AI-NeuralNet-BackProp
view release on metacpan
or search on metacpan
BackProp.pm
view on Meta::CPAN
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | print "\nLearning index $x...\n" if ( $AI::NeuralNet::BackProp::DEBUG );
my $str = $self ->learn( $data ->[ $x *2],
$data ->[ $x *2+1],
inc => $inc ,
max => $max ,
error => $error );
print $str if ( $AI::NeuralNet::BackProp::DEBUG );
}
my $res ;
$data ->[ $row ] = $self ->crunch( $data ->[ $row ]) if ( $data ->[ $row ] == 0);
if ( $p ) {
$res =pdiff( $data ->[ $row ], $self ->run( $data ->[ $row -1]));
} else {
$res = $data ->[ $row ]->[0]- $self ->run( $data ->[ $row -1])->[0];
}
return $res ;
}
|
BackProp.pm
view on Meta::CPAN
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | if ( $flag == 2) {
$self ->{NET}->[ $y + $z ]-> connect ( $self ->{NET}->[ $y + $div + $z ]);
$self ->{NET}->[ $y + $z ]-> connect ( $self ->{NET}->[ $y + $z +1]) if ( $z < $div -1);
}
AI::NeuralNet::BackProp::out1 "\n" ;
}
AI::NeuralNet::BackProp::out1 "\n" ;
}
AI::NeuralNet::BackProp::out2 "\nMapping I (_run package) connections to network...\n" ;
for ( $y =0; $y < $div ; $y ++) {
|
BackProp.pm
view on Meta::CPAN
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
sub run {
my $self = shift ;
my $map = shift ;
my $t0 = new Benchmark;
$self ->{RUN}->run( $map );
$self ->{LAST_TIME}=timestr(timediff(new Benchmark, $t0 ));
return $self -> map ();
}
sub run_uc {
$_ [0]->uncrunch(run( @_ ));
}
sub benchmarked {
my $self = shift ;
return $self ->{LAST_TIME};
}
sub map {
my $self = shift ;
$self ->{MAP}-> map ();
}
sub learn {
my $self = shift ;
my $omap = shift ;
my $res = shift ;
my %args = @_ ;
my $inc = $args {inc} || 0.20;
my $max = $args {max} || 1024;
my $_mx = intr( $max /10);
my $_mi = 0;
my $error = ( $args {error}>-1 && defined $args {error}) ? $args {error} : -1;
my $div = $self ->{DIV};
my $size = $self ->{SIZE};
my $out = $self ->{OUT};
my $divide = AI::NeuralNet::BackProp->intr( $div / $out );
my ( $a , $b , $y , $flag , $map , $loop , $diff , $pattern , $value );
my ( $t0 , $it0 );
no strict 'refs' ;
$omap = $self ->crunch( $omap ) if ( $omap == 0);
$res = $self ->crunch( $res ) if ( $res == 0);
if ($
for my $x ($
}
}
AI::NeuralNet::BackProp::out1 "Num output neurons: $out, Input neurons: $size, Division: $divide\n" ;
$t0 = new Benchmark;
$flag = 0;
$loop = 0;
my $ldiff = 0;
my $dinc = 0.0001;
my $cdiff = 0;
$diff = 100;
$error = ( $error >-1)? $error :-1;
while (! $flag && ( $max ? $loop < $max : 1)) {
$it0 = new Benchmark;
$self ->{RUN}->run( $omap );
$map = $self -> map ();
$y = $size - $div ;
$flag = 1;
$diff = pdiff( $map , $res );
if ( $_mi > $_mx ) {
$dinc *= 0.1;
$_mi = 0;
}
$_mi ++;
$inc -= ( $dinc *$diff );
$inc = 0.0000000001 if ( $inc < 0.0000000001);
if ( $diff eq $ldiff ) {
$cdiff ++;
|
BackProp.pm
view on Meta::CPAN
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 | $ldiff = $diff ;
if (!( $error >-1 ? $diff > $error : 1)) {
$flag =1;
last ;
}
AI::NeuralNet::BackProp::out4 "Difference: $diff\%\t Increment: $inc\tMax Error: $error\%\n" ;
AI::NeuralNet::BackProp::out1 "\n\nMapping results from $map:\n" ;
my $l = $self ->{NET};
for my $i (0.. $out -1) {
$a = $map ->[ $i ];
$b = $res ->[ $i ];
AI::NeuralNet::BackProp::out1 "\nmap[$i] is $a\n" ;
AI::NeuralNet::BackProp::out1 "res[$i] is $b\n" ;
for my $j (0.. $divide -1) {
if ( $a != $b ) {
AI::NeuralNet::BackProp::out1 "Punishing $self->{NET}->[($i*$divide)+$j] at " ,(( $i *$divide )+ $j ), " ($i with $a) by $inc.\n" ;
$l ->[ $y +( $i *$divide )+ $j ]->weight( $inc , $b ) if ( $l ->[ $y +( $i *$divide )+ $j ]);
$flag = 0;
}
}
}
$loop ++;
AI::NeuralNet::BackProp::out1 "\n\n" ;
AI::NeuralNet::BackProp::out4 "Learning itetration $loop complete, timed at" .timestr(timediff(new Benchmark, $it0 ), 'noc' , '5.3f' ). "\n" ;
AI::NeuralNet::BackProp::out4 "Map: \n" ;
AI::NeuralNet::BackProp::join_cols( $map , $self ->{col_width}) if ( $AI::NeuralNet::BackProp::DEBUG );
AI::NeuralNet::BackProp::out4 "Res: \n" ;
AI::NeuralNet::BackProp::join_cols( $res , $self ->{col_width}) if ( $AI::NeuralNet::BackProp::DEBUG );
}
$self ->{LAST_TIME}= "$loop loops and " .timestr(timediff(new Benchmark, $t0 ));
my $str = "Learning took $loop loops and " .timestr(timediff(new Benchmark, $t0 ), 'noc' , '5.3f' );
AI::NeuralNet::BackProp::out2 $str ;
return $str ;
}
|
BackProp.pm
view on Meta::CPAN
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 | sub register_synapse {
my $self = shift ;
my $sid = $self ->{REGISTRATION} || 0;
$self ->{REGISTRATION} = ++ $sid ;
$self ->{RMAP}->{ $sid -1} = $self ->{PARENT}->{_tmp_synapse};
return $sid -1;
}
sub run {
my $self = shift ;
my $map = shift ;
my $x = 0;
$map = $self ->{PARENT}->crunch( $map ) if ( $map == 0);
return undef if ( substr ( $map ,0,5) ne "ARRAY" );
foreach my $el (@{ $map }) {
return $x if ( $x > $self ->{PARENT}->{DIV}-1);
|
BackProp.pm
view on Meta::CPAN
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 | sub register_synapse {
my $self = shift ;
my $sid = $self ->{REGISTRATION} || 0;
$self ->{REGISTRATION} = ++ $sid ;
$self ->{RMAP}->{ $sid -1} = $self ->{PARENT}->{_tmp_synapse};
