AI-MXNet

 view release on metacpan or  search on metacpan

Changes  view on Meta::CPAN

Revision history for Perl extension AI::MXNet

1.0102 Sun Aug  6 16:55:08 PDT 2017
        - bugfixes in Image.pm, updated tests, added PearsonCorrelation metric, added Convolutional RNN modules.

1.0101  Sun Jul  2 17:16:01 PDT 2017
        - reworked CachedOp, two new optimizers, auto module reshape, using strings to index the kvstore.

1.01    Sat Jun 10 23:57:27 PDT 2017
        - sync with python.

0.9507  Thu May 11 17:04:44 PDT 2017
        - added AutoGrad, bugfixes.

0.9506  Sat Apr 29 20:26:50 PDT 2017
        - Ftrl optimizer, new tests, bugfixes.

Changes  view on Meta::CPAN

        - LR Scheduler bugfix.

0.9503  Wed Apr 19 13:33:57 PDT 2017
        - added an example of generation of inferred text via pre-trained RNN.
        - bugfixes/tests.

0.9502  Sat Apr 15 17:18:21 PDT 2017
        - optimizations/bugfixes.

0.9501  Sat Apr  8 13:01:00 PDT 2017
        - ZoneoutCell, nd inferred reshape and moveaxis, cosmetic changes to Image iter,
           pod reworked to be readable via metacpan.

0.95  Sun Mar 26 17:42:02 PDT 2017
        - docs, bugfixes, tests in order to be visible on http://mxnet.io

0.03  Tue Feb 14 07:28:11 PST 2017
        - sync up with current state of the Python inteface.
        - high level RNN support.

0.02  Tue Feb 14 07:28:11 PST 2017

META.json  view on Meta::CPAN

   },
   "name" : "AI-MXNet",
   "no_index" : {
      "directory" : [
         "t",
         "inc"
      ]
   },
   "prereqs" : {
      "build" : {
         "requires" : {}
      },
      "configure" : {
         "requires" : {
            "ExtUtils::MakeMaker" : "6.30"
         }
      },
      "runtime" : {
         "requires" : {
            "AI::MXNetCAPI" : "1.0102",
            "AI::NNVMCAPI" : "1.01",
            "Function::Parameters" : "1.0705",
            "GraphViz" : "2.14",
            "Mouse" : "v2.1.0",
            "PDL" : "2.007"
         }
      },
      "test" : {
         "requires" : {}
      }
   },
   "release_status" : "stable",
   "version" : "1.0102"
}

META.yml  view on Meta::CPAN

---
abstract: 'Perl interface to MXNet machine learning library'
author:
  - 'Sergey Kolychev <sergeykolychev.github@gmail.com>'
build_requires: {}
configure_requires:
  ExtUtils::MakeMaker: '6.30'
dynamic_config: 0
generated_by: 'ExtUtils::MakeMaker version 7.24, CPAN::Meta::Converter version 2.143240'
license: apache
meta-spec:
  url: http://module-build.sourceforge.net/META-spec-v1.4.html
  version: '1.4'
name: AI-MXNet
no_index:
  directory:
    - t
    - inc
requires:
  AI::MXNetCAPI: '1.0102'
  AI::NNVMCAPI: '1.01'
  Function::Parameters: '1.0705'
  GraphViz: '2.14'
  Mouse: v2.1.0
  PDL: '2.007'
version: '1.0102'

examples/calculator.pl  view on Meta::CPAN

## to train our network
sub samples {
    my($batch_size, $func) = @_;
    # get samples
    my $n = 16384;
    ## creates a pdl with $n rows and two columns with random
    ## floats in the range between 0 and 1
    my $data = PDL->random(2, $n);
    ## creates the pdl with $n rows and one column with labels
    ## labels are floats that either sum or product, etc of
    ## two random values in each corresponding row of the data pdl
    my $label = $func->($data->slice('0,:'), $data->slice('1,:'));
    # partition into train/eval sets
    my $edge = int($n / 8);
    my $validation_data = $data->slice(":,0:@{[ $edge - 1 ]}");
    my $validation_label = $label->slice(":,0:@{[ $edge - 1 ]}");
    my $train_data = $data->slice(":,$edge:");
    my $train_label = $label->slice(":,$edge:");
    # build iterators around the sets
    return(mx->io->NDArrayIter(
        batch_size => $batch_size,

examples/calculator.pl  view on Meta::CPAN

    my $data = mx->sym->Variable('data');
    my $ln = mx->sym->exp(mx->sym->FullyConnected(
        data => mx->sym->log($data),
        num_hidden => 1,
    ));
    my $wide = mx->sym->Concat($data, $ln);
    my $fc = mx->sym->FullyConnected(
	$wide,
	num_hidden => 1
    );
    return mx->sym->MAERegressionOutput(data => $fc, name => 'softmax');
}

sub learn_function {
    my(%args) = @_;
    my $func = $args{func};
    my $batch_size = $args{batch_size}//128;
    my($train_iter, $eval_iter) = samples($batch_size, $func);
    my $sym = nn_fc();

    ## call as ./calculator.pl 1 to just print model and exit

examples/calculator.pl  view on Meta::CPAN


    my $model = mx->mod->Module(
        symbol => $sym,
        context => mx->cpu(),
    );
    $model->fit($train_iter,
        eval_data => $eval_iter,
        optimizer => 'adam',
        optimizer_params => {
            learning_rate => $args{lr}//0.01,
            rescale_grad => 1/$batch_size,
            lr_scheduler  => AI::MXNet::FactorScheduler->new(
        	step => 100,
        	factor => 0.99
            )
        },
        eval_metric => 'mse',
        num_epoch => $args{epoch}//25,
    );

    # refit the model for calling on 1 sample at a time
    my $iter = mx->io->NDArrayIter(
        batch_size => 1,
        data => PDL->pdl([[ 0, 0 ]]),
        label => PDL->pdl([[ 0 ]]),
    );
    $model->reshape(
        data_shapes => $iter->provide_data,
        label_shapes => $iter->provide_label,
    );

    # wrap a helper around making predictions
    my ($arg_params) = $model->get_params;
    for my $k (sort keys %$arg_params)
    {
	print "$k -> ". $arg_params->{$k}->aspdl."\n";
    }

examples/char_lstm.pl  view on Meta::CPAN

    --gpus           list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
                     Increase batch size when using multiple gpus for best performance.
    --kv-store       key-value store type, default='device'
    --num-epochs     max num of epochs, default=25
    --lr             initial learning rate, default=0.01
    --optimizer      the optimizer type, default='adam'
    --mom            momentum for sgd, default=0.0
    --wd             weight decay for sgd, default=0.00001
    --batch-size     the batch size type, default=32
    --bidirectional  use bidirectional cell, default false (0)
    --disp-batches   show progress for every n batches, default=50
    --chkp-prefix    prefix for checkpoint files, default='lstm_'
    --cell-mode      RNN cell mode (LSTM, GRU, RNN, default=LSTM)
    --sample-size    a size of inferred sample text (default=10000) after each epoch
    --chkp-epoch     save checkpoint after this many epoch, default=1 (saving every checkpoint)

