AI-Genetic-Pro

 view release on metacpan or  search on metacpan

README  view on Meta::CPAN

        }
        
        my $ga = AI::Genetic::Pro->new(        
            -fitness         => \&fitness,        # fitness function
            -terminate       => \&terminate,      # terminate function
            -type            => 'bitvector',      # type of chromosomes
            -population      => 1000,             # population
            -crossover       => 0.9,              # probab. of crossover
            -mutation        => 0.01,             # probab. of mutation
            -parents         => 2,                # number  of parents
            -selection       => [ 'Roulette' ],   # selection strategy
            -strategy        => [ 'Points', 2 ],  # crossover strategy
            -cache           => 0,                # cache results
            -history         => 1,                # remember best results
            -preserve        => 3,                # remember the bests
            -variable_length => 1,                # turn variable length ON
            -mce             => 1,                # optional MCE support
            -workers         => 3,                # number of workers (MCE)
        );
            
        # init population of 32-bit vectors

README  view on Meta::CPAN

      This module was designed to use as little memory as possible. A
      population of size 10000 consisting of 92-bit vectors uses only ~24MB
      (AI::Genetic would use about 78MB). However - if you use MCE - there
      will be bigger memory consumption. This is consequence of necessity
      of synchronization between many processes.

    Advanced options

      To provide more flexibility AI::Genetic::Pro supports many
      statistical distributions, such as uniform, natural, chi_square and
      others. This feature can be used in selection and/or crossover. See
      the documentation below.

METHODS

    $ga->new( %options )

      Constructor. It accepts options in hash-value style. See options and
      an example below.

      -fitness

README  view on Meta::CPAN

	  ($ga->as_array($chromosome)) can have undef values on the left
	  side (only). In a scalar context each undefined value is replaced
	  with a single space. If You don't want to see any undef or space,
	  just use as_array_def_only and as_string_def_only instead of
	  as_array and as_string.

      -parents

	This defines how many parents should be used in a crossover.

      -selection

	This defines how individuals/chromosomes are selected to crossover.
	It expects an array reference listed below:

            -selection => [ $type, @params ]

	where type is one of:

	RouletteBasic

	  Each individual/chromosome can be selected with probability
	  proportional to its fitness.

	Roulette

	  First the best individuals/chromosomes are selected. From this
	  collection parents are selected with probability poportional to
	  their fitness.

	RouletteDistribution

	  Each individual/chromosome has a portion of roulette wheel
	  proportional to its fitness. Selection is done with the specified
	  distribution. Supported distributions and parameters are listed
	  below.

	  -selection => [ 'RouletteDistribution', 'uniform' ]

	    Standard uniform distribution. No additional parameters are
	    needed.

	  -selection => [ 'RouletteDistribution', 'normal', $av, $sd ]

	    Normal distribution, where $av is average (default: size of
	    population /2) and $$sd is standard deviation (default: size of
	    population).

	  -selection => [ 'RouletteDistribution', 'beta', $aa, $bb ]

	    Beta distribution. The density of the beta is:

                X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

	    $aa and $bb are set by default to number of parents.

	    Argument restrictions: Both $aa and $bb must not be less than
	    1.0E-37.

	  -selection => [ 'RouletteDistribution', 'binomial' ]

	    Binomial distribution. No additional parameters are needed.

	  -selection => [ 'RouletteDistribution', 'chi_square', $df ]

	    Chi-square distribution with $df degrees of freedom. $df by
	    default is set to size of population.

	  -selection => [ 'RouletteDistribution', 'exponential', $av ]

	    Exponential distribution, where $av is average . $av by default
	    is set to size of population.

	  -selection => [ 'RouletteDistribution', 'poisson', $mu ]

	    Poisson distribution, where $mu is mean. $mu by default is set
	    to size of population.

	Distribution

	  Chromosomes/individuals are selected with specified distribution.
	  See below.

	  -selection => [ 'Distribution', 'uniform' ]

	    Standard uniform distribution. No additional parameters are
	    needed.