return $sid -1;
}
sub input {
no strict 'refs' ;
my $self = shift ;
my $sid = shift ;
my $value = shift ;
my $size = $self ->{PARENT}->{DIV};
my $flag = 1;
$self ->{OUTPUT}->[ $sid ]->{VALUE} = $self ->{PARENT}->intr( $value );
$self ->{OUTPUT}->[ $sid ]->{FIRED} = 1;
|
BackProp.pm
view on Meta::CPAN
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | return ( $self ->{palette}->[ $color ]->{red}, $self ->{palette}->[ $color ]->{green}, $self ->{palette}->[ $color ]->{blue});
}
sub avg {
my $self = shift ;
my $color = shift ;
return $self ->{parent}->intr(( $self ->{palette}->[ $color ]->{red}+ $self ->{palette}->[ $color ]->{green}+ $self ->{palette}->[ $color ]->{blue})/3);
}
sub load_pcx {
shift if ( substr ( $_ [0],0,4) eq 'AI::' );
open (FILE, "$_[0]" );
binmode (FILE);
my $tmp ;
my @image ;
my @palette ;
my $data ;
read (FILE, $tmp ,128);
my $count =0;
while ( $count <320*200) {
read (FILE, $data ,1);
$data = ord ( $data );
if ( $data >=192 && $data <=255) {
|
BackProp.pm
view on Meta::CPAN
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 | my @phrases = (
$phrase1 , $phrase2 ,
$phrase3 , $phrase4
);
$net ->learn_set(\ @phrases );
my $test_phrase = $net ->crunch( "I love neural networking!" );
my $result = $net ->run( $test_phrase );
print $net ->uncrunch( $result ), "\n" ;
|
BackProp.pm
view on Meta::CPAN
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 | weighting is taken care of by the receiving neuron.) This is the
method used to connect cells in every network built by this package .
Input is fed into the network via a call like this:
my $net = new AI::NeuralNet::BackProp(2,2);
my @map = (0,1);
my $result = $net ->run(\ @map );
Now, this call would probably not give what you want, because
the network hasn't "learned" any patterns yet. But this
illustrates the call. Run now allows strings to be used as
input. See run() for more information.
Run returns a refrence with $size elements (Remember $size ? $size
is what you passed as the second argument to the network
constructor.) This array contains the results of the mapping. If
you ran the example exactly as shown above, $result would probably
contain (1,1) as its elements.
To make the network learn a new pattern, you simply call the learn
method with a sample input and the desired result, both array
refrences of $size length . Example:
my $net = new AI::NeuralNet::BackProp(2,2);
my @map = (0,1);
my @res = (1,0);
$net ->learn(\ @map ,\ @res );
my $result = $net ->run(\ @map );
Now $result will conain (1,0), effectivly flipping the input pattern
around . Obviously, the larger $size is, the longer it will take
to learn a pattern. Learn() returns a string in the form of
Learning took X loops and X wallclock seconds (X.XXX usr + X.XXX sys = X.XXX CPU).
With the X's replaced by time or loop values for that loop call. So,
to view the learning stats for every learn call, you can just:
print $net ->learn(\ @map ,\ @res );
If you call "$net->debug(4)" with $net being the
refrence returned by the new() constructor, you will get benchmarking
information for the learn function, as well as plenty of other information output.
See notes on debug() in the METHODS section, below.
If you do call $net ->debug(1), it is a good
idea to point STDIO of your script to a file, as a lot of information is output. I often
|
BackProp.pm
view on Meta::CPAN
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 | As you can see, each neuron is connected to the next one in its layer, as well
as the neuron directly above itself.
Before you can really do anything useful with your new neural network
object, you need to teach it some patterns. See the learn() method, below.
|
BackProp.pm
view on Meta::CPAN
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 | $learning_gradient is an optional value used to adjust the weights of the internal
connections. If $learning_gradient is ommitted, it defaults to 0.20.
$maximum_iterations is the maximum numbers of iteration the loop should do .
It defaults to 1024. Set it to 0 if you never want the loop to quit before
the pattern is perfectly learned.
$maximum_allowable_percentage_of_error is the maximum allowable error to have. If
this is set, then learn() will return when the perecentage difference between the
actual results and desired results falls below $maximum_allowable_percentage_of_error .
If you do not include 'error' , or $maximum_allowable_percentage_of_error is set to -1,
then learn() will not return until it gets an exact match for the desired result OR it
reaches $maximum_iterations .
|
BackProp.pm
view on Meta::CPAN
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | );
See the paragraph on measuring forgetfulness, below. There are
two learn_set()-specific option tags available:
flag => $flag
pattern => $row
If "flag" is set to some TRUE value, as in "flag => 1" in the hash of options, or if the option "flag"
is not set, then it will return a percentage represting the amount of forgetfullness. Otherwise,
learn_set() will return an integer specifying the amount of forgetfulness when all the patterns
are learned.
