AI-MXNet-Gluon-ModelZoo

 view release on metacpan or  search on metacpan

examples/image_classification.pl  view on Meta::CPAN

use warnings;
use AI::MXNet::Gluon::ModelZoo 'get_model';
use AI::MXNet::Gluon::Utils 'download';
use Getopt::Long qw(HelpMessage);

GetOptions(
    ## my Pembroke Welsh Corgi Kyuubi, enjoing Solar eclipse of August 21, 2017
    'image=s' => \(my $image = 'http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/'.
                               'gluon/dataset/kyuubi.jpg'),
    'model=s' => \(my $model = 'resnet152_v2'),
    'help'    => sub { HelpMessage(0) },
) or HelpMessage(1);

## get a pretrained model (download parameters file if necessary)
my $net = get_model($model, pretrained => 1);

## ImageNet classes
my $fname = download('http://data.mxnet.io/models/imagenet/synset.txt');
my @text_labels = map { chomp; s/^\S+\s+//; $_ } IO::File->new($fname)->getlines;

## get the image from the disk or net

lib/AI/MXNet/Gluon/ModelZoo.pm  view on Meta::CPAN

        The context in which to load the pretrained weights.
    :$root : Str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Returns
    -------
    HybridBlock
        The model.
=cut

sub get_model
{
    if(exists $models{lc $_[1]})
    {
        shift;
    }
    my ($name, %kwargs) = @_;
    $name = lc $name;
    Carp::confess(
        "Model $name is not present in the zoo\nValid models are:\n".
        join(', ', sort keys %models)."\n"
    ) unless exists $models{$name};
    my $sub = $models{$name};
    AI::MXNet::Gluon::ModelZoo::Vision->$sub(%kwargs);
}

sub vision { 'AI::MXNet::Gluon::ModelZoo::Vision' }

1;

=head1 AUTHOR

    Sergey Kolychev, <sergeykolychev.github@gmail.com>

=head1 COPYRIGHT & LICENSE

    This library is licensed under Apache 2.0 license L<https://www.apache.org/licenses/LICENSE-2.0>

lib/AI/MXNet/Gluon/ModelZoo/Vision.pm  view on Meta::CPAN

use warnings;
use AI::MXNet::Gluon::ModelZoo::ModelStore;
use AI::MXNet::Gluon::ModelZoo::Vision::AlexNet;
use AI::MXNet::Gluon::ModelZoo::Vision::DenseNet;
use AI::MXNet::Gluon::ModelZoo::Vision::Inception;
use AI::MXNet::Gluon::ModelZoo::Vision::MobileNet;
use AI::MXNet::Gluon::ModelZoo::Vision::ResNet;
use AI::MXNet::Gluon::ModelZoo::Vision::SqueezeNet;
use AI::MXNet::Gluon::ModelZoo::Vision::VGG;

sub import
{
    my ($class, $short_name) = @_;
    if($short_name)
    {
        $short_name =~ s/[^\w:]//g;
        if(length $short_name)
        {
            my $short_name_package =<<"EOP";
            package $short_name;
            \@${short_name}::ISA = ('AI::MXNet::Gluon::ModelZoo::Vision');

lib/AI/MXNet/Gluon/ModelZoo/Vision/AlexNet.pm  view on Meta::CPAN

    AlexNet model from the "One weird trick..." <https://arxiv.org/abs/1404.5997> paper.

    Parameters
    ----------
    classes : Int, default 1000
        Number of classes for the output layer.
=cut
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments() { ['classes'] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->name_scope(sub {
            $self->features->add(nn->Conv2D(64, kernel_size=>11, strides=>4,
                                            padding=>2, activation=>'relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
            $self->features->add(nn->Conv2D(192, kernel_size=>5, padding=>2,
                                            activation=>'relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
            $self->features->add(nn->Conv2D(384, kernel_size=>3, padding=>1,
                                            activation=>'relu'));
            $self->features->add(nn->Conv2D(256, kernel_size=>3, padding=>1,
                                            activation=>'relu'));