	  -selection => [ 'Distribution', 'normal', $av, $sd ]

	    Normal distribution, where $av is average (default: size of
	    population /2) and $$sd is standard deviation (default: size of
	    population).

	  -selection => [ 'Distribution', 'beta', $aa, $bb ]

	    Beta distribution. The density of the beta is:

                X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

	    $aa and $bb are set by default to number of parents.

	    Argument restrictions: Both $aa and $bb must not be less than
	    1.0E-37.

	  -selection => [ 'Distribution', 'binomial' ]

	    Binomial distribution. No additional parameters are needed.

	  -selection => [ 'Distribution', 'chi_square', $df ]

	    Chi-square distribution with $df degrees of freedom. $df by
	    default is set to size of population.

	  -selection => [ 'Distribution', 'exponential', $av ]

	    Exponential distribution, where $av is average . $av by default
	    is set to size of population.

	  -selection => [ 'Distribution', 'poisson', $mu ]

	    Poisson distribution, where $mu is mean. $mu by default is set
	    to size of population.

      -strategy

	This defines the astrategy of crossover operation. It expects an
	array reference listed below:

            -strategy => [ $type, @params ]

	where type is one of:

	PointsSimple

	  Simple crossover in one or many points. The best
	  chromosomes/individuals are selected for the new generation. For
	  example:

              -strategy => [ 'PointsSimple', $n ]

	  where $n is the number of points for crossing.

	PointsBasic

	  Crossover in one or many points. In basic crossover selected
	  parents are crossed and one (randomly-chosen) child is moved to
	  the new generation. For example:

              -strategy => [ 'PointsBasic', $n ]

	  where $n is the number of points for crossing.

	Points

	  Crossover in one or many points. In normal crossover selected
	  parents are crossed and the best child is moved to the new
	  generation. For example:

              -strategy => [ 'Points', $n ]

	  where $n is number of points for crossing.

	PointsAdvenced

	  Crossover in one or many points. After crossover the best
	  chromosomes/individuals from all parents and chidren are selected
	  for the new generation. For example:

              -strategy => [ 'PointsAdvanced', $n ]

	  where $n is the number of points for crossing.

	Distribution

	  In distribution crossover parents are crossed in points selected
	  with the specified distribution. See below.

	  -strategy => [ 'Distribution', 'uniform' ]

	    Standard uniform distribution. No additional parameters are
	    needed.

	  -strategy => [ 'Distribution', 'normal', $av, $sd ]

	    Normal distribution, where $av is average (default: number of

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

	terminate
	chromosomes 
	crossover 
	native
	parents 		_parents 
	history 		_history
	fitness 		_fitness 		_fitness_real
	cache
	mutation 		_mutator
	strategy 		_strategist
	selection 		_selector 
	_translations
	generation
	preserve		
	variable_length
	_fix_range
	_package
	_length
	strict			_strict
	workers
	size

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

#=======================================================================
sub spew {
	#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
	STORABLE->use( qw( store retrieve freeze thaw ) ) or croak(q/You need "/.STORABLE.q/" module to save a state of "/.__PACKAGE__.q/"!/);
	$Storable::Deparse = 1;
	$Storable::Eval = 1;
	#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
	my ( $self ) = @_;
 	
	my $clone = { 
		_selector	=> undef,
		_strategist	=> undef,
		_mutator	=> undef,
	};
	
	$clone->{ chromosomes } = [ map { ${ tied( @$_ ) } } @{ $self->chromosomes } ] 
		if $self->_package;
	
	foreach my $key(keys %$self){
		next if exists $clone->{$key};
		$clone->{$key} = $self->{$key};

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

#		delete $self->_fitness->{$idx};
#		delete $self->chromosomes->[$idx];
#	}
#	
#	$self->_fitness(\%fitness);
#	$self->chromosomes(\@chromosomes);

	return;
}
#=======================================================================
sub _select_parents {
	my ($self) = @_;
	unless($self->_selector){
		croak "You must specify a selection strategy!"
			unless defined $self->selection;
		my @tmp = @{$self->selection};
		my $selector = q/AI::Genetic::Pro::Selection::/ . shift @tmp;
		$selector->require or die $!;
		$self->_selector($selector->new(@tmp));
	}
	