If "pattern" is set, then learn_set() will use that pattern in the data set to measure forgetfulness by. If "pattern" is omitted, it defaults to the first pattern in the set. Example:
my @set = (
[ 0,1,0,1 ], [ 0 ],
[ 0,0,1,0 ], [ 1 ],
[ 1,1,0,1 ], [ 2 ],
[ 0,1,1,0 ], [ 3 ]
);
If you wish to measure forgetfulness as indicated by the line with the arrow, then you would
pass 2 as the "pattern" option, as in "pattern => 2" .
Now why the heck would anyone want to measure forgetfulness, you ask? Maybe you wonder how I
even measure that. Well, it is not a vital value that you have to know. I just put in a
"forgetfulness measure" one day because I thought it would be neat to know.
How the module measures forgetfulness is this: First, it learns all the patterns in the set provided,
then it will run the very first pattern (or whatever pattern is specified by the "row" option)
in the set after it has finished learning. It will compare the run() output with the desired output
as specified in the dataset. In a perfect world, the two should match exactly. What we measure is
how much that they don't match, thus the amount of forgetfulness the network has .
NOTE: In version 0.77 percentages were disabled because of a bug. Percentages are now enabled.
Example (from examples/ex_dow.pl):
|
BackProp.pm
view on Meta::CPAN
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 | any data previously learned after disabling ranging, as disabling range invalidates the current
weight matrix in the network.
range() automatically scales the networks outputs to fit inside the size of range you allow, and, therefore,
it keeps track of the maximum output it can expect to scale. Therefore, you will need to learn()
the whole data set again after calling range() on a network.
Subsequent calls to range() invalidate any previous calls to range()
NOTE: It is recomended, you call range() before you call learn() or else you will get unexpected
results from any run() call after range() .
|
BackProp.pm
view on Meta::CPAN
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 | as the network runs. In this mode, it is a good idea to pipe your STDIO to a file, especially
for large programs.
Level 2 ( $level = 2) : A slightly-less verbose form of debugging, not as many internal
data dumps.
Level 3 ( $level = 3) : JUST prints weight mapping as weights change.
Level 4 ( $level = 4) : JUST prints the benchmark info for EACH learn loop iteteration, not just
learning as a whole. Also prints the percentage difference for each loop between current network
results and desired results, as well as learning gradient ( 'incremenet' ).
Level 4 is useful for seeing if you need to give a smaller learning incrememnt to learn() .
I used level 4 debugging quite often in creating the letters.pl example script and the small_1.pl
example script.
Toggles debuging off when called with no arguments.
|
BackProp.pm
view on Meta::CPAN
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 | This will save the complete state of the network to disk, including all weights and any
words crunched with crunch() . Also saves any output ranges set with range() .
This has now been modified to use a simple flat-file text storage format , and it does not depend on any external modules now.
|
BackProp.pm
view on Meta::CPAN
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 | |
BackProp.pm
view on Meta::CPAN
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 | |
BackProp.pm
view on Meta::CPAN
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 | for (0..3) {
$net ->learn( $net ->crunch( "I love chips." ), $net ->crunch( "That's Junk Food!" ));
$net ->learn( $net ->crunch( "I love apples." ), $net ->crunch( "Good, Healthy Food." ));
$net ->learn( $net ->crunch( "I love pop." ), $net ->crunch( "That's Junk Food!" ));
$net ->learn( $net ->crunch( "I love oranges." ), $net ->crunch( "Good, Healthy Food." ));
}
my $response = $net ->run( $net ->crunch( "I love corn." ));
print $net ->uncrunch( $response ), "\n" ;
On my system , this responds with , "Good, Healthy Food." If you try to run crunch() with
"I love pop." , though, you will probably get "Food! apples. apples." (At least it returns
that on my system .) As you can see, the associations are not yet perfect, but it can make
for some interesting demos!
|
BackProp.pm
view on Meta::CPAN
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 | This will set the randomness factor from the network. Default is 0.001. When called
with no arguments, or an undef value, it will return current randomness value. When
called with a 0 value, it will disable randomness in the network. See NOTES on learning
a 0 value in the input map with randomness disabled.
|
BackProp.pm
view on Meta::CPAN
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 | |
BackProp.pm
view on Meta::CPAN
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 | appreciate it greatly if you could report them to me at F<E<lt>jdb @wcoil .comE<gt>>,
or, even better, try to patch them yourself and figure out why the bug is being buggy, and
send me the patched code, again at F<E<lt>jdb @wcoil .comE<gt>>.
|
BackProp.pm
view on Meta::CPAN
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 | You can always download the latest copy of AI::NeuralNet::BackProp
|
docs.htm
view on Meta::CPAN
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | $phrase1 , $phrase2 ,
$phrase3 , $phrase4
);
$net - > ;learn_set(\ @phrases );
my $test_phrase = $net - > ;crunch( " ;I love neural networking! " ;);
my $result = $net - > ;run( $test_phrase );
print $net - > ;uncrunch( $result ), " ;\n " ;
</PRE>
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "updates" >UPDATES</A></H1>
<P>This is version 0.89. In this version I have included a new feature, output range limits, as
well as automatic crunching of <A HREF= "#item_run" ><CODE>run()</CODE></A> and learn*() inputs. Included in the examples directory
are seven new practical- use example scripts. Also implemented in this version is a much cleaner learning function for individual neurons which is more accurate than previous verions and is
based on the LMS rule. See <A HREF= "#item_range" ><CODE>range()</CODE></A> for information on output range limits. I have also updated
|
docs.htm
view on Meta::CPAN
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | its output has when it sends it, it just sends its output and the
weighting is taken care of by the receiving neuron.) This is the
method used to connect cells in every network built by this package .</P>
<P>Input is fed into the network via a call like this:</P>
<PRE>
my $net = new AI::NeuralNet::BackProp(2,2);
my @map = (0,1);
my $result = $net - > ;run(\ @map );</PRE>
<P>Now, this call would probably not give what you want, because
the network hasn 't ``learned' ' any patterns yet. But this
illustrates the call. Run now allows strings to be used as
input. See <A HREF= "#item_run" ><CODE>run()</CODE></A> for more information.</P>
<P>Run returns a refrence with $size elements (Remember $size ? $size
is what you passed as the second argument to the network
constructor.) This array contains the results of the mapping. If
you ran the example exactly as shown above, $result would probably
contain (1,1) as its elements.</P>
<P>To make the network learn a new pattern, you simply call the learn
method with a sample input and the desired result, both array
refrences of $size length . Example:</P>
<PRE>
my $net = new AI::NeuralNet::BackProp(2,2);
my @map = (0,1);
my @res = (1,0);
$net - > ;learn(\ @map ,\ @res );
my $result = $net - > ;run(\ @map );</PRE>
<P>Now $result will conain (1,0), effectivly flipping the input pattern
around . Obviously, the larger $size is, the longer it will take
to learn a pattern. <CODE>Learn()</CODE> returns a string in the form of</P>
<PRE>
Learning took X loops and X wallclock seconds (X.XXX usr + X.XXX sys = X.XXX CPU).</PRE>
<P>With the X's replaced by time or loop values for that loop call. So,
to view the learning stats for every learn call, you can just:
</P>
<PRE>
print $net - > ;learn(\ @map ,\ @res );</PRE>
<P>If you call `` $net - > ;debug(4) '' with $net being the
refrence returned by the <CODE>new()</CODE> constructor, you will get benchmarking
information for the learn function, as well as plenty of other information output.
