view release on metacpan or search on metacpan
lib/A1z/HTML5/Template.pm view on Meta::CPAN
sub NAME { my $self = shift; $NAME = "Fast and Easy Web Apps"; return $NAME; }
our $VERSION = '0.22';
use parent qw(Exporter);
require Exporter;
our @ISA = ("Exporter");
our @EXPORT_OK = qw(header start_html head_title head_meta head_js_css end_head begin_body body_js_css body_topnavbar
body_accordion end_body end_html head body
view all matches for this distribution
view release on metacpan or search on metacpan
inc/Module/Install.pm view on Meta::CPAN
my $cwd = Cwd::getcwd();
my $sym = "${who}::AUTOLOAD";
$sym->{$cwd} = sub {
my $pwd = Cwd::getcwd();
if ( my $code = $sym->{$pwd} ) {
# Delegate back to parent dirs
goto &$code unless $cwd eq $pwd;
}
unless ($$sym =~ s/([^:]+)$//) {
# XXX: it looks like we can't retrieve the missing function
# via $$sym (usually $main::AUTOLOAD) in this case.
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AAC/Pvoice.pm view on Meta::CPAN
%EXPORT_TAGS = ();
}
sub MessageBox
{
my ($message, $caption, $style, $parent, $x, $y) = @_;
$caption ||= 'Message';
$style ||= wxOK;
$x ||= -1;
$y ||= -1;
lib/AAC/Pvoice.pm view on Meta::CPAN
my $items = [];
push @$items, $ok if $style & wxOK;
push @$items, $yes if $style & wxYES_NO;
push @$items, $no if $style & wxYES_NO;
push @$items, $cancel if $style & wxCANCEL;
$d->Append(AAC::Pvoice::Row->new($d->{panel}, # parent
scalar(@$items), # max
$items, # items
wxDefaultPosition, # pos
wxDefaultSize,
$width,
lib/AAC/Pvoice.pm view on Meta::CPAN
easier to create applications like pVoice.
=head1 USAGE
=head2 AAC::Pvoice::MessageBox(message, caption, style, parent, x, y)
This function is similar to Wx::MessageBox. It uses the same parameters as
Wx::MessageBox does. Currently the style parameter doesn't support the
icons that can be set on Wx::MessageBox.
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AC/DC/IO/Forked.pm view on Meta::CPAN
if( !defined($pid) ){
problem("cannot fork: $!");
return ;
}elsif( $pid ){
# parent
close $fdb;
}else{
# child
close $fda;
eval { $me->_do_child($fdb) };
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AC/MrGamoo/API/Simple.pm view on Meta::CPAN
if( !defined($pid) ){
problem("cannot fork: $!");
reply( 500, 'Error', $io, $proto, $req );
return ;
}elsif( $pid ){
# parent
$io->shut();
waitpid $pid, 0;
return;
}else{
# child
my $gpid = fork();
if( $gpid ){
# parent
_exit(0);
}else{
# orphaned child
eval {
$func->($io, $proto, $req, @_);
view all matches for this distribution
view release on metacpan or search on metacpan
lib/ACME/QuoteDB.pm view on Meta::CPAN
$ENV{ACME_QUOTEDB_PASS} = 'acme';
}
Set the above in a begin block.
The database connection is transparent.
Module usage wise, all operations are the same but now
you will be writing to the remote mysql database specified.