	$self->_parents($self->_selector->run($self));
	
	return;
}
#=======================================================================
sub _crossover {
	my ($self) = @_;
	
	unless($self->_strategist){
		my @tmp = @{$self->strategy};
		my $strategist = q/AI::Genetic::Pro::Crossover::/ . shift @tmp;

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

	
	# split into two loops just for speed
	unless($self->preserve){
		for(my $i = 0; $i != $generations; $i++){
			# terminate ----------------------------------------------------
			last if $self->terminate and $self->terminate->($self);
			# update generation --------------------------------------------
			$self->generation($self->generation + 1);
			# update history -----------------------------------------------
			$self->_save_history;
			# selection ----------------------------------------------------
			$self->_select_parents();
			# crossover ----------------------------------------------------
			$self->_crossover();
			# mutation -----------------------------------------------------
			$self->_mutation();
		}
	}else{
		croak('You cannot preserve more chromosomes than is in population!') if $self->preserve > $self->population;
		my @preserved;
		for(my $i = 0; $i != $generations; $i++){
			# terminate ----------------------------------------------------
			last if $self->terminate and $self->terminate->($self);
			# update generation --------------------------------------------
			$self->generation($self->generation + 1);
			# update history -----------------------------------------------
			$self->_save_history;
			#---------------------------------------------------------------
			# preservation of N unique chromosomes
			@preserved = map { clone($_) } @{ $self->getFittest_as_arrayref($self->preserve - 1, 1) };
			# selection ----------------------------------------------------
			$self->_select_parents();
			# crossover ----------------------------------------------------
			$self->_crossover();
			# mutation -----------------------------------------------------
			$self->_mutation();
			#---------------------------------------------------------------
			for(@preserved){
				my $idx = int rand @{$self->chromosomes};
				$self->chromosomes->[$idx] = $_;
				$self->_fitness->{$idx} = $self->fitness()->($self, $_);
			}

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

    }
    
    my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 1000,             # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.01,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 1,                # remember best results
        -preserve        => 3,                # remember the bests
        -variable_length => 1,                # turn variable length ON
        -mce             => 1,                # optional MCE support
        -workers         => 3,                # number of workers (MCE)
    );
	
    # init population of 32-bit vectors

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

This module was designed to use as little memory as possible. A population
of size 10000 consisting of 92-bit vectors uses only ~24MB (C<AI::Genetic> 
would use about 78MB). However - if you use MCE - there will be bigger 
memory consumption. This is consequence of necessity of synchronization 
between many processes.

=item Advanced options

To provide more flexibility C<AI::Genetic::Pro> supports many 
statistical distributions, such as C<uniform>, C<natural>, C<chi_square>
and others. This feature can be used in selection and/or crossover. See
the documentation below.

=back

=head1 METHODS

=over 4

=item I<$ga>-E<gt>B<new>( %options )

lib/AI/Genetic/Pro.pm  view on Meta::CPAN

undefined value is replaced with a single space. If You don't want to see
any C<undef> or space, just use C<as_array_def_only> and C<as_string_def_only> 
instead of C<as_array> and C<as_string>.

=back

=item -parents  

This defines how many parents should be used in a crossover.

=item -selection

This defines how individuals/chromosomes are selected to crossover. It expects an array reference listed below:

    -selection => [ $type, @params ]

where type is one of:

=over 8

=item B<RouletteBasic>

Each individual/chromosome can be selected with probability proportional to its fitness.

=item B<Roulette>

First the best individuals/chromosomes are selected. From this collection
parents are selected with probability poportional to their fitness.

=item B<RouletteDistribution>

Each individual/chromosome has a portion of roulette wheel proportional to its
fitness. Selection is done with the specified distribution. Supported
distributions and parameters are listed below.