lib/AI/MXNet/Gluon/ModelZoo/Vision/DenseNet.pm  view on Meta::CPAN

use strict;
use warnings;
use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;
use AI::MXNet::Gluon::Mouse;
extends 'AI::MXNet::Gluon::HybridBlock';

func _make_dense_block($num_layers, $bn_size, $growth_rate, $dropout, $stage_index)
{
    my $out = nn->HybridSequential(prefix=>"stage${stage_index}_");
    $out->name_scope(sub {
        for(1..$num_layers)
        {
            $out->add(_make_dense_layer($growth_rate, $bn_size, $dropout));
        }
    });
    return $out;
}

func _make_dense_layer($growth_rate, $bn_size, $dropout)
{

lib/AI/MXNet/Gluon/ModelZoo/Vision/DenseNet.pm  view on Meta::CPAN

        Number of classification classes.
=cut
has [qw/num_init_features
        growth_rate/] => (is => 'ro', isa => 'Int', required => 1);
has 'block_config'    => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'bn_size'         => (is => 'ro', isa => 'Int', default => 4);
has 'dropout'         => (is => 'ro', isa => 'Num', default => 0);
has 'classes'         => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments(){ [qw/num_init_features growth_rate block_config bn_size dropout classes/] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(
            nn->Conv2D(
                $self->num_init_features, kernel_size=>7,
                strides=>2, padding=>3, use_bias=>0
            )
        );
        $self->features->add(nn->BatchNorm());
        $self->features->add(nn->Activation('relu'));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, padding=>1));

lib/AI/MXNet/Gluon/ModelZoo/Vision/Inception.pm  view on Meta::CPAN

            }
        }
        $out->add(_make_basic_conv(%kwargs));
    }
    return $out;
}

func _make_A($pool_features, $prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [64, 1, undef, undef]));
        $out->add(_make_branch(
            '',
            [48, 1, undef, undef],
            [64, 5, undef, 2]
        ));
        $out->add(_make_branch(
            '',
            [64, 1, undef, undef],
            [96, 3, undef, 1],
            [96, 3, undef, 1]
        ));
        $out->add(_make_branch('avg', [$pool_features, 1, undef, undef]));
    });
    return $out;
}

func _make_B($prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [384, 3, 2, undef]));
        $out->add(_make_branch(
            '',
            [64, 1, undef, undef],
            [96, 3, undef, 1],
            [96, 3, 2, undef]
        ));
        $out->add(_make_branch('max'));
    });
    return $out;
}

func _make_C($channels_7x7, $prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [192, 1, undef, undef]));
        $out->add(_make_branch(
            '',
            [$channels_7x7, 1, undef, undef],
            [$channels_7x7, [1, 7], undef, [0, 3]],
            [192, [7, 1], undef, [3, 0]]
        ));
        $out->add(_make_branch(
            '',
            [$channels_7x7, 1, undef, undef],

lib/AI/MXNet/Gluon/ModelZoo/Vision/Inception.pm  view on Meta::CPAN

            'avg',
            [192, 1, undef, undef]
        ));
    });
    return $out;
}

func _make_D($prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch(
            '',
            [192, 1, undef, undef],
            [320, 3, 2, undef]
        ));
        $out->add(_make_branch(
            '',
            [192, 1, undef, undef],
            [192, [1, 7], undef, [0, 3]],
            [192, [7, 1], undef, [3, 0]],
            [192, 3, 2, undef]
        ));
        $out->add(_make_branch('max'));
    });
    return $out;
}

func _make_E($prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [320, 1, undef, undef]));

        my $branch_3x3 = nn->HybridSequential(prefix=>'');
        $out->add($branch_3x3);
        $branch_3x3->add(_make_branch(
            '',
            [384, 1, undef, undef]
        ));
        my $branch_3x3_split = nn->HybridConcurrent(axis=>1, prefix=>'');
        $branch_3x3_split->add(_make_branch('', [384, [1, 3], undef, [0, 1]]));

lib/AI/MXNet/Gluon/ModelZoo/Vision/Inception.pm  view on Meta::CPAN


    Parameters
    ----------
    classes : Int, default 1000
        Number of classification classes.
=cut

has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments(){ ['classes'] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(_make_basic_conv(channels=>32, kernel_size=>3, strides=>2));
        $self->features->add(_make_basic_conv(channels=>32, kernel_size=>3));
        $self->features->add(_make_basic_conv(channels=>64, kernel_size=>3, padding=>1));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
        $self->features->add(_make_basic_conv(channels=>80, kernel_size=>1));
        $self->features->add(_make_basic_conv(channels=>192, kernel_size=>3));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
        $self->features->add(_make_A(32, 'A1_'));
        $self->features->add(_make_A(64, 'A2_'));

