AI-Nerl
view release on metacpan or search on metacpan
examples/digits/digits.pl view on Meta::CPAN
if ($pass%200==0){
warn $delta(100:104);
warn $out_neurons(100:104);
}
show784($delta(:,0));
show784($delta(:,6));
show784($delta(:,4));
}
#die join (',',$nncost->dims);
use PDL::Graphics2D;
sub show784{
my $w = shift;
$w = $w->squeeze;
my $min = $w->minimum;
$w -= $min;
my $max = $w->maximum;
$w /= $max;
$w = $w->reshape(28,28);
imag2d $w;
}
sub sigmoid{
my $foo = shift;
return 1/(1+E**-$foo);
}
sub logistic{
#find sigmoid before calling this.
#grad=logistic(sigmoid(foo))
my $foo = shift;
return $foo * (1-$foo);
}
lib/AI/Nerl.pm view on Meta::CPAN
);
has basis => (
is => 'ro',
isa => 'AI::Nerl',
required => 0,
);
#initialize $self->network, but don't train.
# any parameters AI::Nerl::Network takes are fine here.
sub init_network{
my $self = shift;
my %nn_params = @_;
#input layer size:
unless ($nn_params{l1}){
if ($self->basis){
$nn_params{l1} = $self->basis->network->l1 + $self->basis->network->l2;
} elsif($self->train_x) {
$nn_params{l1} ||= $self->train_x->dim(1);
}
}
lib/AI/Nerl.pm view on Meta::CPAN
}
$nn_params{l2} ||= $self->l2;
$nn_params{scale_input} ||= $self->scale_input;
my $nn = AI::Nerl::Network->new(
%nn_params
);
$self->network($nn);
}
sub build_network{
my $self = shift;
my $nn = AI::Nerl::Network->new(
l1 => $self->train_x->dim(1),
l2 => $self->l2,
l3 => $self->train_y->dim(1),
scale_input => $self->scale_input,
);
$nn->train($self->train_x, $self->train_y, passes=>$self->passes);
$self->network($nn);
}
sub append_l2{
my ($self,$x) = @_;
if($self->basis){
$x = $self->basis->append_l2($x);
}
return $self->network->append_l2($x);
}
sub run{
my ($self,$x) = @_;
$x->sever;
if($self->basis){
$x = $self->basis->append_l2($x);
}
return $self->network->run($x);
}
sub train{
my ($self,$x,$y) = @_;
$x->sever;
if($self->basis){
$x = $self->basis->append_l2($x);
}
return $self->network->train($x,$y);
}
sub cost{
my ($self,$x,$y) = @_;
$x->sever();
if($self->basis){
$x = $self->basis->append_l2($x);
}
return $self->network->cost($x,$y);
}
'a neural network has your dog.';
lib/AI/Nerl/Network.pm view on Meta::CPAN
isa => 'Num',
is => 'rw',
default => .6,
);
has lambda => (
isa => 'Num',
is => 'rw',
default => .01,
);
sub _mk_theta1{
my $self = shift;
return grandom($self->l1, $self->l2) * .01;
}
sub _mk_theta2{
my $self = shift;
return grandom($self->l2, $self->l3) * .01;
}
sub _mk_b1{
my $self = shift;
return grandom($self->l2) * .01;
}
sub _mk_b2{
my $self = shift;
return grandom($self->l3) * .01;
}
sub train{
my ($self,$x,$y, %params) = @_;
$x->sever();
my $passes = $params{passes} // 10;
if ($self->scale_input){
$x *= $self->scale_input;
}
my $num_examples = $x->dim(0);
for my $pass (1..$passes){
lib/AI/Nerl/Network.pm view on Meta::CPAN
warn "delta1: $delta1\n";
warn "delta2: $delta2\n";
}
