");
return retval;
}
#endif
#endif
#if !defined(my_sprintf)
#if defined(NEED_my_sprintf)
static int DPPP_(my_my_sprintf)(char * buffer, const char * pat, ...);
static
#else
#endif
#define my_sprintf DPPP_(my_my_sprintf)
#define Perl_my_sprintf DPPP_(my_my_sprintf)
#if defined(NEED_my_sprintf) || defined(NEED_my_sprintf_GLOBAL)
int
DPPP_(my_my_sprintf)(char *buffer, const char* pat, ...)
{
va_list args;
va_start(args, pat);
vsprintf(buffer, pat, args);
va_end(args);
return strlen(buffer);
}
#endif
#endif
#ifdef NO_XSLOCKS
# ifdef dJMPENV
# define dXCPT dJMPENV; int rEtV = 0
# define XCPT_TRY_START JMPENV_PUSH(rEtV); if (rEtV == 0)
# define XCPT_TRY_END JMPENV_POP;
#endif
#define my_strlcat DPPP_(my_my_strlcat)
#define Perl_my_strlcat DPPP_(my_my_strlcat)
#if defined(NEED_my_strlcat) || defined(NEED_my_strlcat_GLOBAL)
Size_t
DPPP_(my_my_strlcat)(char *dst, const char *src, Size_t size)
{
Size_t used, length, copy;
used = strlen(dst);
length = strlen(src);
if (size > 0 && used < size - 1) {
copy = (length >= size - used) ? size - used - 1 : length;
memcpy(dst + used, src, copy);
dst[used + copy] = '\0';
}
return used + length;
}
#endif
#endif
#if !defined(my_strlcpy)
#if defined(NEED_my_strlcpy)
static Size_t DPPP_(my_my_strlcpy)(char * dst, const char * src, Size_t size);
static
#else
extern Size_t DPPP_(my_my_strlcpy)(char * dst, const char * src, Size_t size);
#endif
#define my_strlcpy DPPP_(my_my_strlcpy)
#define Perl_my_strlcpy DPPP_(my_my_strlcpy)
#if defined(NEED_my_strlcpy) || defined(NEED_my_strlcpy_GLOBAL)
Size_t
DPPP_(my_my_strlcpy)(char *dst, const char *src, Size_t size)
{
Size_t length, copy;
length = strlen(src);
if (size > 0) {
copy = (length >= size) ? size - 1 : length;
memcpy(dst, src, copy);
dst[copy] = '\0';
}
return length;
}
#endif
#endif
#ifndef PERL_PV_ESCAPE_QUOTE
# define PERL_PV_ESCAPE_QUOTE 0x0001
#endif
#ifndef PERL_PV_PRETTY_QUOTE
# define PERL_PV_PRETTY_QUOTE PERL_PV_ESCAPE_QUOTE
#endif
#ifndef PERL_PV_PRETTY_DUMP
# define PERL_PV_PRETTY_DUMP PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE
#endif
#ifndef PERL_PV_PRETTY_REGPROP
# define PERL_PV_PRETTY_REGPROP PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_LTGT|PERL_PV_ESCAPE_RE
#endif
/* Hint: pv_escape
* Note that unicode functionality is only backported to
* those perl versions that support it. For older perl
* versions, the implementation will fall back to bytes.