=cut

package AI::MXNet::RNN::IO::ASCIIIterator;
use Mouse;
extends AI::MXNet::DataIter;

examples/char_lstm.pl  view on Meta::CPAN

            dtype => $self->dtype
        )
    ]);
    $self->provide_label([
        AI::MXNet::DataDesc->new(
            name  => $self->label_name,
            shape => $shape,
            dtype => $self->dtype
        )
    ]);
    $self->reset;
}

method reset()
{
    $self->counter(0);
    @{ $self->idx } = List::Util::shuffle(@{ $self->idx });
}

method next()
{
    return undef if $self->counter == @{$self->idx};
    my $offset = $self->idx->[$self->counter]*$self->batch_size*$self->seq_size + $self->seq_counter;
    my $data = $self->nd->slice(
        [$offset, $offset + $self->batch_size*$self->seq_size-1]
    )->reshape([$self->batch_size, $self->seq_size]);
    my $label = $self->nd->slice(
        [$offset + 1 , $offset + $self->batch_size*$self->seq_size]
    )->reshape([$self->batch_size, $self->seq_size]);
    $self->seq_counter($self->seq_counter + 1);
    if($self->seq_counter == $seq_size - 1)
    {
        $self->counter($self->counter + 1);
        $self->seq_counter(0);
    }
    return AI::MXNet::DataBatch->new(
        data          => [$data],
        label         => [$label],
        provide_data  => [

examples/char_lstm.pl  view on Meta::CPAN

    }
    $stack->add($cell);
}

my $data  = mx->sym->Variable('data');
my $label = mx->sym->Variable('softmax_label');
my $embed = mx->sym->Embedding(
        data => $data, input_dim => scalar(keys %vocabulary),
        output_dim => $num_embed, name => 'embed'
);
$stack->reset;
my ($outputs, $states) = $stack->unroll($seq_size, inputs => $embed, merge_outputs => 1);
my $pred  = mx->sym->Reshape($outputs, shape => [-1, $num_hidden*(1+($bidirectional ? 1 : 0))]);
$pred     = mx->sym->FullyConnected(data => $pred, num_hidden => $data_iter->vocab_size, name => 'pred');
$label    = mx->sym->Reshape($label, shape => [-1]);
my $net   = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');

my $contexts;
if(defined $gpus)
{
    $contexts = [map { mx->gpu($_) } split(/,/, $gpus)];

examples/char_lstm.pl  view on Meta::CPAN

$model->fit(
    $data_iter,
    eval_metric         => mx->metric->Perplexity,
    kvstore             => $kv_store,
    optimizer           => $optimizer,
    optimizer_params    => {
                                learning_rate => $lr,
                                momentum      => $mom,
                                wd            => $wd,
                                clip_gradient => 5,
                                rescale_grad  => 1/$batch_size,
                                lr_scheduler  => AI::MXNet::FactorScheduler->new(step => 1000, factor => 0.99)
                        },
    initializer         => mx->init->Xavier(factor_type => "in", magnitude => 2.34),
    num_epoch           => $num_epoch,
    batch_end_callback  => mx->callback->Speedometer($batch_size, $disp_batches),
    ($chkp_epoch ? (epoch_end_callback  => [mx->rnn->do_rnn_checkpoint($stack, $chkp_prefix, $chkp_epoch), \&sample]) : ())
);

sub sample {
    return if not $sample_size;
    $model->reshape(data_shapes=>[['data',[1, $seq_size]]], label_shapes=>[['softmax_label',[1, $seq_size]]]);
    my $input = mx->nd->array($fdata->slice([0, $seq_size-1]))->reshape([1, $seq_size]);
    $| = 1;
    for (0..$sample_size-1)
    {
        $model->forward(mx->io->DataBatch(data=>[$input]), is_train => 0);
        my $prob = $model->get_outputs(0)->[0][0]->at($seq_size-1)->aspdl;
        my $next_char = Math::Random::Discrete->new($prob->reshape(-1)->unpdl, [0..scalar(keys %vocabulary)-1])->rand;
        print "$reverse_vocab{$next_char}";
        $input->at(0)->slice([0, $seq_size-2]) .= $input->at(0)->slice([1, $seq_size-1])->copy;
        $input->at(0)->at($seq_size-1) .= $next_char;
    }
    $model->reshape(data_shapes=>[['data',[$batch_size, $seq_size]]], label_shapes=>[['softmax_label',[$batch_size, $seq_size]]]);
}

examples/cudnn_lstm_bucketing.pl  view on Meta::CPAN

    --num-seq        sequence size, default=32
    --gpus           list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
                     Increase batch size when using multiple gpus for best performance.
    --kv-store       key-value store type, default='device'
    --num-epochs     max num of epochs, default=25
    --lr             initial learning rate, default=0.01
    --optimizer      the optimizer type, default='adam'
    --mom            momentum for sgd, default=0.0
    --wd             weight decay for sgd, default=0.00001
    --batch-size     the batch size type, default=32
    --disp-batches   show progress for every n batches, default=50
    --model-prefix   prefix for checkpoint files for loading/saving, default='lstm_'
    --load-epoch     load from epoch
    --stack-rnn      stack rnn to reduce communication overhead (1,0 default 0)
    --bidirectional  whether to use bidirectional layers (1,0 default 0)
    --dropout        dropout probability (1.0 - keep probability), default 0
=cut

$bidirectional = $bidirectional ? 1 : 0;
$stack_rnn     = $stack_rnn     ? 1 : 0;

examples/cudnn_lstm_bucketing.pl  view on Meta::CPAN

        )->unfuse()
    }
    my $sym_gen = sub {
        my $seq_len = shift;
        my $data  = mx->sym->Variable('data');
        my $label = mx->sym->Variable('softmax_label');
        my $embed = mx->sym->Embedding(
            data => $data, input_dim => scalar(keys %$vocab),
            output_dim => $num_embed, name => 'embed'
        );
        $stack->reset;
        my ($outputs, $states) = $stack->unroll($seq_len, inputs => $embed, merge_outputs => 1);
        my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden*(1+$bidirectional)]);
        $pred    = mx->sym->FullyConnected(data => $pred, num_hidden => scalar(keys %$vocab), name => 'pred');
        $label   = mx->sym->Reshape($label, shape => [-1]);
        $pred    = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
        return ($pred, ['data'], ['softmax_label']);
    };
    my $contexts;
    if($gpus)
    {

examples/lstm_bucketing.pl  view on Meta::CPAN

    --num-embed      embedding layer size, default=200
    --gpus           list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.
                     Increase batch size when using multiple gpus for best performance.
    --kv-store       key-value store type, default='device'
    --num-epochs     max num of epochs, default=25
    --lr             initial learning rate, default=0.01
    --optimizer      the optimizer type, default='sgd'
    --mom            momentum for sgd, default=0.0
    --wd             weight decay for sgd, default=0.00001
    --batch-size     the batch size type, default=32
    --disp-batches   show progress for every n batches, default=50
    --chkp-prefix    prefix for checkpoint files, default='lstm_'
    --chkp-epoch     save checkpoint after this many epoch, default=0 (saving checkpoints is disabled)