See notes on <A HREF= "#item_debug" ><CODE>debug()</CODE></A> in the METHODS section, below.</P>
<P>If you do call $net - > ;debug(1), it is a good
idea to point STDIO of your script to a file, as a lot of information is output. I often
use this command line:</P> <PRE>
$ perl some_script.pl > ; .out</PRE>
<P>Then I can simply go and use emacs or any other text editor and read the output at my leisure, |
docs.htm
view on Meta::CPAN
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | | | |
| | |
O-- > ;O-- > ;O
^ ^ ^
| | |</PRE>
<P>As you can see, each neuron is connected to the next one in its layer, as well
as the neuron directly above itself.</P>
<P>Before you can really do anything useful with your new neural network
object, you need to teach it some patterns. See the <A HREF= "#item_learn" ><CODE>learn()</CODE></A> method, below.</P>
<P></P>
<DT><STRONG><A NAME= "item_learn" > $net - > ;learn( $input_map_ref , $desired_result_ref [, options ]);</A></STRONG><BR>
<DD>
This will 'teach' a network to associate an new input map with a desired resuly.
It will return a string containg benchmarking information. You can retrieve the
pattern index that the network stored the new input map in after <A HREF= "#item_learn" ><CODE>learn()</CODE></A> is complete
with the <CODE>pattern()</CODE> method, below.
<P><B>UPDATED:</B> You can now specify strings as inputs and ouputs to learn, and they will be crunched
automatically. Example:</P>
<PRE>
$net - > ;learn( 'corn' , 'cob' );
<P>Note, the old method of calling crunch on the values still works just as well.</P>
|
docs.htm
view on Meta::CPAN
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | error = > ; $maximum_allowable_percentage_of_error </PRE>
<P> $learning_gradient is an optional value used to adjust the weights of the internal
connections. If $learning_gradient is ommitted, it defaults to 0.20.
</P>
<P>
$maximum_iterations is the maximum numbers of iteration the loop should do .
It defaults to 1024. Set it to 0 if you never want the loop to quit before
the pattern is perfectly learned.</P>
<P> $maximum_allowable_percentage_of_error is the maximum allowable error to have. If
this is set, then <A HREF= "#item_learn" ><CODE>learn()</CODE></A> will return when the perecentage difference between the
actual results and desired results falls below $maximum_allowable_percentage_of_error .
If you do not include 'error' , or $maximum_allowable_percentage_of_error is set to -1,
then <A HREF= "#item_learn" ><CODE>learn()</CODE></A> will not return until it gets an exact match for the desired result OR it
reaches $maximum_iterations .</P>
<P></P>
<DT><STRONG><A NAME= "item_learn_set" > $net - > ;learn_set(\ @set , [ options ]);</A></STRONG><BR>
<DD>
<B>UPDATED:</B> Inputs and outputs in the dataset can now be strings. See information on auto-crunching
in <A HREF= "#item_learn" ><CODE>learn()</CODE></A>
<P>This takes the same options as <A HREF= "#item_learn" ><CODE>learn()</CODE></A> and allows you to specify a set to learn, rather
than individual patterns. A dataset is an array refrence with at least two elements in the
array, each element being another array refrence (or now, a scalar string). For each pattern to
learn, you must specify an input array ref , and an ouput array ref as the next element. Example:
|
docs.htm
view on Meta::CPAN
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
[ 1,2,3,4 ], [ 1,3,5,6 ],
[ 0,2,5,6 ], [ 0,2,1,2 ]
);</PRE>
<P>See the paragraph on measuring forgetfulness, below. There are
two learn_set()-specific option tags available:</P>
<PRE>
flag = > ; $flag
pattern = > ; $row </PRE>
<P>If ``flag '' is set to some TRUE value, as in ``flag = > ; 1 '' in the hash of options, or if the option ``flag ''
is not set, then it will return a percentage represting the amount of forgetfullness. Otherwise,
<A HREF= "#item_learn_set" ><CODE>learn_set()</CODE></A> will return an integer specifying the amount of forgetfulness when all the patterns
are learned.</P>
<P>If ``pattern '' is set, then <A HREF= "#item_learn_set" ><CODE>learn_set()</CODE></A> will use that pattern in the data set to measure forgetfulness by. If ``pattern '' is omitted, it defaults to the first pattern in the set. Example:</P>
<PRE>
my @set = (
[ 0,1,0,1 ], [ 0 ],
[ 0,0,1,0 ], [ 1 ],
[ 1,1,0,1 ], [ 2 ],
[ 0,1,1,0 ], [ 3 ]
);
</PRE>
<P>
If you wish to measure forgetfulness as indicated by the line with the arrow, then you would
pass 2 as the " ;pattern " ; option, as in " ;pattern = > ; 2 " ;.</P>
<P>Now why the heck would anyone want to measure forgetfulness, you ask? Maybe you wonder how I
even measure that. Well, it is not a vital value that you have to know. I just put in a
``forgetfulness measure '' one day because I thought it would be neat to know.</P>
<P>How the module measures forgetfulness is this: First, it learns all the patterns in the set provided,
then it will run the very first pattern (or whatever pattern is specified by the ``row '' option)
in the set after it has finished learning. It will compare the <A HREF= "#item_run" ><CODE>run()</CODE></A> output with the desired output
as specified in the dataset. In a perfect world, the two should match exactly. What we measure is
how much that they don't match, thus the amount of forgetfulness the network has .</P>
<P>NOTE: In version 0.77 percentages were disabled because of a bug. Percentages are now enabled.</P>
<P>Example (from examples/ex_dow.pl):</P>
<PRE>
my @data = (
|
docs.htm
view on Meta::CPAN
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | This allows you to limit the possible outputs to a specific set of values . There are several
ways you can specify the set of values to limit the output to. Each method is shown below.
