view release on metacpan or search on metacpan
libsecp256k1/configure.ac view on Meta::CPAN
;;
arm32)
SECP_ARM32_ASM_CHECK
if test x"$has_arm32_asm" != x"yes"; then
AC_MSG_ERROR([ARM32 assembly requested but not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly selection])
;;
esac
fi
# Select assembly
enable_external_asm=no
case $set_asm in
x86_64)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_ASM_X86_64=1"
;;
arm32)
enable_external_asm=yes
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly selection])
;;
esac
if test x"$enable_external_asm" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_EXTERNAL_ASM=1"
fi
# Select wide multiplication implementation
case $set_widemul in
libsecp256k1/src/ecmult_gen_impl.h view on Meta::CPAN
* secp256k1_ecmult_gen_prec_table[b][index] stores the table(b, m) entries. Index
* is the relevant mask(b) bits of m packed together without gaps. */
/* Outer loop: iterate over comb_off from COMB_SPACING - 1 down to 0. */
comb_off = COMB_SPACING - 1;
while (1) {
uint32_t block;
uint32_t bit_pos = comb_off;
/* Inner loop: for each block, add table entries to the result. */
for (block = 0; block < COMB_BLOCKS; ++block) {
/* Gather the mask(block)-selected bits of d into bits. They're packed:
* bits[tooth] = d[(block*COMB_TEETH + tooth)*COMB_SPACING + comb_off]. */
uint32_t bits = 0, sign, abs, index, tooth;
/* Instead of reading individual bits here to construct the bits variable,
* build up the result by xoring rotated reads together. In every iteration,
* one additional bit is made correct, starting at the bottom. The bits
* above that contain junk. This reduces leakage by avoiding computations
* on variables that can have only a low number of possible values (e.g.,
* just two values when reading a single bit into a variable.) See:
* https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-alam.pdf
*/
libsecp256k1/src/field.h view on Meta::CPAN
int normalized;
#else
# define SECP256K1_FE_VERIFY_FIELDS
#endif
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26.h"
#else
#error "Please select wide multiplication implementation"
#endif
#ifdef VERIFY
/* Magnitude and normalized value for constants. */
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
/* Magnitude is 0 for constant 0; 1 otherwise. */ \
, (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
/* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
, (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
#else
libsecp256k1/src/field_impl.h view on Meta::CPAN
#define SECP256K1_FIELD_IMPL_H
#include "field.h"
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
secp256k1_memclear(a, sizeof(secp256k1_fe));
}
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
libsecp256k1/src/int128.h view on Meta::CPAN
#define SECP256K1_INT128_H
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct.h"
# else
# error "Please select int128 implementation"
# endif
/* Construct an unsigned 128-bit value from a high and a low 64-bit value. */
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo);
/* Multiply two unsigned 64-bit values a and b and write the result to r. */
static SECP256K1_INLINE void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b);
/* Multiply two unsigned 64-bit values a and b and add the result to r.
* The final result is taken modulo 2^128.
libsecp256k1/src/int128_impl.h view on Meta::CPAN
#include "util.h"
#include "int128.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native_impl.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct_impl.h"
# else
# error "Please select int128 implementation"
# endif
#endif
#endif
libsecp256k1/src/modules/ellswift/tests_impl.h view on Meta::CPAN
};
struct ellswift_xdh_test {
unsigned char priv_ours[32];
unsigned char ellswift_ours[64];
unsigned char ellswift_theirs[64];
int initiating;
unsigned char shared_secret[32];
};
/* Set of (point, encodings) test vectors, selected to maximize branch coverage, part of the BIP324
* test vectors. Created using an independent implementation, and tested decoding against paper
* authors' code. */
static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
{0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP25...
{0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP25...
{0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP25...
{0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP25...
{0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP25...
{0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP25...
{0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP25...
libsecp256k1/src/modules/ellswift/tests_impl.h view on Meta::CPAN
{0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP25...
{0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP25...
{0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP25...
{0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP25...
{0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP25...
{0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP25...
{0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP25...
{0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP25...
};
/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage, part of the BIP324
* test vectors. Created using an independent implementation, and tested decoding against the paper
* authors' code. */
static const struct ellswift_decode_test ellswift_decode_tests[] = {
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82...
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff...
libsecp256k1/src/scalar.h view on Meta::CPAN
#include "util.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low.h"
#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32.h"
#else
#error "Please select wide multiplication implementation"
#endif
/** Clear a scalar to prevent the leak of sensitive data. */
static void secp256k1_scalar_clear(secp256k1_scalar *r);
/** Access bits (1 < count <= 32) from a scalar. All requested bits must belong to the same 32-bit limb. */
static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Access bits (1 < count <= 32) from a scalar. offset + count must be < 256. Not constant time in offset and count. */
static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
libsecp256k1/src/scalar_impl.h view on Meta::CPAN
#include "scalar.h"
#include "util.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif
static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
secp256k1_memclear(r, sizeof(secp256k1_scalar));
}
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
libsecp256k1/src/tests.c view on Meta::CPAN
/* Test with empty scratch space. It should compute the correct result using
* ecmult_mult_simple algorithm which doesn't require a scratch space. */
scratch = secp256k1_scratch_create(&CTX->error_callback, 0);
CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
secp256k1_scratch_destroy(&CTX->error_callback, scratch);
/* Test with space for 1 point in pippenger. That's not enough because
* ecmult_multi selects strauss which requires more memory. It should
* therefore select the simple algorithm. */
scratch = secp256k1_scratch_create(&CTX->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
secp256k1_scratch_destroy(&CTX->error_callback, scratch);
for(i = 1; i <= n_points; i++) {
if (i > ECMULT_PIPPENGER_THRESHOLD) {
int bucket_window = secp256k1_pippenger_bucket_window(i);
size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window);
libsecp256k1/src/tests_exhaustive.c view on Meta::CPAN
if (argc > 4) {
num_cores = strtol(argv[3], NULL, 0);
this_core = strtol(argv[4], NULL, 0);
if (num_cores < 1 || this_core >= num_cores) {
fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]);
return 1;
}
printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1);
}
/* Recreate the ecmult{,_gen} tables using the right generator (as selected via EXHAUSTIVE_TEST_ORDER) */
secp256k1_ecmult_gen_compute_table(&secp256k1_ecmult_gen_prec_table[0][0], &secp256k1_ge_const_g, COMB_BLOCKS, COMB_TEETH, COMB_SPACING);
secp256k1_ecmult_compute_two_tables(secp256k1_pre_g, secp256k1_pre_g_128, WINDOW_G, &secp256k1_ge_const_g);
while (count--) {
/* Build context */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
testrand256(rand32);
CHECK(secp256k1_context_randomize(ctx, rand32));
/* Generate the entire group */