=cut
func tokenize_text($fname, :$vocab=, :$invalid_label=-1, :$start_label=0)
{
    open(F, $fname) or die "Can't open $fname: $!";
    my @lines = map { my $l = [split(/ /)]; shift(@$l); $l } (<F>);
    my $sentences;
    ($sentences, $vocab) = mx->rnn->encode_sentences(

examples/lstm_bucketing.pl  view on Meta::CPAN

}

my $sym_gen = sub {
    my $seq_len = shift;
    my $data  = mx->sym->Variable('data');
    my $label = mx->sym->Variable('softmax_label');
    my $embed = mx->sym->Embedding(
        data => $data, input_dim => scalar(keys %$vocabulary),
        output_dim => $num_embed, name => 'embed'
    );
    $stack->reset;
    my ($outputs, $states) = $stack->unroll($seq_len, inputs => $embed, merge_outputs => 1);
    my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden]);
    $pred    = mx->sym->FullyConnected(data => $pred, num_hidden => scalar(keys %$vocabulary), name => 'pred');
    $label   = mx->sym->Reshape($label, shape => [-1]);
    $pred    = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
    return ($pred, ['data'], ['softmax_label']);
};

my $contexts;
if(defined $gpus)

examples/mnist.pl  view on Meta::CPAN

    $win->signal_connect(delete_event => sub { Gtk2->main_quit() });
    $win->add($sw);
    $win->show_all();
    Gtk2->main();
}

#show_sample();

sub to4d {
    my($img) = @_;
    return $img->reshape(28, 28, 1, ($img->dims)[2])->float / 255;
}

my $batch_size = 100;
my $train_iter = mx->io->NDArrayIter(
    data => to4d($train_img),
    label => $train_lbl,
    batch_size => $batch_size,
    shuffle => 1,
);
my $val_iter = mx->io->NDArrayIter(

examples/mnist.pl  view on Meta::CPAN

#my $shape = { data => [ $batch_size, 1, 28, 28 ] };
#show_network(mx->viz->plot_network($mlp, shape => $shape));

my $model = mx->mod->Module(
    symbol => $mlp,       # network structure
);
$model->fit(
    $train_iter,       # training data
    num_epoch => 10,      # number of data passes for training 
    eval_data => $val_iter, # validation data
    batch_end_callback => mx->callback->Speedometer($batch_size, 200), # output progress for each 200 data batches
    optimizer => 'adam',
);


lib/AI/MXNet.pm  view on Meta::CPAN

        batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0});

    my $n_epoch = 1;
    my $mod = mx->mod->new(symbol => $softmax);
    $mod->fit(
        $train_dataiter,
        eval_data => $val_dataiter,
        optimizer_params=>{learning_rate=>0.01, momentum=> 0.9},
        num_epoch=>$n_epoch
    );
    my $res = $mod->score($val_dataiter, mx->metric->create('acc'));
    ok($res->{accuracy} > 0.8);

=head1 DESCRIPTION

    Perl interface to MXNet machine learning library.

=head1 BUGS AND INCOMPATIBILITIES

    Parity with Python inteface is mostly achieved, few deprecated
    and not often used features left unported for now.

=head1 SEE ALSO

    http://mxnet.io/
    https://github.com/dmlc/mxnet/tree/master/perl-package
    Function::Parameters, Mouse

=head1 AUTHOR

    Sergey Kolychev, <sergeykolychev.github@gmail.com>

lib/AI/MXNet/Base.pm  view on Meta::CPAN

    return $lo;
}

=head2 pdl_shuffle

    Shuffle the pdl by the last dimension

    Parameters
    -----------
    PDL $pdl
    $preshuffle Maybe[ArrayRef[Index]], if defined the array elements are used
    as shuffled last dimension's indexes
=cut


sub pdl_shuffle
{
    my ($pdl, $preshuffle) = @_;
    my $c = $pdl->copy;
    my @shuffle = $preshuffle ? @{ $preshuffle } : shuffle(0..$pdl->dim(-1)-1);
    my $rem = $pdl->ndims-1;
    for my $i (0..$pdl->dim(-1)-1)
    {
        $c->slice(('X')x$rem, $i) .= $pdl->slice(('X')x$rem, $shuffle[$i])
    }
    $c;
}

=head2 assert

lib/AI/MXNet/Callback.pm  view on Meta::CPAN

        my ($iter_no, $sym, $arg, $aux) = @_;
        if(($iter_no + 1) % $period == 0)
        {
            $mod->save_checkpoint($prefix, $iter_no + 1, $save_optimizer_states);
        }
    }
}

=head2 log_train_metric

    Callback to log the training evaluation result every period.

    Parameters
    ----------
    $period : Int
        The number of batches after which to log the training evaluation metric.
    $auto_reset : Bool
        Whether to reset the metric after the logging.

    Returns
    -------
    $callback : sub ref
        The callback function that can be passed as iter_epoch_callback to fit.
=cut

method log_train_metric(Int $period, Int $auto_reset=0)
{
    return sub {
        my ($param) = @_;
        if($param->nbatch % $period == 0 and defined $param->eval_metric)
        {
            my $name_value = $param->eval_metric->get_name_value;
            while(my ($name, $value) = each %{ $name_value })
            {
                AI::MXNet::Logging->info(
                    "Iter[%d] Batch[%d] Train-%s=%f",
                    $param->epoch, $param->nbatch, $name, $value
                );
            }
            $param->eval_metric->reset if $auto_reset;
        }
    }
}

package AI::MXNet::Speedometer;
use Mouse;
use Time::HiRes qw/time/;
extends 'AI::MXNet::Callback';

=head1 NAME

lib/AI/MXNet/Callback.pm  view on Meta::CPAN


    Calculate and log training speed periodically.

    Parameters
    ----------
    batch_size: int
        batch_size of data
    frequent: int
        How many batches between calculations.
        Defaults to calculating & logging every 50 batches.
    auto_reset: Bool
        Reset the metric after each log, defaults to true.
=cut

has 'batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'frequent'   => (is => 'ro', isa => 'Int', default  => 50);
has 'init'       => (is => 'rw', isa => 'Int', default  => 0);
has 'tic'        => (is => 'rw', isa => 'Num', default  => 0);
has 'last_count' => (is => 'rw', isa => 'Int', default  => 0);
has 'auto_reset' => (is => 'ro', isa => 'Bool', default  => 1);

method call(AI::MXNet::BatchEndParam $param)
{
    my $count = $param->nbatch;
    if($self->last_count > $count)
    {
        $self->init(0);
    }
    $self->last_count($count);

    if($self->init)
    {
        if(($count % $self->frequent) == 0)
        {
            my $speed = $self->frequent * $self->batch_size / (time - $self->tic);
            if(defined $param->eval_metric)
            {
                my $name_value = $param->eval_metric->get_name_value;
                $param->eval_metric->reset if $self->auto_reset;
                while(my ($name, $value) = each %{ $name_value })
                {
                    AI::MXNet::Logging->info(
                        "Epoch[%d] Batch [%d]\tSpeed: %.2f samples/sec\tTrain-%s=%f",
                        $param->epoch, $count, $speed, $name, $value
                    );
                }
            }
            else
            {

lib/AI/MXNet/Callback.pm  view on Meta::CPAN

    }
    else
    {
        $self->init(1);
        $self->tic(time);
    }
}

*slice = \&call;

package AI::MXNet::ProgressBar;
use Mouse;
extends 'AI::MXNet::Callback';

=head1 NAME

    AI::MXNet::ProgressBar - A callback to show a progress bar.

=head1 DESCRIPTION

    Shows a progress bar.