(The user will need read/write permissions to the db/tables)
view all matches for this distribution
view release on metacpan or search on metacpan
inc/Module/Install.pm view on Meta::CPAN
my $cwd = Cwd::cwd();
my $sym = "${who}::AUTOLOAD";
$sym->{$cwd} = sub {
my $pwd = Cwd::cwd();
if ( my $code = $sym->{$pwd} ) {
# Delegate back to parent dirs
goto &$code unless $cwd eq $pwd;
}
unless ($$sym =~ s/([^:]+)$//) {
# XXX: it looks like we can't retrieve the missing function
# via $$sym (usually $main::AUTOLOAD) in this case.
view all matches for this distribution
view release on metacpan or search on metacpan
op_integerize|||
op_linklist||5.013006|
op_lvalue_flags|||
op_lvalue||5.013007|
op_null||5.007002|
op_parent|||n
op_prepend_elem||5.013006|
op_refcnt_dec|||
op_refcnt_inc|||
op_refcnt_lock||5.009002|
op_refcnt_unlock||5.009002|
#ifndef OpMORESIB_set
# define OpMORESIB_set(o, sib) ((o)->op_sibling = (sib))
#endif
#ifndef OpLASTSIB_set
# define OpLASTSIB_set(o, parent) ((o)->op_sibling = NULL)
#endif
#ifndef OpMAYBESIB_set
# define OpMAYBESIB_set(o, sib, parent) ((o)->op_sibling = (sib))
#endif
#ifndef SvRX
#if defined(NEED_SvRX)
static void * DPPP_(my_SvRX)(pTHX_ SV *rv);
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AFS/Command/Base.pm view on Meta::CPAN
#
# XXX -- Hack Alert!!!
#
# Because some asshole decided to change the force option to vos
# release from -f to -force, you can't use the API tranparently
# with 2 different vos binaries that support the 2 different options.
#
# If we need more of these, we can add them, as this let's us
# alias one argument to another.
#
view all matches for this distribution
view release on metacpan or search on metacpan
t/data/perltidyrc view on Meta::CPAN
-bbao # put line breaks before any operator
-nbbc # don't force blank lines before comments (bad for else blocks)
-ce # cuddle braces around else
-l=79 # usually use 78, but don't want 79-long lines reformatted
-pt=2 # don't add extra whitespace around parentheses
-sbt=2 # ...or square brackets
-sfs # no space before semicolon in for (not that I use this form)
view all matches for this distribution
view release on metacpan or search on metacpan
src/inc/Test/Builder.pm view on Meta::CPAN
sub _ending {
my $self = shift;
_sanity_check();
# Don't bother with an ending if this is a forked copy. Only the parent
# should do the ending.
do{ _my_exit($?) && return } if $Original_Pid != $$;
# Bailout if plan() was never called. This is so
# "require Test::Simple" doesn't puke.
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/ANN/Evolver.pm view on Meta::CPAN
connected neurons with a weight less than mutation_amount or each
neuron => input pair with a weight less than mutation_amount will be
disconnected. If add_link_chance is zero, this should also be zero, or
your network will just fizzle out.
sub_crossover_chance is the chance that, during a crossover() call, each
neuron will, rather than being inherited fully from each parent, have
each element within it be inherited individually.
min_value is the smallest acceptable weight. It must be less than or equal to
zero. If a value would be decremented below min_value, it will instead
become an epsilon above min_value. This is so that we don't accidentally
set a weight to zero, thereby killing the link.
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/Categorizer/Learner/Weka.pm view on Meta::CPAN
my @output;
local *KID_TO_READ;
my $pid = open(KID_TO_READ, "-|");
if ($pid) { # parent
@output = <KID_TO_READ>;
close(KID_TO_READ) or warn "@cmd exited $?";
} else { # child
exec(@cmd) or die "Can't exec @cmd: $!";
view all matches for this distribution
view release on metacpan or search on metacpan
t/00-load.t view on Meta::CPAN
# http://perltricks.com/article/208/2016/1/5/Save-time-with-compile-tests
use strict;
use Test::More;
use Path::Tiny;
my $dir = path(__FILE__)->parent(2)->child('lib');
my $iter = $dir->iterator(
{
recurse => 1,
follow_symlinks => 0,
}
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/DecisionTree.pm view on Meta::CPAN
return $node->{nodes_below} = $count - 1;
