Algorithm-TicketClusterer

 view release on metacpan or  search on metacpan

examples/retrieve_similar_tickets.pl  view on Meta::CPAN

###
###
###  depends on the number of tickets in your Excel spreadsheet.  If the
###  number of tickets is in the low hundreds, this parameter is likely to
###  require a value of 1.5 to 1.8.  If the number of tickets is in the
###  thousands, the value of this parameter is likely to be between 2 and
###  3.  See the writeup on this parameter in the API description in the
###  main documentation.


#use lib '../blib/lib', '../blib/arch';

use strict;
use Algorithm::TicketClusterer;

my $fieldname_for_clustering = "Description";
my $unique_id_fieldname = "Request No";
my $raw_tickets_db = "raw_tickets.db";
my $processed_tickets_db = "processed_tickets.db";
my $stemmed_tickets_db = "stemmed_tickets.db";
my $inverted_index_db = "inverted_index.db";

examples/ticket_preprocessor_and_doc_modeler.pl  view on Meta::CPAN

###  This is the script you must run on a new Excel spreadsheet before you
###  can retrieve similar tickets from the tickets stored in the
###  spreadsheet.

###  This script calls on a user to specify names for the nine databases
###  that are created for the tickets.  This is to avoid having to process
###  all the tickets every time you need to make a retrieval for a new
###  ticket.


#use lib '../blib/lib', '../blib/arch';

use strict;
use Algorithm::TicketClusterer;

my $excel_filename = "ExampleExcelFile.xls";
#my $excel_filename = "SampleTest.xlsx";
my $fieldname_for_clustering = "Description";
my $unique_id_fieldname = "Request No";
my $raw_tickets_db = "raw_tickets.db";
my $processed_tickets_db = "processed_tickets.db";

t/test.t  view on Meta::CPAN

use Test::Simple tests => 3;

use lib '../blib/lib','../blib/arch';

use Algorithm::TicketClusterer;

# Test 1 (Read Excel):

my $tclusterer = Algorithm::TicketClusterer->new( 
                     excel_filename            => "t/__SampleTest.xlsx",
                     which_worksheet           => 1,
                     clustering_fieldname      => "Description",
                     unique_id_fieldname       => "Request No",



( run in 0.262 second using v1.01-cache-2.11-cpan-87723dcf8b7 )