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

)
{
    $out->add(nn->Conv2D($channels, $kernel, $stride, $pad, groups=>$num_group, use_bias=>0));
    $out->add(nn->BatchNorm(scale=>1));
    if($active)
    {
        $out->add($relu6 ? AI::MXNet::Gluon::ModelZoo::Vision::MobileNet::RELU6->new : nn->Activation('relu'));
    }
}

sub BUILD
{
    my $self = shift;
    $self->use_shortcut($self->stride == 1 and $self->in_channels == $self->channels);
    $self->name_scope(sub {
        $self->out(nn->HybridSequential());
        _add_conv($self->out, $self->in_channels * $self->t, relu6=>1);
        _add_conv(
            $self->out, $self->in_channels * $self->t, kernel=>3, stride=>$self->stride,
            pad=>1, num_group=>$self->in_channels * $self->t, relu6=>1
        );
        _add_conv($self->out, $self->channels, active=>0, relu6=>1);
    });
}

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

}


func _add_conv_dw($out, :$dw_channels=, :$channels=, :$stride=, :$relu6=0)
{
    _add_conv($out, channels=>$dw_channels, kernel=>3, stride=>$stride,
              pad=>1, num_group=>$dw_channels, relu6=>$relu6);
    _add_conv($out, channels=>$channels, relu6=>$relu6);
}

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->name_scope(sub {
            _add_conv($self->features, channels=>int(32 * $self->multiplier), kernel=>3, pad=>1, stride=>2);
            my $dw_channels = [map { int($_ * $self->multiplier) } (32, 64, (128)x2, (256)x2, (512)x6, 1024)];
            my $channels = [map { int($_ * $self->multiplier) } (64, (128)x2, (256)x2, (512)x6, (1024)x2)];
            my $strides = [(1, 2)x3, (1)x5, 2, 1];
            for(zip($dw_channels, $channels, $strides))
            {
                my ($dwc, $c, $s) = @$_;
                _add_conv_dw($self->features, dw_channels=>$dwc, channels=>$c, stride=>$s);
            }
            $self->features->add(nn->GlobalAvgPool2D());

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

)
{
    $out->add(nn->Conv2D($channels, $kernel, $stride, $pad, groups=>$num_group, use_bias=>0));
    $out->add(nn->BatchNorm(scale=>1));
    if($active)
    {
        $out->add($relu6 ? AI::MXNet::Gluon::ModelZoo::Vision::MobileNet::RELU6->new : nn->Activation('relu'));
    }
}

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>'features_'));
        $self->features->name_scope(sub {
            _add_conv(
                $self->features, int(32 * $self->multiplier), kernel=>3,
                stride=>2, pad=>1, relu6=>1
            );

            my $in_channels_group = [map { int($_ * $self->multiplier) } (32, 16, (24)x2, (32)x3, (64)x4, (96)x3, (160)x3)];
            my $channels_group = [map { int($_ * $self->multiplier) } (16, (24)x2, (32)x3, (64)x4, (96)x3, (160)x3, 320)];
            my $ts = [1, (6)x16];
            my $strides = [(1, 2)x2, 1, 1, 2, (1)x6, 2, (1)x3];

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

                    )
                );
            }

            my $last_channels = $self->multiplier > 1 ? int(1280 * $self->multiplier) : 1280;
            _add_conv($self->features, $last_channels, relu6=>1);
            $self->features->add(nn->GlobalAvgPool2D());
        });