}
# This is *not* for external use, I may change it.
sub _traverse {
my ($self, $callback, $node, $parent, $node_name) = @_;
$node ||= $self->{tree};
ref($callback) ? $callback->($self, $node, $parent, $node_name) : $self->$callback($node, $parent, $node_name);
return unless $node->{children};
foreach my $child ( keys %{$node->{children}} ) {
$self->_traverse($callback, $node->{children}{$child}, $node, $child);
}
lib/AI/DecisionTree.pm view on Meta::CPAN
require GraphViz;
my $g = GraphViz->new(%args);
my $id = 1;
my $add_edge = sub {
my ($self, $node, $parent, $node_name) = @_;
# We use stringified reference names for node names, as a convenient hack.
if ($node->{split_on}) {
$g->add_node( "$node",
label => $node->{split_on},
lib/AI/DecisionTree.pm view on Meta::CPAN
label => "$node->{result} ($distr)",
shape => 'box',
%fill,
);
}
$g->add_edge( "$parent" => "$node",
label => $node_name,
) if $parent;
};
$self->_traverse( $add_edge );
return $g;
}
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/Evolve/Befunge/Critter.pm view on Meta::CPAN
}
$cost *= $critter->stackcost;
$cost += $critter->threadcost;
return $ip->dir_reverse unless $critter->spend($cost);
# This is a hack; Storable can't deep copy our data structure.
# It will get re-added to both parent and child, next time around.
delete($$ip{_ai_critter});
return Language::Befunge::Ops::spawn_ip(@_);
}
}
view all matches for this distribution
view release on metacpan or search on metacpan
inc/Module/Install.pm view on Meta::CPAN
my $cwd = Cwd::cwd();
my $sym = "${who}::AUTOLOAD";
$sym->{$cwd} = sub {
my $pwd = Cwd::cwd();
if ( my $code = $sym->{$pwd} ) {
# Delegate back to parent dirs
goto &$code unless $cwd eq $pwd;
}
$$sym =~ /([^:]+)$/ or die "Cannot autoload $who - $sym";
my $method = $1;
if ( uc($method) eq $method ) {
view all matches for this distribution
view release on metacpan or search on metacpan
demo/spamscan.pl view on Meta::CPAN
my $regex = seed_match(); # start off with something quite good
my $best_yet = 0;
my $temp = 1;
while (1) {
my $child = $regex->clone; # copy the parent
$child->mutate($num_mutates); # change it slightly
my $rex = $child->regex;
$rex = qr/$rex/;
my $score = 0; # see if the kid is better
$score += grep {$_ =~ $rex} @spam; # we don't want spam
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/Genetic/Pro.pm view on Meta::CPAN
population
terminate
chromosomes
crossover
native
parents _parents
history _history
fitness _fitness _fitness_real
cache
mutation _mutator
strategy _strategist
lib/AI/Genetic/Pro.pm view on Meta::CPAN
logo_position => 'BR',
legend_placement => 'RT',
bgclr => 'white',
boxclr => '#FFFFAA',
transparent => 0,
title => ($params{'-title'} || q/Evolution/ ),
x_label => ($params{'-x_label'} || q/Generation/),
y_label => ($params{'-y_label'} || q/Value/ ),
lib/AI/Genetic/Pro.pm view on Meta::CPAN
# $self->chromosomes(\@chromosomes);
return;
}
#=======================================================================
sub _select_parents {
my ($self) = @_;
unless($self->_selector){
croak "You must specify a selection strategy!"
