Alien-libsecp256k1
view release on metacpan or search on metacpan
libsecp256k1/src/modinv32_impl.h view on Meta::CPAN
di = d->v[0];
ei = e->v[0];
cd = (int64_t)u * di + (int64_t)v * ei;
ce = (int64_t)q * di + (int64_t)r * ei;
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
cd += (int64_t)modinfo->modulus.v[0] * md;
ce += (int64_t)modinfo->modulus.v[0] * me;
/* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
/* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
* limb i-1 (shifting down by 30 bits). */
for (i = 1; i < 9; ++i) {
di = d->v[i];
ei = e->v[i];
cd += (int64_t)u * di + (int64_t)v * ei;
ce += (int64_t)q * di + (int64_t)r * ei;
cd += (int64_t)modinfo->modulus.v[i] * md;
libsecp256k1/src/modinv32_impl.h view on Meta::CPAN
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < 9; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
libsecp256k1/src/modinv32_impl.h view on Meta::CPAN
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
libsecp256k1/src/modinv64_impl.h view on Meta::CPAN
secp256k1_i128_mul(&cd, u, d0);
secp256k1_i128_accum_mul(&cd, v, e0);
secp256k1_i128_mul(&ce, q, d0);
secp256k1_i128_accum_mul(&ce, r, e0);
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62;
me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
/* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cd) & M62) == 0); secp256k1_i128_rshift(&cd, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&ce) & M62) == 0); secp256k1_i128_rshift(&ce, 62);
/* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cd, u, d1);
secp256k1_i128_accum_mul(&cd, v, e1);
secp256k1_i128_accum_mul(&ce, q, d1);
secp256k1_i128_accum_mul(&ce, r, e1);
if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
libsecp256k1/src/modinv64_impl.h view on Meta::CPAN
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
secp256k1_int128 cf, cg;
/* Start computing t*[f,g]. */
secp256k1_i128_mul(&cf, u, f0);
secp256k1_i128_accum_mul(&cf, v, g0);
secp256k1_i128_mul(&cg, q, f0);
secp256k1_i128_accum_mul(&cg, r, g0);
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
/* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cf, u, f1);
secp256k1_i128_accum_mul(&cf, v, g1);
secp256k1_i128_accum_mul(&cg, q, f1);
secp256k1_i128_accum_mul(&cg, r, g1);
f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 2 of t*[f,g], and store it as output limb 1. */
libsecp256k1/src/modinv64_impl.h view on Meta::CPAN
secp256k1_int128 cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
secp256k1_i128_mul(&cf, u, fi);
secp256k1_i128_accum_mul(&cf, v, gi);
secp256k1_i128_mul(&cg, q, fi);
secp256k1_i128_accum_mul(&cg, r, gi);
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 62 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
secp256k1_i128_accum_mul(&cf, u, fi);
secp256k1_i128_accum_mul(&cf, v, gi);
secp256k1_i128_accum_mul(&cg, q, fi);
( run in 0.391 second using v1.01-cache-2.11-cpan-496ff517765 )