        $self->output(nn->HybridSequential(prefix=>'output_'));
        $self->output->name_scope(sub {
            $self->output->add(
                nn->Conv2D($self->classes, 1, use_bias=>0, prefix=>'pred_'),
                nn->Flatten()
            );
        });
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'in_channels' => (is => 'ro', isa => 'Int', default => 0);
method python_constructor_arguments() { [qw/channels stride downsample/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    $self->body(nn->HybridSequential(prefix=>''));
    $self->body->add(_conv3x3($self->channels, $self->stride, $self->in_channels));
    $self->body->add(nn->BatchNorm());
    $self->body->add(nn->Activation('relu'));
    $self->body->add(_conv3x3($self->channels, 1, $self->channels));
    $self->body->add(nn->BatchNorm());
    if($self->downsample)
    {

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'in_channels' => (is => 'ro', isa => 'Int', default => 0);
method python_constructor_arguments() { [qw/channels stride downsample/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    $self->body(nn->HybridSequential(prefix=>''));
    $self->body->add(nn->Conv2D(int($self->channels/4), kernel_size=>1, strides=>$self->stride));
    $self->body->add(nn->BatchNorm());
    $self->body->add(nn->Activation('relu'));
    $self->body->add(_conv3x3(int($self->channels/4), 1, int($self->channels/4)));
    $self->body->add(nn->BatchNorm());
    $self->body->add(nn->Activation('relu'));
    $self->body->add(nn->Conv2D($self->channels, kernel_size=>1, strides=>1));

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'in_channels' => (is => 'ro', isa => 'Int', default => 0);
method python_constructor_arguments() { [qw/channels stride downsample/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    $self->bn1(nn->BatchNorm());
    $self->conv1(_conv3x3($self->channels, $self->stride, $self->in_channels));
    $self->bn2(nn->BatchNorm());
    $self->conv2(_conv3x3($self->channels, 1, $self->channels));
    if($self->downsample)
    {
        $self->downsample(
            nn->Conv2D($self->channels, kernel_size=>1, strides=>$self->stride,

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'in_channels' => (is => 'ro', isa => 'Int', default => 0);
method python_constructor_arguments() { [qw/channels stride downsample/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    $self->bn1(nn->BatchNorm());
    $self->conv1(nn->Conv2D(int($self->channels/4), kernel_size=>1, strides=>1, use_bias=>0));
    $self->bn2(nn->BatchNorm());
    $self->conv2(_conv3x3(int($self->channels/4), $self->stride, int($self->channels/4)));
    $self->bn3(nn->BatchNorm());
    $self->conv3(nn->Conv2D($self->channels, kernel_size=>1, strides=>1, use_bias=>0));
    if($self->downsample)
    {

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'thumbnail' => (is => 'ro', isa => 'Bool', default => 0);
method python_constructor_arguments() { [qw/block layers channels classes thumbnail/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == (@{ $self->channels } - 1));
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        if($self->thumbnail)
        {
            $self->features->add(_conv3x3($self->channels->[0], 1, 0));
        }
        else
        {
            $self->features->add(nn->Conv2D($self->channels->[0], 7, 2, 3, use_bias=>0));
            $self->features->add(nn->BatchNorm());
            $self->features->add(nn->Activation('relu'));

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

            );
        }
        $self->features->add(nn->GlobalAvgPool2D());
        $self->output(nn->Dense($self->classes, in_units=>$self->channels->[-1]));
    });
}

method _make_layer($block, $layers, $channels, $stride, $stage_index, :$in_channels=0)
{
    my $layer = nn->HybridSequential(prefix=>"stage${stage_index}_");
    $layer->name_scope(sub {
        $layer->add(
            $block->new(
                $channels, $stride, $channels != $in_channels, in_channels=>$in_channels,
                prefix=>''
            )
        );
        for(1..$layers-1)
        {
            $layer->add($block->new($channels, 1, 0, in_channels=>$channels, prefix=>''));
        }