unless defined $self->selection;
my @tmp = @{$self->selection};
my $selector = q/AI::Genetic::Pro::Selection::/ . shift @tmp;
$selector->require or die $!;
$self->_selector($selector->new(@tmp));
}
$self->_parents($self->_selector->run($self));
return;
}
#=======================================================================
sub _crossover {
lib/AI/Genetic/Pro.pm view on Meta::CPAN
# update generation --------------------------------------------
$self->generation($self->generation + 1);
# update history -----------------------------------------------
$self->_save_history;
# selection ----------------------------------------------------
$self->_select_parents();
# crossover ----------------------------------------------------
$self->_crossover();
# mutation -----------------------------------------------------
$self->_mutation();
}
lib/AI/Genetic/Pro.pm view on Meta::CPAN
$self->_save_history;
#---------------------------------------------------------------
# preservation of N unique chromosomes
@preserved = map { clone($_) } @{ $self->getFittest_as_arrayref($self->preserve - 1, 1) };
# selection ----------------------------------------------------
$self->_select_parents();
# crossover ----------------------------------------------------
$self->_crossover();
# mutation -----------------------------------------------------
$self->_mutation();
#---------------------------------------------------------------
lib/AI/Genetic/Pro.pm view on Meta::CPAN
-terminate => \&terminate, # terminate function
-type => 'bitvector', # type of chromosomes
-population => 1000, # population
-crossover => 0.9, # probab. of crossover
-mutation => 0.01, # probab. of mutation
-parents => 2, # number of parents
-selection => [ 'Roulette' ], # selection strategy
-strategy => [ 'Points', 2 ], # crossover strategy
-cache => 0, # cache results
-history => 1, # remember best results
-preserve => 3, # remember the bests
lib/AI/Genetic/Pro.pm view on Meta::CPAN
any C<undef> or space, just use C<as_array_def_only> and C<as_string_def_only>
instead of C<as_array> and C<as_string>.
=back
=item -parents
This defines how many parents should be used in a crossover.
=item -selection
This defines how individuals/chromosomes are selected to crossover. It expects an array reference listed below:
lib/AI/Genetic/Pro.pm view on Meta::CPAN
Each individual/chromosome can be selected with probability proportional to its fitness.
=item B<Roulette>
First the best individuals/chromosomes are selected. From this collection
parents are selected with probability poportional to their fitness.
=item B<RouletteDistribution>
Each individual/chromosome has a portion of roulette wheel proportional to its
fitness. Selection is done with the specified distribution. Supported
lib/AI/Genetic/Pro.pm view on Meta::CPAN
I<Beta> distribution. The density of the beta is:
X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.
C<$aa> and C<$bb> are set by default to number of parents.
B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.
=item C<-selection =E<gt> [ 'RouletteDistribution', 'binomial' ]>
lib/AI/Genetic/Pro.pm view on Meta::CPAN
I<Beta> distribution. The density of the beta is:
X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.
C<$aa> and C<$bb> are set by default to number of parents.
B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.
=item C<-selection =E<gt> [ 'Distribution', 'binomial' ]>
lib/AI/Genetic/Pro.pm view on Meta::CPAN
where C<$n> is the number of points for crossing.
=item PointsBasic
Crossover in one or many points. In basic crossover selected parents are
crossed and one (randomly-chosen) child is moved to the new generation. For
example:
-strategy => [ 'PointsBasic', $n ]
where C<$n> is the number of points for crossing.
=item Points
Crossover in one or many points. In normal crossover selected parents are crossed and the best child is moved to the new generation. For example:
-strategy => [ 'Points', $n ]
where C<$n> is number of points for crossing.
=item PointsAdvenced
Crossover in one or many points. After crossover the best
chromosomes/individuals from all parents and chidren are selected for the new
generation. For example:
-strategy => [ 'PointsAdvanced', $n ]
where C<$n> is the number of points for crossing.
=item Distribution
In I<distribution> crossover parents are crossed in points selected with the
specified distribution. See below.
=over 8
=item C<-strategy =E<gt> [ 'Distribution', 'uniform' ]>
Standard uniform distribution. No additional parameters are needed.
=item C<-strategy =E<gt> [ 'Distribution', 'normal', $av, $sd ]>
Normal distribution, where C<$av> is average (default: number of parents/2) and C<$sd> is standard deviation (default: number of parents).