    Parameters
    ----------
    total: Int
        batch size, default is 1
    length: Int
        the length of the progress bar, default is 80 chars
=cut

has 'length'  => (is => 'ro', isa => 'Int', default => 80);
has 'total'   => (is => 'ro', isa => 'Int', required => 1);

method call(AI::MXNet::BatchEndParam $param)
{
    my $count = $param->nbatch;
    my $filled_len = int(0.5 + $self->length * $count / $self->total);
    my $percents = int(100.0 * $count / $self->total) + 1;

lib/AI/MXNet/Callback.pm  view on Meta::CPAN

        );
    }
}

package AI::MXNet::Callback;

method Speedometer(@args)
{
    AI::MXNet::Speedometer->new(
        @args == 3 ?
            (batch_size => $args[0], frequent => $args[1], auto_reset => $args[2])
            : @args == 2 ?
                (batch_size => $args[0], frequent => $args[1])
                    : (batch_size => $args[0])
    )
}

method ProgressBar(@args)
{
    AI::MXNet::ProgressBar->new(
        @args == 2 ? (total => $args[0], 'length' => $args[1]) : (total => $args[0])
    )
}

method LogValidationMetricsCallback()
{
    AI::MXNet::LogValidationMetricsCallback->new
}

1;

lib/AI/MXNet/Context.pm  view on Meta::CPAN

    This class governs the device context of AI::MXNet::NDArray objects.
=cut

=head2

    Constructing a context.

    Parameters
    ----------
    device_type : {'cpu', 'gpu'} or Context.
        String representing the device type

    device_id : int (default=0)
        The device id of the device, needed for GPU
=cut

=head2 cpu

    Returns a CPU context.

    Parameters
    ----------
    device_id : int, optional
        The device id of the device. device_id is not needed for CPU.
        This is included to make interface compatible with GPU.

    Returns
    -------
    context : AI::MXNet::Context
        The corresponding CPU context.
=cut

method cpu(Int $device_id=0)
{
    return $self->new(device_type => 'cpu', device_id => $device_id);
}

=head2 gpu

    Returns a GPU context.

    Parameters
    ----------
    device_id : int, optional

    Returns
    -------
    context : AI::MXNet::Context
        The corresponding GPU context.
=cut

method gpu(Int $device_id=0)
{
    return $self->new(device_type => 'gpu', device_id => $device_id);
}

=head2 current_context

    Returns the current context.

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

    check_call(
        AI::MXNetCAPI::ExecutorSetMonitorCallback(
            $self->handle,
            $self->_monitor_callback
        )
    );
}

=head2 arg_dict

    Get a hash ref representation of the argument arrays.

    Returns
    -------
    arg_dict : HashRef[AI::MXNet::NDArray]
        The map that maps a name of the arguments to the NDArrays.
=cut

method arg_dict()
{
    if(not defined $self->_arg_dict)

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                $self->_symbol->list_arguments(),
                $self->arg_arrays
            )
        );
    }
    return $self->_arg_dict;
}

=head2 grad_dict

    Get a hash ref representation of the gradient arrays.

    Returns
    -------
    grad_dict : HashRef[AI::MXNet::NDArray]
        The map that maps a name of the arguments to the gradient NDArrays.
=cut

method grad_dict()
{
    if(not defined $self->_grad_dict)

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                $self->_symbol->list_arguments(),
                $self->grad_arrays
            )
        );
    }
    return $self->_grad_dict;
}

=head2 aux_dict

    Get a hash ref representation of the auxiliary states arrays.

    Returns
    -------
    aux_dict : HashRef[AI::MXNet::NDArray]
        The map that maps a name of the auxiliary states to the NDArrays.
=cut

method aux_dict()
{
    if(not defined $self->_aux_dict)

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                $self->_symbol->list_auxiliary_states(),
                $self->aux_arrays()
            )
        );
    }
    return $self->_aux_dict;
}

=head2 output_dict

    Get a hash ref representation of the output arrays.

    Returns
    -------
    output_dict : HashRef[AI::MXNet::NDArray]
        The map that maps a name of the outputs to the NDArrays.
=cut

method output_dict()
{
    if(not defined $self->_output_dict)

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                $array->astype($dst->dtype)->copyto($dst);
            }
            elsif(not $allow_extra_params)
            {
                confess("Found name \"$name\" that is not in the arguments");
            }
        }
    }
}

=head2 reshape

    Returns new executor with the same symbol and shared memory,
    but different input/output shapes.
    For runtime reshaping, variable length sequences, etc.
    The returned executor shares state with the current one,
    and cannot be used in parallel with it.

    Parameters
    ----------
    $kwargs : HashRef[Shape]
        new shape for arguments.
    :$partial_shaping : bool
        Whether to allow changing the shape of unspecified arguments.
    :$allow_up_sizing : bool
        Whether to allow allocating new ndarrays that's larger than the original.

    Returns
    -------
    $exec : AI::MXNet::Executor
        A new executor that shares memory with self.
=cut


method reshape(HashRef[Shape] $kwargs, Int :$partial_shaping=0, Int :$allow_up_sizing=0)
{
    my ($arg_shapes, undef, $aux_shapes) = $self->_symbol->infer_shape(%{ $kwargs });
    confess("Insufficient argument shapes provided.") 
        unless defined $arg_shapes;
    my %new_arg_dict;
    my %new_grad_dict;
    my $i = 0;
    for my $name (@{ $self->_symbol->list_arguments() })
    {
        my $new_shape = $arg_shapes->[$i];

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                {
                    $new_grad_dict{ $name } = AI::MXNet::NDArray->empty(
                        $new_shape,
                        ctx => $darr->context,
                        dtype => $arr->dtype
                    );
                }
            }
            else
            {
                $new_arg_dict{ $name } = $arr->reshape($new_shape);
                if(defined $darr)
                {
                    $new_grad_dict{ $name } = $darr->reshape($new_shape);
                }
            }
        }
        else
        {
            confess(
                    "Shape of unspecified array arg:$name changed. "
                    ."This can cause the new executor to not share parameters "
                    ."with the old one. Please check for error in network."
                    ."If this is intended, set partial_shaping=True to suppress this warning."
            );
        }
        $i++;
    }
    my %new_aux_dict;
    $i = 0;
    for my $name (@{ $self->_symbol->list_auxiliary_states() })
    {
        my $new_shape = $aux_shapes->[$i];
        my $arr = $self->aux_arrays->[$i];

lib/AI/MXNet/Executor.pm  view on Meta::CPAN

                    ."to enable allocation of new arrays."
                ) unless $allow_up_sizing;
                $new_aux_dict{ $name }  = AI::MXNet::NDArray->empty(
                    $new_shape,
                    ctx => $arr->context,
                    dtype => $arr->dtype
                );
            }
            else
            {
                $new_aux_dict{ $name } = $arr->reshape($new_shape);
            }
        }
        else
        {
            confess(
                "Shape of unspecified array aux:$name changed. "
                ."This can cause the new executor to not share parameters "
                ."with the old one. Please check for error in network."
                ."If this is intended, set partial_shaping=True to suppress this warning."
            );
        }
        $i++;
    }
    return $self->_symbol->bind(
                ctx         => $self->_ctx,
                args        => \%new_arg_dict,
                args_grad   => \%new_grad_dict,
                grad_req    => $self->_grad_req,
                aux_states  => \%new_aux_dict,

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

            }
            else
            {
                my $ctx = $tensors->[0]->context;
                push @rets, AI::MXNet::NDArray->concat((map { $_->as_in_context($ctx) } @$tensors), { dim => $axis });
            }
        }
        else
        {
            # negative axis means the there is no batch_size axis, and all the
            # results should be the same on each device. We simply take the
            # first one, without checking they are actually the same
            push @rets, $tensors->[0];
        }
    }, $outputs, $major_axis);
    return \@rets;
}