*/
#ifndef pv_escape
#if defined(NEED_pv_escape)
static char * DPPP_(my_pv_escape)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags);
static
#else
extern char * DPPP_(my_pv_escape)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags);
#endif
#ifdef pv_escape
# undef pv_escape
#endif
#define pv_escape(a,b,c,d,e,f) DPPP_(my_pv_escape)(aTHX_ a,b,c,d,e,f)
#define Perl_pv_escape DPPP_(my_pv_escape)
#if defined(NEED_pv_escape) || defined(NEED_pv_escape_GLOBAL)
char *
DPPP_(my_pv_escape)(pTHX_ SV *dsv, char const * const str,
const STRLEN count, const STRLEN max,
STRLEN * const escaped, const U32 flags)
{
const char esc = flags & PERL_PV_ESCAPE_RE ? '%' : '\\';
const char dq = flags & PERL_PV_ESCAPE_QUOTE ? '"' : esc;
char octbuf[32] = "%123456789ABCDF";
STRLEN wrote = 0;
STRLEN chsize = 0;
STRLEN readsize = 1;
#if defined(is_utf8_string) && defined(utf8_to_uvchr)
bool isuni = flags & PERL_PV_ESCAPE_UNI ? 1 : 0;
#endif
const char *pv = str;
const char * const end = pv + count;
octbuf[0] = esc;
if (!(flags & PERL_PV_ESCAPE_NOCLEAR))
sv_setpvs(dsv, "");
#if defined(is_utf8_string) && defined(utf8_to_uvchr)
if ((flags & PERL_PV_ESCAPE_UNI_DETECT) && is_utf8_string((U8*)pv, count))
isuni = 1;
#endif
for (; pv < end && (!max || wrote < max) ; pv += readsize) {
const UV u =
#if defined(is_utf8_string) && defined(utf8_to_uvchr)
isuni ? utf8_to_uvchr((U8*)pv, &readsize) :
#endif
(U8)*pv;
const U8 c = (U8)u & 0xFF;
if (u > 255 || (flags & PERL_PV_ESCAPE_ALL)) {
if (flags & PERL_PV_ESCAPE_FIRSTCHAR)
chsize = my_snprintf(octbuf, sizeof octbuf,
"%" UVxf, u);
else
chsize = my_snprintf(octbuf, sizeof octbuf,
"%cx{%" UVxf "}", esc, u);
} else if (flags & PERL_PV_ESCAPE_NOBACKSLASH) {
chsize = 1;
} else {
if (c == dq || c == esc || !isPRINT(c)) {
chsize = 2;
switch (c) {
case '\\' : /* fallthrough */
case '%' : if (c == esc)
octbuf[1] = esc;
else
chsize = 1;
break;
case '\v' : octbuf[1] = 'v'; break;
case '\t' : octbuf[1] = 't'; break;
case '\r' : octbuf[1] = 'r'; break;
case '\n' : octbuf[1] = 'n'; break;
case '\f' : octbuf[1] = 'f'; break;
case '"' : if (dq == '"')
octbuf[1] = '"';
else
chsize = 1;
break;
default: chsize = my_snprintf(octbuf, sizeof octbuf,
pv < end && isDIGIT((U8)*(pv+readsize))
? "%c%03o" : "%c%o", esc, c);
}
} else {
chsize = 1;
}
}
if (max && wrote + chsize > max) {
break;
} else if (chsize > 1) {
sv_catpvn(dsv, octbuf, chsize);
wrote += chsize;
} else {
char tmp[2];
my_snprintf(tmp, sizeof tmp, "%c", c);
sv_catpvn(dsv, tmp, 1);
wrote++;
}
if (flags & PERL_PV_ESCAPE_FIRSTCHAR)
break;
}
if (escaped != NULL)
*escaped= pv - str;
return SvPVX(dsv);
}
#endif
#endif
#ifndef pv_pretty
#if defined(NEED_pv_pretty)
static char * DPPP_(my_pv_pretty)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, char const * const start_color, char const * const end_color, const U32 flags);
static
#else
#ifdef pv_pretty
# undef pv_pretty
#endif
#define pv_pretty(a,b,c,d,e,f,g) DPPP_(my_pv_pretty)(aTHX_ a,b,c,d,e,f,g)
#define Perl_pv_pretty DPPP_(my_pv_pretty)
#if defined(NEED_pv_pretty) || defined(NEED_pv_pretty_GLOBAL)
char *
DPPP_(my_pv_pretty)(pTHX_ SV *dsv, char const * const str, const STRLEN count,
const STRLEN max, char const * const start_color, char const * const end_color,
const U32 flags)
{
const U8 dq = (flags & PERL_PV_PRETTY_QUOTE) ? '"' : '%';
STRLEN escaped;
if (!(flags & PERL_PV_PRETTY_NOCLEAR))
sv_setpvs(dsv, "");
if (dq == '"')
sv_catpvs(dsv, "\"");
else if (flags & PERL_PV_PRETTY_LTGT)
sv_catpvs(dsv, "<");
if (start_color != NULL)
sv_catpv(dsv, D_PPP_CONSTPV_ARG(start_color));