=item C<-strategy =E<gt> [ 'Distribution', 'beta', $aa, $bb ]>
I<Beta> distribution. The density of the beta is:
X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.
C<$aa> and C<$bb> are set by default to the number of parents.
B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.
=item C<-strategy =E<gt> [ 'Distribution', 'binomial' ]>
Binomial distribution. No additional parameters are needed.
=item C<-strategy =E<gt> [ 'Distribution', 'chi_square', $df ]>
Chi-squared distribution with C<$df> degrees of freedom. C<$df> by default is set to the number of parents.
=item C<-strategy =E<gt> [ 'Distribution', 'exponential', $av ]>
Exponential distribution, where C<$av> is average . C<$av> by default is set to the number of parents.
=item C<-strategy =E<gt> [ 'Distribution', 'poisson', $mu ]>
Poisson distribution, where C<$mu> is mean. C<$mu> by default is set to the number of parents.
=back
=item PMX
lib/AI/Genetic/Pro.pm view on Meta::CPAN
=item I<$ga>-E<gt>B<mutation>()
Alias for C<mutProb>.
=item I<$ga>-E<gt>B<parents>($parents)
Set/get number of parents in a crossover.
=item I<$ga>-E<gt>B<init>($args)
This method initializes the population with random individuals/chromosomes. It MUST be called before any call to C<evolve()>. It expects one argument, which depends on the type of individuals/chromosomes:
view all matches for this distribution
view release on metacpan or search on metacpan
individual is designated by a set of genes that define its
behaviour. Individuals that perform better (as defined by the
fitness function) have a higher chance of mating with other
individuals. When two individuals mate, they swap some of
their genes, resulting in an individual that has properties
from both of its "parents". Every now and then, a mutation
occurs where some gene randomly changes value, resulting in
a different individual. If all is well defined, after a few
generations, the population should converge on a "good-enough"
solution to the problem being tackled.
Here, individuals selected are randomly paired up for
crossover (aka I<sexual reproduction>). This is further
controlled by the crossover rate specified and may result in
a new offspring individual that contains genes common to
both parents. New individuals are injected into the current
population.
=item B<3. Mutation>
In this step, each individual is given the chance to mutate
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/ML.pm view on Meta::CPAN
# ABSTRACT: Perl interface to ML
use strict;
use warnings;
package AI::ML;
use parent 'DynaLoader';
use Math::Lapack;
bootstrap AI::ML;
#sub dl_load_flags { 1 }
1;
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/MXNet/IO.pm view on Meta::CPAN
use overload '<>' => sub { shift->next },
'@{}' => sub { shift->list };
=head1 NAME
AI::MXNet::DataIter - A parent class for MXNet data iterators.
=cut
has 'batch_size' => (is => 'rw', isa => 'Int', default => 0);
=head2 reset
view all matches for this distribution
view release on metacpan or search on metacpan
inc/Module/Install.pm view on Meta::CPAN
my $cwd = Cwd::cwd();
my $sym = "${who}::AUTOLOAD";
$sym->{$cwd} = sub {
my $pwd = Cwd::cwd();
if ( my $code = $sym->{$pwd} ) {
# delegate back to parent dirs
goto &$code unless $cwd eq $pwd;
}
$$sym =~ /([^:]+)$/ or die "Cannot autoload $who - $sym";
unshift @_, ($self, $1);
goto &{$self->can('call')} unless uc($1) eq $1;
view all matches for this distribution
view release on metacpan or search on metacpan
- Moved from MegaHAL -> AI::MegaHAL namespace
- Included sources from the MegaHAL distribution - should no longer
have to download and install as a separate shared library.
0.03 Sat Feb 3 17:01:32 2001
- Minor fix for a warning that I apparently didn't notice in 0.02
(Still involving the 'our' reserved word.)
