AI-MXNet-Gluon-ModelZoo
view release on metacpan or search on metacpan
lib/AI/MXNet/Gluon/ModelZoo/Vision/DenseNet.pm view on Meta::CPAN
bn_size : Int, default 4
Multiplicative factor for number of bottle neck layers.
(i.e. bn_size * k features in the bottleneck layer)
dropout : float, default 0
Rate of dropout after each dense layer.
classes : int, default 1000
Number of classification classes.
=cut
has [qw/num_init_features
growth_rate/] => (is => 'ro', isa => 'Int', required => 1);
has 'block_config' => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'bn_size' => (is => 'ro', isa => 'Int', default => 4);
has 'dropout' => (is => 'ro', isa => 'Num', default => 0);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments(){ [qw/num_init_features growth_rate block_config bn_size dropout classes/] }
sub BUILD
{
my $self = shift;
$self->name_scope(sub {
$self->features(nn->HybridSequential(prefix=>''));
lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm view on Meta::CPAN
channels : array ref of Int
Numbers of channels in each block. Length should be one larger than layers list.
classes : int, default 1000
Number of classification classes.
thumbnail : bool, default 0
Enable thumbnail.
=cut
has 'block' => (is => 'ro', isa => 'Str', required => 1);
has ['layers',
'channels'] => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
has 'thumbnail' => (is => 'ro', isa => 'Bool', default => 0);
method python_constructor_arguments() { [qw/block layers channels classes thumbnail/] }
func _conv3x3($channels, $stride, $in_channels)
{
return nn->Conv2D(
$channels, kernel_size=>3, strides=>$stride, padding=>1,
use_bias=>0, in_channels=>$in_channels
);
}
lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm view on Meta::CPAN
channels : array ref of Int
Numbers of channels in each block. Length should be one larger than layers list.
classes : int, default 1000
Number of classification classes.
thumbnail : bool, default 0
Enable thumbnail.
=cut
has 'block' => (is => 'ro', isa => 'Str', required => 1);
has ['layers',
'channels'] => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
has 'thumbnail' => (is => 'ro', isa => 'Bool', default => 0);
method python_constructor_arguments() { [qw/block layers channels classes thumbnail/] }
func _conv3x3($channels, $stride, $in_channels)
{
return nn->Conv2D(
$channels, kernel_size=>3, strides=>$stride, padding=>1,
use_bias=>0, in_channels=>$in_channels
);
}
lib/AI/MXNet/Gluon/ModelZoo/Vision/VGG.pm view on Meta::CPAN
Numbers of layers in each feature block.
filters : array ref of Int
Numbers of filters in each feature block. List length should match the layers.
classes : Int, default 1000
Number of classification classes.
batch_norm : Bool, default 0
Use batch normalization.
=cut
method python_constructor_arguments() { [qw/layers filters classes batch_norm/] }
has ['layers',
'filters'] => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
has 'batch_norm' => (is => 'ro', isa => 'Bool', default => 0);
sub BUILD
{
my $self = shift;
assert(@{ $self->layers } == @{ $self->filters });
$self->name_scope(sub {
$self->features($self->_make_features());
$self->features->add(nn->Dense(4096, activation=>'relu',
( run in 0.231 second using v1.01-cache-2.11-cpan-ec4f86ec37b )