When called without any arguements, it will disable output range limits. You will need to re-learn
any data previously learned after disabling ranging, as disabling range invalidates the current
weight matrix in the network.
<P><A HREF= "#item_range" ><CODE>range()</CODE></A> automatically scales the networks outputs to fit inside the size of range you allow, and, therefore,
it keeps track of the maximum output it can expect to scale. Therefore, you will need to <A HREF= "#item_learn" ><CODE>learn()</CODE></A>
the whole data set again after calling <A HREF= "#item_range" ><CODE>range()</CODE></A> on a network.</P>
<P>Subsequent calls to <A HREF= "#item_range" ><CODE>range()</CODE></A> invalidate any previous calls to <A HREF= "#item_range" ><CODE>range()</CODE></A></P>
<P>NOTE: It is recomended, you call <A HREF= "#item_range" ><CODE>range()</CODE></A> before you call <A HREF= "#item_learn" ><CODE>learn()</CODE></A> or else you will get unexpected
results from any <A HREF= "#item_run" ><CODE>run()</CODE></A> call after <A HREF= "#item_range" ><CODE>range()</CODE></A> .</P>
<P></P>
<DT><STRONG> $net - > ;range( $bottom .. $top );</STRONG><BR>
<DD>
This is a common form often used in a <CODE> for my $x (0..20)</CODE> type of <CODE> for ()</CODE> constructor. It works
the exact same way. It will allow all numbers from $bottom to $top , inclusive, to be given
as outputs of the network. No other values will be possible, other than those between $bottom
and $top , inclusive.
<P></P>
<DT><STRONG> $net - > ;range(\ @values );</STRONG><BR>
<DD>
|
docs.htm
view on Meta::CPAN
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | <P>Level 0 ( $level = 0) : Default, no debugging information printed. All printing is
left to calling script.</P>
<P>Level 1 ( $level = 1) : This causes ALL debugging information for the network to be dumped
as the network runs. In this mode, it is a good idea to pipe your STDIO to a file, especially
for large programs.</P>
<P>Level 2 ( $level = 2) : A slightly-less verbose form of debugging, not as many internal
data dumps.</P>
<P>Level 3 ( $level = 3) : JUST prints weight mapping as weights change.</P>
<P>Level 4 ( $level = 4) : JUST prints the benchmark info for EACH learn loop iteteration, not just
learning as a whole. Also prints the percentage difference for each loop between current network
results and desired results, as well as learning gradient ( 'incremenet' ).</P>
<P>Level 4 is useful for seeing if you need to give a smaller learning incrememnt to <A HREF= "#item_learn" ><CODE>learn()</CODE></A> .
I used level 4 debugging quite often in creating the letters.pl example script and the small_1.pl
example script.</P>
<P>Toggles debuging off when called with no arguments.</P>
<P></P>
<DT><STRONG><A NAME= "item_save" > $net - > ;save( $filename );</A></STRONG><BR>
<DD>
This will save the complete state of the network to disk, including all weights and any
words crunched with <A HREF= "#item_crunch" ><CODE>crunch()</CODE></A> . Also saves any output ranges set with <A HREF= "#item_range" ><CODE>range()</CODE></A> .
<P>This has now been modified to use a simple flat-file text storage format , and it does not depend on any external modules now.</P>
<P></P>
<DT><STRONG><A NAME= "item_load" > $net - > ;load( $filename );</A></STRONG><BR>
<DD>
This will load from disk any network saved by <A HREF= "#item_save" ><CODE>save()</CODE></A> and completly restore the internal
state at the point it was <A HREF= "#item_save" ><CODE>save()</CODE></A> was called at.
<P></P>
<DT><STRONG><A NAME= "item_join_cols" > $net - > ;join_cols( $array_ref , $row_length_in_elements , $high_state_character , $low_state_character );</A></STRONG><BR>
<DD>
This is more of a utility function than any real necessary function of the package .
Instead of joining all the elements of the array together in one long string, like <CODE> join ()</CODE> ,
it prints the elements of $array_ref to STDIO, adding a newline (\n) after every $row_length_in_elements
number of elements has passed. Additionally, if you include a $high_state_character and a $low_state_character ,
it will print the $high_state_character (can be more than one character) for every element that
has a true value, and the $low_state_character for every element that has a false value.
|
docs.htm
view on Meta::CPAN
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | by a null character (\0). <A HREF= "#item_join_cols" ><CODE>join_cols()</CODE></A> defaults to the latter behaviour.
<P></P>
<DT><STRONG><A NAME= "item_pdiff" > $net - > ;pdiff( $array_ref_A , $array_ref_B );</A></STRONG><BR>
<DD>
This function is used VERY heavily internally to calculate the difference in percent
between elements of the two array refs passed. It returns a %.10f ( sprintf - format )
percent sting.
<P></P>
<DT><STRONG><A NAME= "item_p" > $net - > ;p( $a , $b );</A></STRONG><BR>
<DD>
Returns a floating point number which represents $a as a percentage of $b .