=over 12

=item C<-selection =E<gt> [ 'RouletteDistribution', 'uniform' ]>

Standard uniform distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'normal', $av, $sd ]>

Normal distribution, where C<$av> is average (default: size of population /2) and $C<$sd> is standard deviation (default: size of population).


=item C<-selection =E<gt> [ 'RouletteDistribution', 'beta', $aa, $bb ]>

I<Beta> distribution.  The density of the beta is:

    X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

C<$aa> and C<$bb> are set by default to number of parents.

B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'binomial' ]>

Binomial distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'chi_square', $df ]>

Chi-square distribution with C<$df> degrees of freedom. C<$df> by default is set to size of population.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'exponential', $av ]>

Exponential distribution, where C<$av> is average . C<$av> by default is set to size of population.

=item C<-selection =E<gt> [ 'RouletteDistribution', 'poisson', $mu ]>

Poisson distribution, where C<$mu> is mean. C<$mu> by default is set to size of population.

=back

=item B<Distribution>

Chromosomes/individuals are selected with specified distribution. See below.

=over 12

=item C<-selection =E<gt> [ 'Distribution', 'uniform' ]>

Standard uniform distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'Distribution', 'normal', $av, $sd ]>

Normal distribution, where C<$av> is average (default: size of population /2) and $C<$sd> is standard deviation (default: size of population).

=item C<-selection =E<gt> [ 'Distribution', 'beta', $aa, $bb ]>

I<Beta> distribution.  The density of the beta is:

    X^($aa - 1) * (1 - X)^($bb - 1) / B($aa , $bb) for 0 < X < 1.

C<$aa> and C<$bb> are set by default to number of parents.

B<Argument restrictions:> Both $aa and $bb must not be less than 1.0E-37.

=item C<-selection =E<gt> [ 'Distribution', 'binomial' ]>

Binomial distribution. No additional parameters are needed.

=item C<-selection =E<gt> [ 'Distribution', 'chi_square', $df ]>

Chi-square distribution with C<$df> degrees of freedom. C<$df> by default is set to size of population.

=item C<-selection =E<gt> [ 'Distribution', 'exponential', $av ]>

Exponential distribution, where C<$av> is average . C<$av> by default is set to size of population.

=item C<-selection =E<gt> [ 'Distribution', 'poisson', $mu ]>

Poisson distribution, where C<$mu> is mean. C<$mu> by default is set to size of population.

=back

=back

=item -strategy 

This defines the astrategy of crossover operation. It expects an array

lib/AI/Genetic/Pro.pm  view on Meta::CPAN


    -strategy => [ $type, @params ]

where type is one of:

=over 4

=item PointsSimple

Simple crossover in one or many points. The best chromosomes/individuals are
selected for the new generation. For example:

    -strategy => [ 'PointsSimple', $n ]

where C<$n> is the number of points for crossing.

=item PointsBasic

Crossover in one or many points. In basic crossover selected parents are
crossed and one (randomly-chosen) child is moved to the new generation. For
example:

    -strategy => [ 'PointsBasic', $n ]

where C<$n> is the number of points for crossing.

=item Points

Crossover in one or many points. In normal crossover selected parents are crossed and the best child is moved to the new generation. For example:

    -strategy => [ 'Points', $n ]

where C<$n> is number of points for crossing.

=item PointsAdvenced

Crossover in one or many points. After crossover the best
chromosomes/individuals from all parents and chidren are selected for the  new
generation. For example:

    -strategy => [ 'PointsAdvanced', $n ]

where C<$n> is the number of points for crossing.

=item Distribution

In I<distribution> crossover parents are crossed in points selected with the
specified distribution. See below.

=over 8

=item C<-strategy =E<gt> [ 'Distribution', 'uniform' ]>

Standard uniform distribution. No additional parameters are needed.

