Algorithm-LinearManifoldDataClusterer
view release on metacpan or search on metacpan
examples/example1.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## example1.pl
## Highlights:
##
## --- The data file contains 498 samples in three small clusters
## on the surface of a sphere
##
## --- Note the use of 0.001 for delta_reconstruction_error
examples/example2.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## example2.pl
## Highlights:
##
## --- The data file contains 3000 samples in three large
## clusters on the surface of a sphere
##
## --- Note the use of 0.012 for delta_reconstruction_error
examples/example3.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## example3.pl
## Highlights:
##
## --- The data file contains 1000 samples in four small
## clusters on the surface of a sphere
##
## --- Note the use of 0.002 for delta_reconstruction_error
examples/example4.pl view on Meta::CPAN
#!/usr/bin/perl -w
#use lib '../blib/lib', '../blib/arch';
## example1.pl
## Highlights:
##
## --- The main highlight here is the use of the auto_retry_clusterer()
## method for automatically invoking the clusterer repeatedly
## should it fail on account of the Fail-First bias built into
## the code.
examples/generate_data_on_a_sphere.pl view on Meta::CPAN
#!/usr/bin/perl -w
## generate_data_on_a_sphere.pl
use lib '../blib/lib', '../blib/arch';
## The purpose of this script is to generate multivariate Gaussian data
## on a spherical surface and, subsequently, to also visualize this
## data. Read the comment block attached to the subroutine
## `gen_data_and_write_to_csv() in the main module file. That
## subroutine randomly chooses a number of directions equal to the value
## of the number_of_clusters_on_sphere. It also put together 2x2
## covariance matrices for each of these clusters. Subsquently, the
## Random module is called to yield multivariates samples for each
use Test::Simple tests => 3;
use lib '../blib/lib','../blib/arch';
use Algorithm::LinearManifoldDataClusterer;
# Test 1 (Data Generation):
my $datafile = "__datadump.csv";
#my $datagen = Algorithm::LinearManifoldDataClusterer::DataGenerator->new(
my $datagen = DataGenerator->new(
output_file => $datafile,
total_number_of_samples_needed => 100,
( run in 0.375 second using v1.01-cache-2.11-cpan-87723dcf8b7 )