Farabi
view release on metacpan or search on metacpan
lib/Farabi/files/public/assets/codemirror/mode/sql/sql.js view on Meta::CPAN
return null;
};
// short client keyword token
function hookClient(stream) {
// \N means NULL
// ref: http://dev.mysql.com/doc/refman/5.5/en/null-values.html
if (stream.eat("N")) {
return "atom";
}
// \g, etc
// ref: http://dev.mysql.com/doc/refman/5.5/en/mysql-commands.html
return stream.match(/^[a-zA-Z.#!?]/) ? "variable-2" : null;
}
// these keywords are used by all SQL dialects (however, a mode can still overwrite it)
var sqlKeywords = "alter and as asc between by count create delete desc distinct drop from having in insert into is join like not on or order select set table union update values where ";
// turn a space-separated list into an array
function set(str) {
var obj = {}, words = str.split(" ");
lib/Farabi/files/public/assets/codemirror/mode/stex/index.html view on Meta::CPAN
\importmodule[balanced-binary-trees]{balanced-binary-trees}
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
\begin{frame}
\frametitle{Size Lemma for Balanced Trees}
\begin{itemize}
\item
\begin{assertion}[id=size-lemma,type=lemma]
Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
$\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
\termref[cd=graphs-intro,name=node]{nodes} at
\termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
\termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
\end{assertion}
\item
\begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
\begin{spfcases}{We have to consider two cases}
\begin{spfcase}{$i=0$}
\begin{spfstep}[display=flow]
then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
lib/Farabi/files/public/assets/codemirror/mode/stex/index.html view on Meta::CPAN
\begin{spfstep}[display=flow]
then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
\begin{justification}[method=byIH](IH)\end{justification}
\end{spfstep}
\begin{spfstep}
By the \begin{justification}[method=byDef]definition of a binary
tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
two children that are at depth $i$.
\end{spfstep}
\begin{spfstep}
As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
leaves.
\end{spfstep}
\begin{spfstep}[type=conclusion]
Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
\end{spfstep}
\end{spfcase}
\end{spfcases}
\end{sproof}
\item
\begin{assertion}[id=fbbt,type=corollary]
( run in 2.316 seconds using v1.01-cache-2.11-cpan-3cd7ad12f66 )