## TODO
## this class is here because of https://github.com/gfx/p5-Mouse/pull/67
## once 2.4.7 version of Mouse in Ubuntu for affected Perl version

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

        A array ref of strings, indicating the names of parameters (e.g. weights, filters, etc.)
        in the computation graph.
    for_training : Bool
        Indicate whether the executors should be bind for training. When not doing training,
        the memory for gradients will not be allocated.
    inputs_need_grad : Bool
        Indicate whether the gradients for the input data should be computed. This is currently
        not used. It will be useful for implementing composition of modules.
    shared_group : AI::MXNet::DataParallelExecutorGroup
        Default is undef. This is used in bucketing. When not undef, it should be a executor
        group corresponding to a different bucket. In other words, it will correspond to a different
        symbol with the same set of parameters (e.g. unrolled RNNs with different lengths).
        In this case the memory regions of the parameters will be shared.
    logger : Logger
        Default is AI::MXNet::Logging->get_logger.
    fixed_param_names: Maybe[ArrayRef[Str]]
        Indicate parameters to be fixed during training. Parameters in this array ref will not allocate
        space for gradient, nor do gradient calculation.
    grad_req : ArrayRef[GradReq]|HashRef[GradReq]|GradReq
        Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
        (default to 'write').

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

            $self->_p->batch_size($batch_size);
            $self->_p->slices(AI::MXNet::Executor::Group::_split_input_slice($self->_p->batch_size, $self->workload));
        }
    }, $data_shapes, $major_axis);
    return $major_axis;
}

# Collect internal arrays from executors.
method _collect_arrays()
{
    # convenient data structures
    $self->_p->data_arrays([]);
    for my $d (@{ $self->data_shapes })
    {
        my $name = $d->name;
        my @tmp;
        for my $i (0..@{ $self->_p->execs }-1)
        {
            push @tmp, [ $self->_p->slices->[$i], $self->_p->execs->[$i]->arg_dict->{$name} ];
        }
        push @{ $self->_p->data_arrays }, \@tmp;

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

        for my $exec (@{ $self->_p->execs })
        {
            push @tmp, $exec->aux_arrays->[$i];
        }
        push @{ $self->_p->aux_arrays }, \@tmp;
    }
}

=head2 bind_exec

    Bind executors on their respective devices.

    Parameters
    ----------
    $data_shapes  : ArrayRef[AI::MXNet::DataDesc]
    $label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]]
    $shared_group : Maybe[AI::MXNet::DataParallelExecutorGroup]
    $reshape      : Bool
=cut

method bind_exec(
    ArrayRef[AI::MXNet::DataDesc]               $data_shapes,
    Maybe[ArrayRef[AI::MXNet::DataDesc]]        $label_shapes=,
    Maybe[AI::MXNet::DataParallelExecutorGroup] $shared_group=,
    Bool                                        $reshape=0
)
{
    assert($reshape or not @{ $self->_p->execs });
    $self->_p->batch_size(undef);

    # calculate workload and bind executors
    $self->_p->data_layouts($self->decide_slices($data_shapes));
    # call it to make sure labels has the same batch size as data
    if(defined $label_shapes)
    {
        $self->_p->label_layouts($self->decide_slices($label_shapes));
    }

    for my $i (0..@{ $self->contexts }-1)
    {
        my $data_shapes_i = $self->_sliced_shape($data_shapes, $i, $self->_p->data_layouts);
        my $label_shapes_i = [];
        if(defined $label_shapes)
        {
            $label_shapes_i = $self->_sliced_shape($label_shapes, $i, $self->_p->label_layouts);
        }
        if($reshape)
        {
            my %combined_hash = map { $_->name => $_->shape } (@{ $data_shapes_i }, @{ $label_shapes_i });
            $self->_p->execs->[$i] = $self->_p->_default_execs->[$i]->reshape(
                \%combined_hash,
                allow_up_sizing => 1,
            );
        }
        else
        {
            push @{ $self->_p->execs }, $self->_bind_ith_exec($i, $data_shapes_i, $label_shapes_i, $shared_group);
        }
    }
    $self->data_shapes($data_shapes);
    $self->label_shapes($label_shapes);
    $self->_collect_arrays;
}

=head2 reshape

    Reshape executors.

    Parameters
    ----------
    $data_shapes : ArrayRef[AI::MXNet::DataDesc]
    $label_shapes : Maybe[ArrayRef[AI::MXNet::DataDesc]]
=cut


method reshape(
    ArrayRef[AI::MXNet::DataDesc]          $data_shapes,
    Maybe[ArrayRef[AI::MXNet::DataDesc]]   $label_shapes=
)
{
    return if($data_shapes eq $self->data_shapes and $label_shapes eq $self->label_shapes);
    if (not defined $self->_p->_default_execs)
    {
        $self->_p->_default_execs([@{ $self->_p->execs }]);
    }
    $self->bind_exec($data_shapes, $label_shapes, undef, 1);

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN


=head2 get_outputs

    Gets outputs of the previous forward computation.

    Parameters
    ----------
    merge_multi_context : bool
    Default is 1. In the case when data-parallelism is used, the outputs
    will be collected from multiple devices. A 1 value indicates that we
    should merge the collected results so that they look like from a single
    executor.

    Returns
    -------
    If merge_multi_context is 1, it is [$out1, $out2]. Otherwise, it
    is [[$out1_dev1, $out1_dev2], [$out2_dev1, $out2_dev2]]. All the output
    elements are `AI::MXNet::NDArray`.
=cut

method get_outputs(Bool $merge_multi_context=1)

lib/AI/MXNet/Executor/Group.pm  view on Meta::CPAN

    }
    if($merge_multi_context)
    {
        $outputs = AI::MXNet::Executor::Group::_merge_multi_context($outputs, $self->_p->output_layouts);
    }
    return $outputs;
}

=head2  get_input_grads

    Get the gradients with respect to the inputs of the module.

    Parameters
    ----------
    merge_multi_context : bool
    Default is 1. In the case when data-parallelism is used, the outputs
    will be collected from multiple devices. A 1 value indicates that we
    should merge the collected results so that they look like from a single
    executor.

    Returns
    -------
    If merge_multi_context is 1, it is [$grad1, $grad2]. Otherwise, it
    is [[$grad1_dev1, $grad1_dev2], [$grad2_dev1, $grad2_dev2]]. All the output
    elements are AI::MXNet::NDArray.
=cut

method get_input_grads(Bool $merge_multi_context=1)

lib/AI/MXNet/IO.pm  view on Meta::CPAN

    [$self->name, $self->shape];
}

=head1 NAME

    AI::MXNet::DataDesc - A container class for describing the data layout.
=cut

=head2 get_batch_axis

    Get the dimension that corresponds to the batch size.

    Parameters
    ----------
    layout : str
        layout string. For example, "NCHW".

    Returns
    -------
    An axis indicating the batch_size dimension. When data-parallelism is
    used, the data will be automatically split and concatenate along the batch_size

lib/AI/MXNet/IO.pm  view on Meta::CPAN

use overload '<>' =>  sub { shift->next },
             '@{}' => sub { shift->list };

=head1 NAME

    AI::MXNet::DataIter - A parent class for MXNet data iterators.
=cut

has 'batch_size' => (is => 'rw', isa => 'Int', default => 0);

=head2 reset

    Reset the iterator.
=cut

method reset(){}

=head2 list

    Returns remaining iterator items as an array ref.
=cut

method list()
{
    my @ret;
    while(<$self>)

lib/AI/MXNet/IO.pm  view on Meta::CPAN

=head1 DESCRIPTION

    Resize a DataIter to a given number of batches per epoch.
    May produce incomplete batch in the middle of an epoch due
    to the padding from internal iterator.