=item C<-strategy =E<gt> [ 'Distribution', 'normal', $av, $sd ]>

lib/AI/Genetic/Pro/Selection/Distribution.pm  view on Meta::CPAN

		my $av = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents, 
			pack 'I*', map { int $_ % $high } random_exponential($parents, $av)  
				for 0..$#$chromosomes;
	}elsif($self->{type} eq q/poisson/){
		my $mu = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents,
			pack 'I*', map { int $_ % $high } random_poisson($parents, $mu)
				for 0..$#$chromosomes;
	}else{
		die qq/Unknown distribution "$self->{type}" in "selection"!\n/;
	}
	
	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

lib/AI/Genetic/Pro/Selection/RouletteDistribution.pm  view on Meta::CPAN

					map { int $_ % $high } random_exponential($parents, $av)  
						for 0..$#$chromosomes;
	}elsif($self->{type} eq q/poisson/){
		my $mu = defined $self->{params}->[0] ? $self->{params}->[0] : $#$chromosomes/2;
		push @parents,
			pack 'I*', 
				map { roulette($total, \@wheel) }
					map { int $_ % $high } random_poisson($parents, $mu)
						for 0..$#$chromosomes;
	}else{
		die qq/Unknown distribution "$self->{type}" in "selection"!\n/;
	}
	
	#-------------------------------------------------------------------
	return \@parents;
}
#=======================================================================

1;

t/01_inject.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/02_cache.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => sub { return; },  # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 10,               # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 0,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);
$ga->chromosomes( [ ] );

t/02_cache.t  view on Meta::CPAN



$ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => sub { return; },  # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 10,               # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);
$ga->chromosomes( [ ] );

t/03_bitvectors_constant_length.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/04_bitvectors_variable_length_I.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/05_bitvectors_variable_length_II.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/06_listvectors_constant_length.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


my @data;
push @data, [ MIN..MAX ] for 1..SIZE;

t/07_listvectors_variable_length_I.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);


my @data;
push @data, [ MIN..MAX ] for 1..SIZE;

t/08_listvectors_variable_length_II.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'listvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.01,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);


my @data;
push @data, [ MIN..MAX ] for 1..SIZE;

t/09_rangevectors_constant_length.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


my @data;
push @data, [ MIN, MAX ] for 1..SIZE;

t/10_rangevectors_variable_length_I.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 1,                # turn variable length OFF
);


my @data;
push @data, [ MIN, MAX ] for 1..SIZE;

t/11_rangevectors_variable_length_II.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'rangevector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 2,                # turn variable length OFF
);


my @data;
push @data, [ MIN, MAX ] for 1..SIZE;

t/12_combinations_constant_length.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'combination',    # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'PMX' ],        # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);


$ga->init( [ 'a'..'h' ] );

t/13_preserve.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 4,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/14_getFittest.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 4,                # remember the bests
        -variable_length => 0,                # turn variable length OFF
);

# init population of 32-bit vectors
$ga->init(BITS);

t/15_bitvectors_constant_length_MCE.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-mce			 => 1,                # turn ON Many-Core Engine
);

# init population of 32-bit vectors
$ga->init(BITS);

t/16_bitvectors_constant_length_-_native_arrays.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-native			 => 1,				  # turn ON use of native arrays
);

# init population of 32-bit vectors
$ga->init(BITS);

t/17_bitvectors_constant_length_MCE_-_native_arrays.t  view on Meta::CPAN

}

my $ga = AI::Genetic::Pro->new(        
        -fitness         => \&fitness,        # fitness function
        -terminate       => \&terminate,      # terminate function
        -type            => 'bitvector',      # type of chromosomes
        -population      => 100,              # population
        -crossover       => 0.9,              # probab. of crossover
        -mutation        => 0.05,             # probab. of mutation
        -parents         => 2,                # number  of parents
        -selection       => [ 'Roulette' ],   # selection strategy
        -strategy        => [ 'Points', 2 ],  # crossover strategy
        -cache           => 1,                # cache results
        -history         => 0,                # remember best results
        -preserve        => 0,                # remember the bests
        -variable_length => 0,                # turn OFF variable length
		-mce			 => 1,                # turn ON Many-Core Engine
		-native			 => 1,				  # turn ON use of native arrays
);

# init population of 32-bit vectors



( run in 0.847 second using v1.01-cache-2.11-cpan-49f99fa48dc )