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

has 'thumbnail' => (is => 'ro', isa => 'Bool', default => 0);
method python_constructor_arguments() { [qw/block layers channels classes thumbnail/] }
func _conv3x3($channels, $stride, $in_channels)
{
    return nn->Conv2D(
        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == (@{ $self->channels } - 1));
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(nn->BatchNorm(scale=>0, center=>0));
        if($self->thumbnail)
        {
            $self->features->add(_conv3x3($self->channels->[0], 1, 0));
        }
        else
        {
            $self->features->add(nn->Conv2D($self->channels->[0], 7, 2, 3, use_bias=>0));
            $self->features->add(nn->BatchNorm());

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

        $self->features->add(nn->Activation('relu'));
        $self->features->add(nn->GlobalAvgPool2D());
        $self->features->add(nn->Flatten());
        $self->output(nn->Dense($self->classes, in_units=>$in_channels));
    });
}

method _make_layer($block, $layers, $channels, $stride, $stage_index, :$in_channels=0)
{
    my $layer = nn->HybridSequential(prefix=>"stage${stage_index}_");
    $layer->name_scope(sub {
        $layer->add(
            $block->new(
                $channels, $stride, $channels != $in_channels, in_channels=>$in_channels,
                prefix=>''
            )
        );
        for(1..$layers-1)
        {
            $layer->add($block->new($channels, 1, 0, in_channels=>$channels, prefix=>''));
        }

lib/AI/MXNet/Gluon/ModelZoo/Vision/SqueezeNet.pm  view on Meta::CPAN

    version : Str
        Version of squeezenet. Options are '1.0', '1.1'.
    classes : Int, default 1000
        Number of classification classes.
=cut

has 'version' => (is => 'ro', isa => enum([qw[1.0 1.1]]), required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments() { [qw/version classes/] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        if($self->version eq '1.0')
        {
            $self->features->add(nn->Conv2D(96, kernel_size=>7, strides=>2));
            $self->features->add(nn->Activation('relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(_make_fire(32, 128, 128));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));

lib/AI/MXNet/Gluon/ModelZoo/Vision/VGG.pm  view on Meta::CPAN

        Number of classification classes.
    batch_norm : Bool, default 0
        Use batch normalization.
=cut
method python_constructor_arguments() { [qw/layers filters classes batch_norm/] }
has ['layers',
     'filters']   => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has  'classes'    => (is => 'ro', isa => 'Int', default => 1000);
has  'batch_norm' => (is => 'ro', isa => 'Bool', default => 0);

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == @{ $self->filters });
    $self->name_scope(sub {
        $self->features($self->_make_features());
        $self->features->add(nn->Dense(4096, activation=>'relu',
                                       weight_initializer=>'normal',
                                       bias_initializer=>'zeros'));
        $self->features->add(nn->Dropout(rate=>0.5));
        $self->features->add(nn->Dense(4096, activation=>'relu',
                                       weight_initializer=>'normal',
                                       bias_initializer=>'zeros'));
        $self->features->add(nn->Dropout(rate=>0.5));
        $self->output(nn->Dense($self->classes,

t/test_gluon_model_zoo.t  view on Meta::CPAN

# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

use strict;
use warnings;
use AI::MXNet::Gluon::ModelZoo qw(get_model);
use Test::More tests => 34;

sub test_models
{
    my @all_models = ('resnet34_v1', 'resnet18_v1', 'resnet50_v1', 'resnet101_v1', 'resnet152_v1',
                  'resnet18_v2', 'resnet34_v2', 'resnet50_v2', 'resnet101_v2', 'resnet152_v2',
                  'vgg11', 'vgg13', 'vgg16', 'vgg19',
                  'vgg11_bn', 'vgg13_bn', 'vgg16_bn', 'vgg19_bn',
                  'alexnet', 'inceptionv3',
                  'densenet121', 'densenet161', 'densenet169', 'densenet201',
                  'squeezenet1.0', 'squeezenet1.1',
                  'mobilenet1.0', 'mobilenet0.75', 'mobilenet0.5', 'mobilenet0.25',
                  'mobilenetv2_1.0', 'mobilenetv2_0.75', 'mobilenetv2_0.5', 'mobilenetv2_0.25');



( run in 0.867 second using v1.01-cache-2.11-cpan-a5abf4f5562 )