    Parameters
    ----------
    data_iter : DataIter
        Internal data iterator.
    size : number of batches per epoch to resize to.
    reset_internal : whether to reset internal iterator on ResizeIter.reset
=cut

has 'data_iter'      => (is => 'ro', isa => 'AI::MXnet::DataIter', required => 1);
has 'size'           => (is => 'ro', isa => 'Int', required => 1);
has 'reset_internal' => (is => 'rw', isa => 'Int', default => 1);
has 'cur'            => (is => 'rw', isa => 'Int', default => 0);
has 'current_batch'  => (is => 'rw', isa => 'Maybe[AI::MXNet::DataBatch]');
has [qw/provide_data
    default_bucket_key
    provide_label
    batch_size/]     => (is => 'rw', init_arg => undef);

sub BUILD
{
    my $self = shift;
    $self->provide_data($self->data_iter->provide_data);
    $self->provide_label($self->data_iter->provide_label);
    $self->batch_size($self->data_iter->batch_size);
    if($self->data_iter->can('default_bucket_key'))
    {
        $self->default_bucket_key($self->data_iter->default_bucket_key);
    }
}

method reset()
{
    $self->cur(0);
    if($self->reset_internal)
    {
        $self->data_iter->reset;
    }
}

method iter_next()
{
    return 0 if($self->cur == $self->size);
    $self->current_batch($self->data_iter->next);
    if(not defined $self->current_batch)
    {
        $self->data_iter->reset;
        $self->current_batch($self->data_iter->next);
    }
    $self->cur($self->cur + 1);
    return 1;
}

method get_data()
{
    return $self->current_batch->data;
}

lib/AI/MXNet/IO.pm  view on Meta::CPAN

{
    return [map {
        my ($k, $v) = @{ $_ };
        my $shape = $v->shape;
        $shape->[0] = $self->batch_size;
        AI::MXNet::DataDesc->new(name => $k, shape => $shape, dtype => $v->dtype)
    } @{ $self->label }];
}

# Ignore roll over data and set to start
method hard_reset()
{
    $self->cursor(-$self->batch_size);
}

method reset()
{
    if($self->last_batch_handle eq 'roll_over' and $self->cursor > $self->num_data)
    {
        $self->cursor(-$self->batch_size + ($self->cursor%$self->num_data)%$self->batch_size);
    }
    else
    {
        $self->cursor(-$self->batch_size);
    }
}

lib/AI/MXNet/IO.pm  view on Meta::CPAN

    }
    else
    {
        return undef;
    }
}

# Load data from underlying arrays, internal use only
method _getdata($data_source)
{
    confess("DataIter needs reset.") unless $self->cursor < $self->num_data;
    if(($self->cursor + $self->batch_size) <= $self->num_data)
    {
        return [
            map {
                $_->[1]->slice([$self->cursor,$self->cursor+$self->batch_size-1])
            } @{ $data_source }
        ];
    }
    else
    {

lib/AI/MXNet/IO.pm  view on Meta::CPAN

    This can be used to test the speed of network without taking
    the loading delay into account.
=cut

method debug_skip_load()
{
    $self->_debug_skip_load(1);
    AI::MXNet::Logging->info('Set debug_skip_load to be true, will simply return first batch');
}

method reset()
{
    $self->_debug_at_begin(1);
    $self->first_batch(undef);
    check_call(AI::MXNetCAPI::DataIterBeforeFirst($self->handle));
}

method next()
{
    if($self->_debug_skip_load and not $self->_debug_at_begin)
    {

lib/AI/MXNet/IO.pm  view on Meta::CPAN

                    index => $self->getindex
        );
    }
    if(defined $self->first_batch)
    {
        my $batch = $self->first_batch;
        $self->first_batch(undef);
        return $batch
    }
    $self->_debug_at_begin(0);
    my $next_res =  check_call(AI::MXNetCAPI::DataIterNext($self->handle));
    if($next_res)
    {
        return  AI::MXNet::DataBatch->new(
                    data  => [$self->getdata],
                    label => [$self->getlabel],
                    pad   => $self->getpad,
                    index => $self->getindex
        );
    }
    else
    {

lib/AI/MXNet/IO.pm  view on Meta::CPAN

# Create an io iterator by handle.
func _make_io_iterator($handle)
{
    my ($iter_name, $desc,
        $arg_names, $arg_types, $arg_descs
    ) = @{ check_call(AI::MXNetCAPI::DataIterGetIterInfo($handle)) };
    my $param_str = build_param_doc($arg_names, $arg_types, $arg_descs);
    my $doc_str = "$desc\n\n"
                  ."$param_str\n"
                  ."name : string, required.\n"
                  ."    Name of the resulting data iterator.\n\n"
                  ."Returns\n"
                  ."-------\n"
                  ."iterator: DataIter\n"
                  ."    The result iterator.";
    my $iter = sub {
        my $class = shift;
        my (@args, %kwargs);
        if(@_ and ref $_[-1] eq 'HASH')
        {
            %kwargs = %{ pop(@_) };
        }
        @args = @_;
        Carp::confess("$iter_name can only accept keyword arguments")
            if @args;

lib/AI/MXNet/Image.pm  view on Meta::CPAN

use AI::MXNet::Base;
use AI::MXNet::Function::Parameters;

=head1 NAME

    AI::MXNet:Image - Read individual image files and perform augmentations.
=cut

=head2 imdecode

    Decode an image from string. Requires OpenCV to work.

    Parameters
    ----------
    $buf : str, array ref, pdl, ndarray
        Binary image data.
    :$flag : int
        0 for grayscale. 1 for colored.
    :$to_rgb : int
        0 for BGR format (OpenCV default). 1 for RGB format (MXNet default).
    :$out : NDArray

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    {
        ($w, $h) = (($w*$sh)/$h, $sh);
    }
    if($sw < $w)
    {
        ($w, $h) = ($sw, ($h*$sw)/$w);
    }
    return (int($w), int($h));
}

=head2 resize_short

    Resize shorter edge to the size.

    Parameters:
    -----------
    AI::MXNet::NDArray $src
    Int                $size
    Int                $interp=2

    Returns:
    --------
    AI::MXNet::NDArray $resized_image
=cut

method resize_short(AI::MXNet::NDArray $src, Int $size, Int $interp=2)
{
    my ($new_h, $new_w);
    my ($h, $w) = @{ $src->shape };
    if($h > $w)
    {
        ($new_h, $new_w) = ($size*$h/$w, $size);
    }
    else
    {
        ($new_h, $new_w) = ($size, $size*$w/$h);
    }
    return AI::MXNet::NDArray->_cvimresize($src, $new_w, $new_h, { interp=>$interp });
}

=head2 fixed_crop

    Crop src at fixed location, and (optionally) resize it to the size.