$self->{theta2} -= $self->alpha * ($delta2 / $num_examples + $self->theta2 * $self->lambda);
$self->{theta1} -= $self->alpha * ($delta1 / $num_examples + $self->theta1 * $self->lambda);
$self->{b1} -= $self->alpha * $deltab1 / $num_examples;
$self->{b2} -= $self->alpha * $deltab2 / $num_examples;
}
}
sub run{
my ($self,$x) = @_;
$x->sever();
if ($self->scale_input){
$x *= $self->scale_input;
}
$x = $x->transpose if $self->l1 != $x->dim(1);
my $y = $self->theta1 x $x;
$y += $self->b1->transpose;
$y->inplace()->tanh;# = tanhx($y);
$y = $self->theta2 x $y;
$y += $self->b2->transpose;
$y->inplace()->tanh();# = tanhx($y);
return $y;
}
sub append_l2{
my ($self,$x) = @_;
$x->sever();
if ($self->scale_input){
$x *= $self->scale_input;
}
$x = $x->transpose if $self->l1 != $x->dim(1);
my $l2 = $self->theta1 x $x;
$l2 += $self->b1->transpose;
$l2->inplace()->tanh;
# warn join ',',$x->dims;
# warn join ',',$l2->dims;
return $x->glue(1,$l2);
}
sub cost{
my ($self,$x,$y) = @_;
$x->sever();# = $x->copy();
my $n = $x->dim(0);
if ($self->scale_input){
$x *= $self->scale_input;
}
my $num_correct = 0;
#die join(',',$x->dims) .',,,'. join(',',$y->dims);
my $total_cost = 0;
for my $i (0..$n-1){
lib/AI/Nerl/Network.pm view on Meta::CPAN
$total_cost += ($y(($i))-$a3)->abs()->power(2,0)->sum()/2;
#warn $a3->maximum_ind . ' ' . $y(($i))->maximum_ind;;
$num_correct++ if $a3->maximum_ind == $y(($i))->maximum_ind;
}
$total_cost /= $n;
$total_cost += $self->theta1->flat->power(2,0)->sum * $self->lambda;
$total_cost += $self->theta2->flat->power(2,0)->sum * $self->lambda;
return ($total_cost, $num_correct);
}
sub tanhx{ #don't use this. pdl has $pdl->tanh which can be used in place.
my $foo = shift;
my $p = E**$foo;
my $n = E**-$foo;
return (($p-$n)/($p+$n));
}
sub tanhxderivative{ #use: tanhxderivative($pdl->tanh()). save time by finding tanh first.
my $tanhx = shift;
return (1 - $tanhx**2);
}
sub sigmoid{
my $foo = shift;
return 1/(1+E**-$foo);
}
sub logistic{
#find sigmoid before calling this.
#grad=logistic(sigmoid(foo))
my $foo = shift;
return $foo * (1-$foo);
}
my $g2d_tried = 0;
my $g2d_failed = '';
sub USE_G2D{
return 0 if $g2d_tried and $g2d_failed;
return 1 if $g2d_tried;
eval{
require PDL::Graphics2D;
PDL::Graphics2d->import('imag2d');
1;
} or do {
$g2d_failed = $@;
warn "PDL::Graphics2d failed to load. perhaps $g2d_failed";
};
$g2d_tried = 1;
return USE_G2D();
}
#display 28x28 grayscale pdl.
sub show784{
return unless USE_G2D();
my $w = shift;
$w = $w->copy;
#warn join',', $w->dims;
$w = $w->squeeze;
my $min = $w->minimum;
$w -= $min;
my $max = $w->maximum;
$w /= $max;
$w = $w->reshape(28,28);
imag2d $w;
}
sub show_neuron{
unless (USE_G2D()){
warn 'Can\'t display neuron. Get OpenGL?';
return;
}
my $self = shift;
my $n = shift // 0;
my $x = shift || 28;
my $y = shift || 28;
my $w = $self->theta1->slice(":,$n")->copy;
$w = $w->squeeze;
( run in 0.564 second using v1.01-cache-2.11-cpan-a5abf4f5562 )