0.02 Thu Jan 25 10:19:23 2001
- Fixed a bug in MegaHAL.pm which prevented compilation under
perl 5.005_03. (As reported by Mark Symonds.)
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/MicroStructure/Locale.pm view on Meta::CPAN
# alias the older package variable %Locale to %MultiList
no strict 'refs';
*{"$_[0]::Locale"} = \%{"$_[0]::MultiList"};
${"$_[0]::Separator"} = '_';
# call the parent class init code
goto &AI::MicroStructure::MultiList::init;
}
sub new {
my $class = shift;
view all matches for this distribution
view release on metacpan or search on metacpan
BackProp.pm view on Meta::CPAN
# Called by load_pcx in AI::NeuralNet::BackProp;
sub new {
my $type = shift;
my $self = {
parent => $_[0],
file => $_[1]
};
my (@a,@b)=load_pcx($_[1]);
$self->{image}=\@a;
$self->{palette}=\@b;
BackProp.pm view on Meta::CPAN
# Returns mean of (rgb) value of palette index passed
sub avg {
my $self = shift;
my $color = shift;
return $self->{parent}->intr(($self->{palette}->[$color]->{red}+$self->{palette}->[$color]->{green}+$self->{palette}->[$color]->{blue})/3);
}
# Loads and decompresses a PCX-format 320x200, 8-bit image file and returns
# two arrays, first is a 64000-byte long array, each element contains a palette
# index, and the second array is a 255-byte long array, each element is a hash
view all matches for this distribution
view release on metacpan or search on metacpan
- first public release
0.06 Wed Jul 22 12:07:25 2009
- removed AI::NN::FSOM::ARRAY, ::MAP, and ::VECTOR modules
- removed Inline::C code from remaining modules
- removed dependence on non-core parent.pm
- removed remaining Inline::C macros and INLINE.h
- moved train() into C
- now parsing input_ and output_dim parameters (finally!)
0.05 Mon Jul 20 13:20:06 2009
view all matches for this distribution
view release on metacpan or search on metacpan
sub and_gate {
my $threshold = shift || 0.5;
sub {
my $sum = shift;
my $self = shift;
for my $x (0..$self->{_inputs_size}-1) { return $self->{_parent}->{const} if!$self->{_inputs}->[$x]->{value}<$threshold }
return $sum/$self->{_inputs_size};
}
}
# Self explanitory, $threshold is used same as above.
my $threshold = shift || 0.5;
sub {
my $sum = shift;
my $self = shift;
for my $x (0..$self->{_inputs_size}-1) { return $sum/$self->{_inputs_size} if!$self->{_inputs}->[$x]->{value}<$threshold }
return $self->{_parent}->{const};
}
}
1;
# Node constructor
sub new {
my $type = shift;
my $self ={
_parent => shift,
_inputs => [],
_outputs => []
};
bless $self, $type;
}
$self->{_inputs}->[$from_id]->{value} = $input * $self->{_inputs}->[$from_id]->{weight};
$self->{_inputs}->[$from_id]->{input} = $input;
$self->{_inputs}->[$from_id]->{fired} = 1;
$self->{_parent}->d("got input $input from id $from_id, weighted to $self->{_inputs}->[$from_id]->{value}.\n",1);
my $flag = 1;
for my $x (0..$self->{_inputs_size}-1) { $flag = 0 if(!$self->{_inputs}->[$x]->{fired}) }
if ($flag) {
$self->{_parent}->d("all inputs fired for $self.\n",1);
my $output = 0;
# Sum
for my $i (@{$self->{_inputs}}) {
$output += $i->{value};
}
# Handle activations, thresholds, and means
$output /= $self->{_inputs_size} if($self->{flag_mean});
#$output += (rand()*$self->{_parent}->{random});