    Parameters:
    -----------
    AI::MXNet::NDArray $src
    Int                $x0
    Int                $y0
    Int                $w
    Int                $h
    Maybe[Shape]       $size=
    Int                $interp=2

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    Returns:
    --------
    AI::MXNet::NDArray $cropped_image
=cut

method fixed_crop(AI::MXNet::NDArray $src, Int $x0, Int $y0, Int $w, Int $h, Maybe[Shape] $size=, Int $interp=2)
{
    my $out = AI::MXNet::NDArray->crop($src, { begin=>[$y0, $x0, 0], end=>[$y0+$h, $x0+$w, $src->shape->[2]] });
    if(defined $size and join(',', $w, $h) ne join(',', @{ $size }))
    {
        $out = AI::MXNet::NDArray->_cvimresize($out, @{ $size }, { interp=>$interp });
    }
    return $out;
}

=head2 random_crop

    Randomly crop src with size. Upsample result if src is smaller than the size.

    Parameters:
    -----------
    AI::MXNet::NDArray $src
    Shape              $size=
    Int                $interp=2

    Returns:
    --------
    ($cropped_image, [$x0, $y0, $new_w, $new_h])

lib/AI/MXNet/Image.pm  view on Meta::CPAN


    my $x0 = int(rand($w - $new_w + 1));
    my $y0 = int(rand($h - $new_h + 1));

    my $out = __PACKAGE__->fixed_crop($src, $x0, $y0, $new_w, $new_h, $size, $interp);
    return ($out, [$x0, $y0, $new_w, $new_h]);
}

=head2 center_crop

    Randomly crop src with size around the center. Upsample result if src is smaller than the size.

    Parameters:
    -----------
    AI::MXNet::NDArray $src
    Shape              $size=
    Int                $interp=2

    Returns:
    --------
    ($cropped_image, [$x0, $y0, $new_w, $new_h])

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    assert($new_w <= $w and $new_h <= $h);
    my $x0 = int(rand($w - $new_w + 1));
    my $y0 = int(rand($h - $new_h + 1));

    my $out = __PACKAGE__->fixed_crop($src, $x0, $y0, $new_w, $new_h, $size, $interp);
    return ($out, [$x0, $y0, $new_w, $new_h]);
}

=head2 ResizeAug

    Makes "resize shorter edge to size augumenter" closure.

    Parameters:
    -----------
    Shape              $size
    Int                $interp=2

    Returns:
    --------
    CodeRef that accepts AI::MXNet::NDArray $src as input
    and returns [__PACKAGE__->resize_short($src, $size, $interp)]
=cut

method ResizeAug(Shape $size, Int $interp=2)
{
    my $aug = sub {
        my $src = shift;
        return [__PACKAGE__->resize_short($src, $size, $interp)];
    };
    return $aug;
}

=head2 RandomCropAug

    Makes "random crop augumenter" closure.

    Parameters:
    -----------

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    return $aug;
}

=head2 CreateAugmenter

    Create augumenter list

    Parameters:
    -----------
    Shape          :$data_shape,
    Bool           :$resize=0,
    Bool           :$rand_crop=0,
    Bool           :$rand_resize=0,
    Bool           :$rand_mirror=0,
    Maybe[Num|PDL] :$mean=,
    Maybe[Num|PDL] :$std=,
    Num            :$brightness=0,
    Num            :$contrast=0,
    Num            :$saturation=0,
    Num            :$pca_noise=0,
    Int            :$inter_method=2
=cut

method CreateAugmenter(
Shape          :$data_shape,
Bool           :$resize=0,
Bool           :$rand_crop=0,
Bool           :$rand_resize=0,
Bool           :$rand_mirror=0,
Maybe[Num|PDL] :$mean=,
Maybe[Num|PDL] :$std=,
Num            :$brightness=0,
Num            :$contrast=0,
Num            :$saturation=0,
Num            :$pca_noise=0,
Int            :$inter_method=2
)
{
    my @auglist;
    if($resize > 0)
    {
        push @auglist, __PACKAGE__->ResizeAug($resize, $inter_method);
    }

    my $crop_size = [$data_shape->[2], $data_shape->[1]];
    if($rand_resize)
    {
        assert($rand_crop);
        push @auglist, __PACKAGE__->RandomSizedCropAug($crop_size, 0.3, [3.0/4.0, 4.0/3.0], $inter_method);
    }
    elsif($rand_crop)
    {
        push @auglist, __PACKAGE__->RandomCropAug($crop_size, $inter_method);
    }
    else
    {

lib/AI/MXNet/Image.pm  view on Meta::CPAN

            my $label = AI::MXNet::NDArray->array([@line[1..@line-2]]);
            my $key   = $line[0];
            $imglist{$key} = [$label, $line[-1]];
            push @imgkeys, $key;
        }
        $self->imglist(\%imglist);
    }
    elsif(ref $self->imglist eq 'ARRAY')
    {
        print("loading image list...\n");
        my %result;
        my $index = 1;
        for my $img (@{ $self->imglist })
        {
            my $key = $index++;
            my $label;
            if(not ref $img->[0])
            {
                $label = AI::MXNet::NDArray->array([$img->[0]]);
            }
            else
            {
                $label = AI::MXNet::NDArray->array($img->[0]);
                $result{$key} = [$label, $img->[1]];
                push @imgkeys, $key;
            }
        }
        $self->imglist(\%result);
    }
    assert(@{ $self->data_shape } == 3 and $self->data_shape->[0] == 3);
    $self->provide_data([
        AI::MXNet::DataDesc->new(
            name  => $self->data_name,
            shape => [$self->batch_size, @{ $self->data_shape }]
        )
    ]);
    if($self->label_width > 1)
    {

lib/AI/MXNet/Image.pm  view on Meta::CPAN

    }
    if(defined $self->aug_list or defined $self->kwargs)
    {
        $self->aug_list(AI::MXNet::Image->CreateAugmenter(data_shape => $self->data_shape, %{ $self->kwargs//{} }));
    }
    else
    {
        $self->aug_list([]);
    }
    $self->cur(0);
    $self->reset();
}

method reset()
{
    if($self->shuffle)
    {
        @{ $self->seq } = List::Util::shuffle(@{ $self->seq });
    }
    if(defined $self->imgrec)
    {
        $self->imgrec->reset;
    }
    $self->cur(0);
}

method next_sample()
{
    if(defined $self->seq)
    {
        return undef if($self->cur >= @{ $self->seq });
        my $idx = $self->seq->[$self->cur];

lib/AI/MXNet/Initializer.pm  view on Meta::CPAN

        *{"$orig_name"} = sub { shift; $self->new(@_) };
        *InitDesc       = sub { shift; AI::MXNet::InitDesc->new(@_) };
    }
}

=head2 init

    Parameters
    ----------
    $desc : AI::MXNet::InitDesc|str
        a name of corresponding ndarray
        or the object that describes the initializer.