<P></P>
<DT><STRONG><A NAME= "item_intr" > $net - > ;intr( $float );</A></STRONG><BR>
<DD>
Rounds a floating-point number rounded to an integer using <CODE> sprintf ()</CODE> and <CODE> int ()</CODE> , Provides
better rounding than just calling <CODE> int ()</CODE> on the float. Also used very heavily internally.
<P></P>
<DT><STRONG><A NAME= "item_high" > $net - > ;high( $array_ref );</A></STRONG><BR>
<DD>
Returns the index of the element in array REF passed with the highest comparative value.
<P></P>
|
docs.htm
view on Meta::CPAN
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | <DT><STRONG><A NAME= "item_show" > $net - > ;show();</A></STRONG><BR>
<DD>
This will dump a simple listing of all the weights of all the connections of every neuron
in the network to STDIO.
<P></P>
<DT><STRONG><A NAME= "item_crunch" > $net - > ;crunch( $string );</A></STRONG><BR>
<DD>
<B>UPDATED:</B> Now you can use a variabled instead of using qw() . Strings will be split internally. Do not use <CODE> qw() </CODE> to pass strings to crunch.
<P>This splits a string passed with /[\s\t]/ into an array ref containing unique indexes
to the words. The words are stored in an intenal array and preserved across <A HREF= "#item_load" ><CODE>load()</CODE></A> and <A HREF= "#item_save" ><CODE>save()</CODE></A>
calls. This is designed to be used to generate unique maps sutible for passing to <A HREF= "#item_learn" ><CODE>learn()</CODE></A> and
<A HREF= "#item_run" ><CODE>run()</CODE></A> directly. It returns an array ref .</P>
<P>The words are not duplicated internally. For example:</P>
<PRE>
$net - > ;crunch( " ;How are you? " ;);</PRE>
<P>Will probably return an array ref containing 1,2,3. A subsequent call of:</P>
<PRE>
$net - > ;crunch( " ;How is Jane? " ;);</PRE>
<P>Will probably return an array ref containing 1,4,5. Notice, the first element stayed
the same. That is because it already stored the word ``How '' . So, each word is stored
|
docs.htm
view on Meta::CPAN
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 | for (0..3) {
$net - > ;learn( $net - > ;crunch( " ;I love chips. " ;), $net - > ;crunch( " ;That's Junk Food! " ;));
$net - > ;learn( $net - > ;crunch( " ;I love apples. " ;), $net - > ;crunch( " ;Good, Healthy Food. " ;));
$net - > ;learn( $net - > ;crunch( " ;I love pop . " ;), $net - > ;crunch( " ;That's Junk Food! " ;));
$net - > ;learn( $net - > ;crunch( " ;I love oranges. " ;), $net - > ;crunch( " ;Good, Healthy Food. " ;));
}
my $response = $net - > ;run( $net - > ;crunch( " ;I love corn. " ;));
print $net - > ;uncrunch( $response ), " ;\n " ;;</PRE>
<P>On my system , this responds with , ``Good, Healthy Food. '' If you try to run <A HREF= "#item_crunch" ><CODE>crunch()</CODE></A> with
``I love pop . '' , though, you will probably get ``Food! apples. apples. '' (At least it returns
that on my system .) As you can see, the associations are not yet perfect, but it can make
for some interesting demos!</P>
<P></P>
<DT><STRONG><A NAME= "item_crunched" > $net - > ;crunched( $word );</A></STRONG><BR>
<DD>
This will return undef if the word is not in the internal crunch list, or it will return the
index of the word if it exists in the crunch list.
<P></P>
<DT><STRONG><A NAME= "item_col_width" > $net - > ;col_width( $width );</A></STRONG><BR>
<DD>
This is useful for formating the debugging output of Level 4 if you are learning simple
bitmaps. This will set the debugger to automatically insert a line break after that many
|
docs.htm
view on Meta::CPAN
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | <P></P>
<DT><STRONG><A NAME= "item_random" > $net - > ;random( $rand );</A></STRONG><BR>
<DD>
This will set the randomness factor from the network. Default is 0.001. When called
with no arguments, or an undef value, it will return current randomness value. When
called with a 0 value, it will disable randomness in the network. See NOTES on learning
a 0 value in the input map with randomness disabled.
<P></P>
<DT><STRONG><A NAME= "item_load_pcx" > $net - > ;load_pcx( $filename );</A></STRONG><BR>
<DD>
Oh heres a treat... this routine will load a PCX- format file (yah, I know ... ancient format ... but
it is the only one I could find specs for to write it in Perl. If anyone can get specs for
any other formats, or could write a loader for them, I would be very grateful!) Anyways, a PCX- format
file that is exactly 320x200 with 8 bits per pixel, with pure Perl. It returns a blessed refrence to
a AI::NeuralNet::BackProp::PCX object, which supports the following routinges/members. See example
files ex_pcxl.pl and ex_pcx.pl in the ./examples/ directory.
<P></P>
<DT><STRONG><A NAME= "item_%24pcx%2D%3E%7Bimage%7D" > $pcx - > ;{image}</A></STRONG><BR>
<DD>
This is an array refrence to the entire image. The array containes exactly 64000 elements, each
element contains a number corresponding into an index of the palette array, details below.
<P></P>
<DT><STRONG><A NAME= "item_%24pcx%2D%3E%7Bpalette%7D" > $pcx - > ;{palette}</A></STRONG><BR>
<DD>
This is an array ref to an AoH (array of hashes). Each element has the following three keys :
<PRE>
$pcx - > ;{palette}- > ;[0]- > ;{red};
$pcx - > ;{palette}- > ;[0]- > ;{green};
$pcx - > ;{palette}- > ;[0]- > ;{blue};</PRE>
<P>Each is in the range of 0..63, corresponding to their named color component.</P>
<P></P>
<DT><STRONG><A NAME= "item_get_block" > $pcx - > ;get_block( $array_ref );</A></STRONG><BR>
<DD>
Returns a rectangular block defined by an array ref in the form of:
<PRE>
[ $left , $top , $right , $bottom ]</PRE>
<P>These must be in the range of 0..319 for $left and $right , and the range of 0..199 for
$top and $bottom . The block is returned as an array ref with horizontal lines in sequental order.