pv_escape(dsv, str, count, max, &escaped, flags | PERL_PV_ESCAPE_NOCLEAR);
if (end_color != NULL)
sv_catpv(dsv, D_PPP_CONSTPV_ARG(end_color));
if (dq == '"')
sv_catpvs(dsv, "\"");
else if (flags & PERL_PV_PRETTY_LTGT)
sv_catpvs(dsv, ">");
if ((flags & PERL_PV_PRETTY_ELLIPSES) && escaped < count)
sv_catpvs(dsv, "...");
return SvPVX(dsv);
}
#endif
#endif
#ifndef pv_display
#if defined(NEED_pv_display)
static char * DPPP_(my_pv_display)(pTHX_ SV * dsv, const char * pv, STRLEN cur, STRLEN len, STRLEN pvlim);
static
#else
# undef pv_display
#endif
#define pv_display(a,b,c,d,e) DPPP_(my_pv_display)(aTHX_ a,b,c,d,e)
#define Perl_pv_display DPPP_(my_pv_display)
#if defined(NEED_pv_display) || defined(NEED_pv_display_GLOBAL)
char *
DPPP_(my_pv_display)(pTHX_ SV *dsv, const char *pv, STRLEN cur, STRLEN len, STRLEN pvlim)
{
pv_pretty(dsv, pv, cur, pvlim, NULL, NULL, PERL_PV_PRETTY_DUMP);
if (len > cur && pv[cur] == '\0')
sv_catpvs(dsv, "\\0");
return SvPVX(dsv);
}
#endif
#endif
#endif /* _P_P_PORTABILITY_H_ */
/* End of File ppport.h */
tiny-AES-c/Makefile view on Meta::CPAN
INCLUDE_PATH = /usr/lib/avr/include
# splint static check
SPLINT = splint test.c aes.c -I$(INCLUDE_PATH) +charindex -unrecog
default: test.elf
.SILENT:
.PHONY: lint clean
test.hex : test.elf
echo copy object-code to new image and format in hex
$(OBJCOPY) ${OBJCOPYFLAGS} $< $@
test.o : test.c aes.h aes.o
echo [CC] $@ $(CFLAGS)
$(CC) $(CFLAGS) -o $@ $<
aes.o : aes.c aes.h
echo [CC] $@ $(CFLAGS)
$(CC) $(CFLAGS) -o $@ $<
test.elf : aes.o test.o
echo [LD] $@
$(LD) $(LDFLAGS) -o $@ $^
aes.a : aes.o
echo [AR] $@
$(AR) $(ARFLAGS) $@ $^
lib : aes.a
clean:
rm -f *.OBJ *.LST *.o *.gch *.out *.hex *.map *.elf *.a
test:
make clean && make && ./test.elf
make clean && make AES192=1 && ./test.elf
make clean && make AES256=1 && ./test.elf
lint:
$(call SPLINT)
tiny-AES-c/README.md view on Meta::CPAN
void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf);
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
/* Same function for encrypting as for decrypting in CTR mode */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
```
Note:
* No padding is provided so for CBC and ECB all buffers should be multiples of 16 bytes. For padding [PKCS7](https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7) is recommendable.
* ECB mode is considered unsafe for most uses and is not implemented in streaming mode. If you need this mode, call the function for every block of 16 bytes you need encrypted. See [wikipedia's article on ECB](https://en.wikipedia.org/wiki/Block_cip...
You can choose to use any or all of the modes-of-operations, by defining the symbols CBC, CTR or ECB. See the header file for clarification.
C++ users should `#include` [aes.hpp](https://github.com/kokke/tiny-AES-c/blob/master/aes.hpp) instead of [aes.h](https://github.com/kokke/tiny-AES-c/blob/master/aes.h)
There is no built-in error checking or protection from out-of-bounds memory access errors as a result of malicious input.
The module uses less than 200 bytes of RAM and 1-2K ROM when compiled for ARM, but YMMV depending on which modes are enabled.
It is one of the smallest implementations in C I've seen yet, but do contact me if you know of something smaller (or have improvements to the code here).
I've successfully used the code on 64bit x86, 32bit ARM and 8 bit AVR platforms.
GCC size output when only CTR mode is compiled for ARM:
$ arm-none-eabi-gcc -Os -DCBC=0 -DECB=0 -DCTR=1 -c aes.c
$ size aes.o
text data bss dec hex filename
1203 0 0 1203 4b3 aes.o
.. and when compiling for the THUMB instruction set, we end up just below 1K in code size.