$output = ($output>=$self->{threshold})?1:0 if(($self->{activation} eq "sigmoid") || ($self->{activation} eq "sigmoid_1"));
if($self->{activation} eq "sigmoid_2") {
$output = 1 if($output >$self->{threshold});
$output = -1 if($output <$self->{threshold});
$output = 0 if($output==$self->{threshold});
$output = &{$self->{activation}}($output,$self) if(ref($self->{activation}) eq "CODE");
# Send output
for my $o (@{$self->{_outputs}}) { $o->{node}->input($output,$o->{from_id}) }
} else {
$self->{_parent}->d("all inputs have NOT fired for $self.\n",1);
}
}
sub add_input_node {
my $self = shift;
use strict;
sub new {
my $type = shift;
my $self ={
_parent => shift,
_inputs => [],
};
bless $self, $type;
}
sub input {
my $self = shift;
my $input = shift;
my $from_id = shift;
$self->{_parent}->d("GOT INPUT [$input] FROM [$from_id]\n",1);
$self->{_inputs}->[$from_id] = $self->{_parent}->intr($input);
}
sub get_outputs {
my $self = shift;
return $self->{_inputs};
view all matches for this distribution
view release on metacpan or search on metacpan
xt/99-test-prerequisites.t view on Meta::CPAN
# Remove stuff from our distribution
for my $k (keys %distribution) {
delete $missing{ $k };
};
# If we have no apparent missing prerequisites, we're good
my @missing = sort keys %missing;
# Rerun the test without these modules and see whether it crashes
my @failed;
for my $candidate (@missing) {
view all matches for this distribution
view release on metacpan or search on metacpan
lib/AI/Pathfinding/AStar.pm view on Meta::CPAN
next if ( (exists $nodes->{$surr_id}) && (! $nodes->{$surr_id}->{inopen}) );
#add it if we haven't seen it before
if (! exists $nodes->{$surr_id}) {
my $surr_node = AI::Pathfinding::AStar::AStarNode->new($surr_id,$G+$surr_cost,$surr_h);
$surr_node->{parent} = $curr_node;
$surr_node->{cost} = $surr_cost;
$surr_node->{inopen} = 1;
$nodes->{$surr_id} = $surr_node;
$open->add($surr_node);
}
lib/AI/Pathfinding/AStar.pm view on Meta::CPAN
#square compared to the previous path
my $surr_node = $nodes->{$surr_id};
my $currG = $surr_node->{g};
my $possG = $G + $surr_cost;
if ($possG < $currG) {
#change the parent
$surr_node->{parent} = $curr_node;
$surr_node->{g} = $possG;
$open->decrease_key($surr_node);
}
}
}
lib/AI/Pathfinding/AStar.pm view on Meta::CPAN
my $path = [];
my $curr_node = (exists $nodes->{$target}) ? $nodes->{$target} : $open->top();
while (defined $curr_node) {
unshift @$path, $curr_node->{id};
$curr_node = $curr_node->{parent};
}
return $path;
}
lib/AI/Pathfinding/AStar.pm view on Meta::CPAN
my $curr_node = undef;
my $open = Heap::Binomial->new;
#add starting square to the open list
$curr_node = AI::Pathfinding::AStar::AStarNode->new($start,0,0); # AStarNode(id,g,h)
$curr_node->{parent} = undef;
$curr_node->{cost} = 0;
$curr_node->{g} = 0;
$curr_node->{h} = 0;
$curr_node->{inopen} = 1;
$nodes->{$start} = $curr_node;
lib/AI/Pathfinding/AStar.pm view on Meta::CPAN
}
else {
$open = Heap::Binomial->new;
#add starting square to the open list
$curr_node = AI::Pathfinding::AStar::AStarNode->new($start,0,0); # AStarNode(id,g,h)
$curr_node->{parent} = undef;
$curr_node->{cost} = 0;
$curr_node->{g} = 0;
$curr_node->{h} = 0;
$curr_node->{inopen} = 1;
$nodes->{$start} = $curr_node;
view all matches for this distribution