I.e. to get a pixel from [2,5] in the block, and $left - $right was 20, then the element in
|
docs.htm
view on Meta::CPAN
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 | print (@{ $pcx - > ;get_block(0,0,20,50)})[5*20+2];</PRE>
<P>This would print the contents of the element at block coords [2,5].</P>
<P></P>
<DT><STRONG><A NAME= "item_get" > $pcx - > ;get( $x , $y );</A></STRONG><BR>
<DD>
Returns the value of pixel at image coordinates $x , $y .
$x must be in the range of 0..319 and $y must be in the range of 0..199.
<P></P>
<DT><STRONG><A NAME= "item_rgb" > $pcx - > ;rgb( $index );</A></STRONG><BR>
<DD>
Returns a 3-element array (not array ref ) with each element corresponding to the red, green, or
blue color components, respecitvely.
<P></P>
<DT><STRONG><A NAME= "item_avg" > $pcx - > ;avg( $index );</A></STRONG><BR>
<DD>
Returns the mean value of the red, green, and blue values at the palette index in $index .
<P></P></DL>
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "notes" >NOTES</A></H1>
<DL>
<DT><STRONG><A NAME= "item_Learning_0s_With_Randomness_Disabled" >Learning 0s With Randomness Disabled</A></STRONG><BR>
<DD>
You can now use 0 values in any input maps. This is a good improvement over versions 0.40
and 0.42, where no 0s were allowed because the learning would never finish learning completly
with a 0 in the input.
<P>Yet with the allowance of 0s, it requires one of two factors to learn correctly. Either you
must enable randomness with $net - > ;<A HREF= "#item_random" ><CODE>random(0.0001)</CODE></A> (Any values work [other than 0], see <A HREF= "#item_random" ><CODE>random()</CODE></A> ),
or you must set an error-minimum with the 'error => 5' option (you can use some other error value as well).</P>
<P>When randomness is enabled (that is, when you call <A HREF= "#item_random" ><CODE>random()</CODE></A> with a value other than 0), it interjects
a bit of randomness into the output of every neuron in the network, except for the input and output
neurons. The randomness is interjected with rand () *$rand , where $rand is the value that was
passed to <A HREF= "#item_random" ><CODE>random()</CODE></A> call. This assures the network that it will never have a pure 0 internally. It is
bad to have a pure 0 internally because the weights cannot change a 0 when multiplied by a 0, the
product stays a 0. Yet when a weight is multiplied by 0.00001, eventually with enough weight, it will
be able to learn. With a 0 value instead of 0.00001 or whatever, then it would never be able
to add enough weight to get anything other than a 0.</P>
<P>The second option to allow for 0s is to enable a maximum error with the 'error' option in
<A HREF= "#item_learn" ><CODE>learn()</CODE></A> , <A HREF= "#item_learn_set" ><CODE>learn_set()</CODE></A> , and <A HREF= "#item_learn_set_rand" ><CODE>learn_set_rand()</CODE></A> . This allows the network to not worry about
learning an output perfectly.</P>
<P>For accuracy reasons, it is recomended that you work with 0s using the <A HREF= "#item_random" ><CODE>random()</CODE></A> method.</P>
<P>If anyone has any thoughts/arguments/suggestions for using 0s in the network, let me know
at <A HREF= "mailto:jdb@wcoil.com." >jdb @wcoil .com.</A></P>
|
docs.htm
view on Meta::CPAN
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | <H1><A NAME= "bugs" >BUGS</A></H1>
<P>This is an alpha release of <CODE>AI::NeuralNet::BackProp</CODE>, and that holding true, I am sure
there are probably bugs in here which I just have not found yet. If you find bugs in this module, I would
appreciate it greatly if you could report them to me at <EM> < ;<A HREF= "mailto:jdb@wcoil.com" >jdb @wcoil .com</A> > ;</EM>,
or, even better, try to patch them yourself and figure out why the bug is being buggy, and
send me the patched code, again at <EM> < ;<A HREF= "mailto:jdb@wcoil.com" >jdb @wcoil .com</A> > ;</EM>.</P>
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "author" >AUTHOR</A></H1>
<P>Josiah Bryan <EM> < ;<A HREF= "mailto:jdb@wcoil.com" >jdb @wcoil .com</A> > ;</EM></P>
<P>Copyright (c) 2000 Josiah Bryan. All rights reserved. This program is free software;
you can redistribute it and/or modify it under the same terms as Perl itself.</P>
<P>The <CODE>AI::NeuralNet::BackProp</CODE> and related modules are free software. THEY COME WITHOUT WARRANTY OF ANY KIND.</P>
<P></P>
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "thanks" >THANKS</A></H1>
<P>Below is a list of people that have helped, made suggestions, patches, etc. No particular order.</P>
<PRE>
Tobias Bronx, tobiasb @odin .funcom.com
Pat Trainor, ptrainor @title14 .com
|
docs.htm
view on Meta::CPAN
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | <HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "download" >DOWNLOAD</A></H1>
<P>You can always download the latest copy of AI::NeuralNet::BackProp
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "mailing list" >MAILING LIST</A></H1>
<P>A mailing list has been setup for AI::NeuralNet::BackProp for discussion of AI and
neural net related topics as they pertain to AI::NeuralNet::BackProp. I will also
announce in the group each time a new release of AI::NeuralNet::BackProp is available.</P>
<P>The list address is at: <A HREF= "mailto:ai-neuralnet-backprop@egroups.com" >ai-neuralnet-backprop @egroups .com</A></P>
<P>To subscribe, send a blank email to: <A HREF= "mailto:ai-neuralnet-backprop-subscribe@egroups.com" >ai-neuralnet-backprop-subscribe @egroups .com</A></P>
<P>
<HR SIZE=1 COLOR=BLACK>
<H1><A NAME= "what can it do" >WHAT CAN IT DO?</A></H1>
<P>Rodin Porrata asked on the ai-neuralnet-backprop malining list,
"What can they [Neural Networks] do?" . In regards to that questioin,
consider the following:</P>
<P>Neural Nets are formed by simulated neurons connected together much the same
way the brain's neurons are, neural networks are able to associate and
generalize without rules. They have solved problems in pattern recognition,
robotics, speech processing, financial predicting and signal processing, to
name a few.</P>
<P>One of the first impressive neural networks was NetTalk, which read in ASCII
text and correctly pronounced the words (producing phonemes which drove a
speech chip), even those it had never seen before . Designed by John Hopkins
biophysicist Terry Sejnowski and Charles Rosenberg of Princeton in 1986,
this application made the Backprogagation training algorithm famous. Using
the same paradigm, a neural network has been trained to classify sonar
returns from an undersea mine and rock. This classifier, designed by
Sejnowski and R. Paul Gorman, performed better than a nearest-neighbor
classifier.</P>
<P>The kinds of problems best solved by neural networks are those that people
are good at such as association, evaluation and pattern recognition.