$ arm-none-eabi-gcc -Os -mthumb -DCBC=0 -DECB=0 -DCTR=1 -c aes.c
$ size aes.o
text data bss dec hex filename
955 0 0 955 3bb aes.o
I am using the Free Software Foundation, ARM GCC compiler:
$ arm-none-eabi-gcc --version
arm-none-eabi-gcc (4.8.4-1+11-1) 4.8.4 20141219 (release)
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
This implementation is verified against the data in:
[National Institute of Standards and Technology Special Publication 800-38A 2001 ED](http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf) Appendix F: Example Vectors for Modes of Operation of the AES.
The other appendices in the document are valuable for implementation details on e.g. padding, generation of IVs and nonces in CTR-mode etc.
tiny-AES-c/aes.c view on Meta::CPAN
/*
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used â up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round,state_t* state,uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = 1; round < Nr; ++round)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes(state);
ShiftRows(state);
AddRoundKey(Nr, state, RoundKey);
}
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state,uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = (Nr - 1); round > 0; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
InvMixColumns(state);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(0, state, RoundKey);
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(struct AES_ctx *ctx, uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t* buf, uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
//printf("Step %d - %d", i/16, i);
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uint8_t buffer[AES_BLOCKLEN];
unsigned i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will owerflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)
tiny-AES-c/aes.h view on Meta::CPAN
#include <stdint.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
#define AES128 1
//#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 //Block length in bytes AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
tiny-AES-c/library.json view on Meta::CPAN
{
"name": "tiny-AES-c",
"keywords": "cryptography, aes",
"description": "Small portable AES128/192/256 in C",
"repository":
{
"type": "git",
"url": "https://github.com/kokke/tiny-AES-c.git"
},
"frameworks": "*",
"platforms": "*",
"examples": "test.c"
}
tiny-AES-c/test.c view on Meta::CPAN
static int test_decrypt_cbc(void);
static int test_encrypt_ctr(void);
static int test_decrypt_ctr(void);
static int test_encrypt_ecb(void);
static int test_decrypt_ecb(void);
static void test_encrypt_ecb_verbose(void);
int main(void)
{
int exit;
#if defined(AES256)
printf("\nTesting AES256\n\n");
#elif defined(AES192)
printf("\nTesting AES192\n\n");
#elif defined(AES128)
printf("\nTesting AES128\n\n");
#else
printf("You need to specify a symbol between AES128, AES192 or AES256. Exiting");
return 0;
#endif
exit = test_encrypt_cbc() + test_decrypt_cbc() +
test_encrypt_ctr() + test_decrypt_ctr() +
test_decrypt_ecb() + test_encrypt_ecb();
test_encrypt_ecb_verbose();
return exit;
}
// prints string as hex
static void phex(uint8_t* str)
{
#if defined(AES256)
uint8_t len = 32;
#elif defined(AES192)
uint8_t len = 24;
#elif defined(AES128)
uint8_t len = 16;
#endif
unsigned char i;
for (i = 0; i < len; ++i)
printf("%.2x", str[i]);
printf("\n");
}
static void test_encrypt_ecb_verbose(void)
{
// Example of more verbose verification
uint8_t i;
// 128bit key
uint8_t key[16] = { (uint8_t) 0x2b, (uint8_t) 0x7e, (uint8_t) 0x15, (uint8_t) 0x16, (uint8_t) 0x28, (uint8_t) 0xae, (uint8_t) 0xd2, (uint8_t) 0xa6, (uint8_t) 0xab, (uint8_t) 0xf7, (uint8_t) 0x15, (uint8_t) 0x88, (uint8_t) 0x09, (uint8_t) 0...
// 512bit text
uint8_t plain_text[64] = { (uint8_t) 0x6b, (uint8_t) 0xc1, (uint8_t) 0xbe, (uint8_t) 0xe2, (uint8_t) 0x2e, (uint8_t) 0x40, (uint8_t) 0x9f, (uint8_t) 0x96, (uint8_t) 0xe9, (uint8_t) 0x3d, (uint8_t) 0x7e, (uint8_t) 0x11, (uint8_t) 0x73, (uint8_t) 0...
(uint8_t) 0xae, (uint8_t) 0x2d, (uint8_t) 0x8a, (uint8_t) 0x57, (uint8_t) 0x1e, (uint8_t) 0x03, (uint8_t) 0xac, (uint8_t) 0x9c, (uint8_t) 0x9e, (uint8_t) 0xb7, (uint8_t) 0x6f, (uint8_t) 0xac, (uint8_t) 0x45, (uint8_t) 0...
(uint8_t) 0x30, (uint8_t) 0xc8, (uint8_t) 0x1c, (uint8_t) 0x46, (uint8_t) 0xa3, (uint8_t) 0x5c, (uint8_t) 0xe4, (uint8_t) 0x11, (uint8_t) 0xe5, (uint8_t) 0xfb, (uint8_t) 0xc1, (uint8_t) 0x19, (uint8_t) 0x1a, (uint8_t) 0...
(uint8_t) 0xf6, (uint8_t) 0x9f, (uint8_t) 0x24, (uint8_t) 0x45, (uint8_t) 0xdf, (uint8_t) 0x4f, (uint8_t) 0x9b, (uint8_t) 0x17, (uint8_t) 0xad, (uint8_t) 0x2b, (uint8_t) 0x41, (uint8_t) 0x7b, (uint8_t) 0xe6, (uint8_t) 0...
// print text to encrypt, key and IV
printf("ECB encrypt verbose:\n\n");
printf("plain text:\n");
for (i = (uint8_t) 0; i < (uint8_t) 4; ++i)
{
phex(plain_text + i * (uint8_t) 16);
}
printf("\n");
printf("key:\n");
phex(key);
printf("\n");
// print the resulting cipher as 4 x 16 byte strings
printf("ciphertext:\n");
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
for (i = 0; i < 4; ++i)
{
AES_ECB_encrypt(&ctx, plain_text + (i * 16));
phex(plain_text + (i * 16));
}
printf("\n");
}
static int test_encrypt_ecb(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t out[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t out[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t out[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endif
uint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
AES_ECB_encrypt(&ctx, in);
printf("ECB encrypt: ");
if (0 == memcmp((char*) out, (char*) in, 16)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_decrypt_cbc(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,
0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,
0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,
0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,
0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,
0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,
0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endif
uint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
uint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
// uint8_t buffer[64];
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CBC_decrypt_buffer(&ctx, in, 64);
printf("CBC decrypt: ");
if (0 == memcmp((char*) out, (char*) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_encrypt_cbc(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t out[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t out[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,
0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,
0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,
0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t out[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,
0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,
0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,
0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endif
uint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
uint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CBC_encrypt_buffer(&ctx, in, 64);
printf("CBC encrypt: ");
if (0 == memcmp((char*) out, (char*) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_xcrypt_ctr(const char* xcrypt);
static int test_encrypt_ctr(void)
{
return test_xcrypt_ctr("encrypt");
}
static int test_decrypt_ctr(void)
{
return test_xcrypt_ctr("decrypt");
}
static int test_xcrypt_ctr(const char* xcrypt)
{
#if defined(AES256)
uint8_t key[32] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[64] = { 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 };
#elif defined(AES192)
uint8_t key[24] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[64] = { 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b,
0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef, 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94,
0x1e, 0x36, 0xb2, 0x6b, 0xd1, 0xeb, 0xc6, 0x70, 0xd1, 0xbd, 0x1d, 0x66, 0x56, 0x20, 0xab, 0xf7,
0x4f, 0x78, 0xa7, 0xf6, 0xd2, 0x98, 0x09, 0x58, 0x5a, 0x97, 0xda, 0xec, 0x58, 0xc6, 0xb0, 0x50 };
#elif defined(AES128)
uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[64] = { 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee };
#endif
uint8_t iv[16] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
uint8_t out[64] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, key, iv);
AES_CTR_xcrypt_buffer(&ctx, in, 64);
printf("CTR %s: ", xcrypt);
if (0 == memcmp((char *) out, (char *) in, 64)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
static int test_decrypt_ecb(void)
{
#if defined(AES256)
uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
uint8_t in[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)
uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };
uint8_t in[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t in[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endif
uint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
struct AES_ctx ctx;
AES_init_ctx(&ctx, key);
AES_ECB_decrypt(&ctx, in);
printf("ECB decrypt: ");
if (0 == memcmp((char*) out, (char*) in, 16)) {
printf("SUCCESS!\n");
return(0);
} else {
printf("FAILURE!\n");
return(1);
}
}
( run in 0.333 second using v1.01-cache-2.11-cpan-4d50c553e7e )