Problems that are difficult to compute and do not require perfect answers, just very good answers, are also best done with neural networks. A quick,
very good response is often more desirable than a more accurate answer which
takes longer to compute. This is especially true in robotics or industrial
controller applications. Predictions of behavior and general analysis of
data are also affairs for neural networks. In the financial arena, consumer
loan analysis and financial forecasting make good applications. New network
designers are working on weather forecasts by neural networks (Myself
included). Currently, doctors are developing medical neural networks as an
aid in diagnosis. Attorneys and insurance companies are also working on
neural networks to help estimate the value of claims.</P>
<P>Neural networks are poor at precise calculations and serial processing. They
are also unable to predict or recognize anything that does not inherently
contain some sort of pattern. For example, they cannot predict the lottery,
since this is a random process. It is unlikely that a neural network could
be built which has the capacity to think as well as a person does for two
reasons. Neural networks are terrible at deduction, or logical thinking and
the human brain is just too complex to completely simulate. Also, some
problems are too difficult for present technology. Real vision, for
example, is a long way off.</P>
<P>In short, Neural Networks are poor at precise calculations, but good at
association, evaluation, and pattern recognition.
</P>
<P>
<HR SIZE=1 COLOR=BLACK>
</BODY>
|
examples/ex_add.pl
view on Meta::CPAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
my $addition = new AI::NeuralNet::BackProp(2,2,1);
if (! $addition ->load( 'add.dat' )) {
$addition ->learn_set([
[ 1, 1 ], [ 2 ] ,
|
examples/ex_alpha.pl
view on Meta::CPAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
my $net = new AI::NeuralNet::BackProp(2,35,1);
$net ->debug(4);
my $letters = [
[
2,1,1,1,2,
1,2,2,2,1,
1,2,2,2,1,
1,1,1,1,1,
1,2,2,2,1,
1,2,2,2,1,
|
examples/ex_alpha.pl
view on Meta::CPAN
278 279 280 281 282 283 284 285 286 287 288 289 290 | 1,2,2,2,1,
1,1,1,1,1,
1,2,2,2,1,
1,2,2,2,1,
1,2,2,2,1];
print "\nTest map:\n" ;
$net ->join_cols( $tmp ,5);
print "Letter index matched: " , $net ->run( $tmp )->[0], "\n" ;
|
examples/ex_bmp.pl
view on Meta::CPAN
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Author: Josiah Bryan, <jdb @wcoil .com>
Desc:
This demonstrates simple classification of 6x6 bitmaps.
|
examples/ex_bmp2.pl
view on Meta::CPAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
my $net = new AI::NeuralNet::BackProp(2,35,1);
$net ->debug(4);
my @map = (1,1,1,1,1,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
1,0,1,0,0,
1,0,1,0,0,
1,1,1,0,0);
|
examples/ex_crunch.pl
view on Meta::CPAN
20 21 22 23 24 25 26 27 28 29 30 31 | for (0..3) {
$net ->learn( $net ->crunch( "I love chips." ), $bad );
$net ->learn( $net ->crunch( "I love apples." ), $good );
$net ->learn( "I love pop." , $bad );
$net ->learn( "I love oranges." , $good );
}
print $net ->run_uc( "I love corn." );
|
examples/ex_pcx.pl
view on Meta::CPAN
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | $net ->{col_width} = $bx ;
print "Done!\n" ;
print "Loading bitmap..." ;
my $img = $net ->load_pcx( "josiah.pcx" );
print "Done!\n" ;
print "Comparing blocks...\n" ;
my $white = $img ->get_block([0,0, $bx , $by ]);
my ( $x , $y , $tmp , @scores , $s , @blocks , $b );
for ( $x =0; $x <320; $x += $bx ) {
for ( $y =0; $y <200; $y += $by ) {
$blocks [ $b ++]= $img ->get_block([ $x , $y , $x + $bx , $y + $by ]);
$score [ $s ++]= $net ->pdiff( $white , $blocks [ $b -1]);
print "Block at [$x,$y], index [$s] scored " . $score [ $s -1]. "%\n" ;
}
}
print "Done!" ;
print "High score:\n" ;
|
examples/ex_sub.pl
view on Meta::CPAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
my $subtract = new AI::NeuralNet::BackProp(2,2,1);
if (! $subtract ->load( 'sub.dat' )) {
$subtract ->learn_set([
[ 1, 1 ], [ 0 ] ,
|
examples/ex_synop.pl
view on Meta::CPAN
43 44 45 46 47 48 49 50 51 52 53 54 55 56 | my @phrases = (
$phrase1 , $phrase2 ,
$phrase3 , $phrase4
);
$net ->learn_set(\ @phrases );
my $test_phrase = $net ->crunch( "I love neural networking!" );
my $result = $net ->run( $test_phrase );
print $net ->uncrunch( $result ), "\n" ;
|