    $arr : AI::MXNet::NDArray
        an ndarray to be initialized.
=cut
method call(Str|AI::MXNet::InitDesc $desc, AI::MXNet::NDArray $arr)
{
    return $self->_legacy_init($desc, $arr) unless blessed $desc;
    my $init = $desc->attrs->{ __init__ };
    if($init)

lib/AI/MXNet/Initializer.pm  view on Meta::CPAN

    my $shape = $arr->shape;
    my $size = $arr->size;
    my $f = pceil($shape->[3] / 2)->at(0);
    my $c = (2 * $f - 1 - $f % 2) / (2 * $f);
    for my $i (0..($size-1))
    {
        my $x = $i % $shape->[3];
        my $y = ($i / $shape->[3]) % $shape->[2];
        $weight->index($i) .= (1 - abs($x / $f - $c)) * (1 - abs($y / $f - $c));
    }
    $arr .= $weight->reshape(reverse @{ $shape });
}

method _init_loc_bias($name, $arr)
{
    confess("assert error shape[0] == 6")
        unless $arr->shape->[0] == 6;
    $arr .= [1.0, 0, 0, 0, 1.0, 0];
}

method _init_zero($name, $arr)

lib/AI/MXNet/Initializer.pm  view on Meta::CPAN

*slice = *call;

=head1 NAME

    AI::MXNet::Mixed - A container for multiple initializer patterns.
=cut

=head2 new

    patterns: array ref of str
        array ref of regular expression patterns to match parameter names.
    initializers: array ref of AI::MXNet::Initializer objects.
        array ref of Initializers corresponding to the patterns.
=cut

package AI::MXNet::Mixed;
use Mouse;
extends 'AI::MXNet::Initializer';

has "map"          => (is => "rw", init_arg => undef);
has "patterns"     => (is => "ro", isa => 'ArrayRef[Str]');
has "initializers" => (is => "ro", isa => 'ArrayRef[AI::MXnet::Initializer]');

lib/AI/MXNet/Initializer.pm  view on Meta::CPAN

    my ($u, $s, $v) = svd($tmp);
    my $q;
    if(join(',', @{ $u->shape->unpdl }) eq join(',', @{ $tmp->shape->unpdl }))
    {
        $q = $u;
    }
    else
    {
        $q = $v;
    }
    $q = $self->scale * $q->reshape(reverse(@shape));
    $arr .= $q;
}

*slice = *call;
__PACKAGE__->register;

=head1 NAME

    AI::MXNet::Xavier - Initialize the weight with Xavier or similar initialization scheme.
=cut

lib/AI/MXNet/Initializer.pm  view on Meta::CPAN

    my $shape = $arr->shape;
    my $size = $arr->size;
    my $f = pceil($shape->[3] / 2)->at(0);
    my $c = (2 * $f - 1 - $f % 2) / (2 * $f);
    for my $i (0..($size-1))
    {
        my $x = $i % $shape->[3];
        my $y = ($i / $shape->[3]) % $shape->[2];
        $weight->index($i) .= (1 - abs($x / $f - $c)) * (1 - abs($y / $f - $c));
    }
    $arr .= $weight->reshape(reverse @{ $shape });
}

__PACKAGE__->register;

package AI::MXNet::LSTMBias;

=head1 NAME

    AI::MXNet::LSTMBias - Custom initializer for LSTM cells.
=cut

lib/AI/MXNet/LRScheduler.pm  view on Meta::CPAN

             fallback => 1;

=head1 NAME

    AI::MXNet::LRScheduler - The adaptive scheduler of the learning rate.
=cut

=head1 DESCRIPTION

    Learning rate scheduler, which adaptively changes the learning rate based on the
    progress.
=cut

=head2 new

    base_lr : float (optional, default 0.01)
    the initial learning rate
=cut

has 'base_lr' => (is => 'rw', isa => 'Num', default => 0.01);

=head2 call

    Call to schedule current learning rate

    The training progress is presented by num_update, which can be roughly
    viewed as the number of minibatches executed so far. Its value is
    non-decreasing, and increases at most by one.

    The exact value is the upper bound of the number of updates applied to
    a weight/index

    See more details in https://github.com/dmlc/mxnet/issues/625

    Parameters
    ----------

lib/AI/MXNet/Metric.pm  view on Meta::CPAN

                [shift->get_name_value()]
            )->Purity(1)->Deepcopy(1)->Terse(1)->Dump
},  fallback => 1;
has 'name'       => (is => 'rw', isa => 'Str');
has 'num'        => (is => 'rw', isa => 'Int');
has 'num_inst'   => (is => 'rw', isa => 'Maybe[Int|ArrayRef[Int]]');
has 'sum_metric' => (is => 'rw', isa => 'Maybe[Num|ArrayRef[Num]]');

sub BUILD
{
    shift->reset;
}

method update($label, $pred)
{
    confess('NotImplemented');
}

method reset()
{
    if(not defined $self->num)
    {
        $self->num_inst(0);
        $self->sum_metric(0);
    }
    else
    {
        $self->num_inst([(0) x $self->num]);
        $self->sum_metric([(0) x $self->num]);

lib/AI/MXNet/Metric.pm  view on Meta::CPAN

}

method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
    for my $metric (@{ $self->metrics })
    {
        $metric->update($labels, $preds);
    }
}

method reset()
{
    for my $metric (@{ $self->metrics })
    {
        $metric->reset;
    }
}

method get()
{
    my $names = [];
    my $results = [];
    for my $metric (@{ $self->metrics })
    {
        my ($name, $result) = $metric->get;
        $name = [$name] unless ref $name;
        $result = [$result] unless ref $result;
        push @$names, @$name;
        push @$results, @$result;
    }
    return ($names, $results);
}


########################
# CLASSIFICATION METRICS
########################

package AI::MXNet::Accuracy;
use Mouse;
use AI::MXNet::Base;

lib/AI/MXNet/Metric.pm  view on Meta::CPAN

    AI::MXNet::Metric::check_label_shapes($labels, $preds);
    my ($loss, $num) = (0, 0);
    zip(sub {
        my ($label, $pred) = @_;
        my $label_shape = $label->shape;
        my $pred_shape  = $pred->shape;
        assert(
            (product(@{ $label_shape }) == product(@{ $pred_shape })/$pred_shape->[-1]),
            "shape mismatch: (@$label_shape) vs. (@$pred_shape)"
        );
        $label = $label->as_in_context($pred->context)->reshape([$label->size]);
        $pred = AI::MXNet::NDArray->pick($pred, $label->astype('int32'), { axis => $self->axis });
        if(defined $self->ignore_label)
        {
            my $ignore = ($label == $self->ignore_label);
            $num -= $ignore->sum->asscalar;
            $pred = $pred*(1-$ignore) + $ignore;
        }
        $loss -= $pred->maximum(1e-10)->log->sum->asscalar;
        $num  += $pred->size;
    }, $labels, $preds);

lib/AI/MXNet/Metric.pm  view on Meta::CPAN


method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
    AI::MXNet::Metric::check_label_shapes($labels, $preds);
    zip(sub {
        my ($label, $pred) = @_;
        $label = $label->aspdl;
        $pred =  $pred->aspdl;
        if($label->ndims == 1)
        {
            $label = $label->reshape(1, $label->shape->at(0));
        }
        $self->sum_metric($self->sum_metric + ($label - $pred)->abs->avg);
        $self->num_inst($self->num_inst + 1);
    }, $labels, $preds);
}

# Calculate Mean Squared Error loss
package AI::MXNet::MSE;
use Mouse;
use AI::MXNet::Base;

lib/AI/MXNet/Metric.pm  view on Meta::CPAN


method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
    AI::MXNet::Metric::check_label_shapes($labels, $preds);
    zip(sub {
        my ($label, $pred) = @_;
        $label = $label->aspdl;
        $pred =  $pred->aspdl;
        if($label->ndims == 1)
        {
            $label = $label->reshape(1, $label->shape->at(0));
        }
        $self->sum_metric($self->sum_metric + (($label - $pred)**2)->avg);
        $self->num_inst($self->num_inst + 1);
    }, $labels, $preds);
}

# Calculate Root Mean Squred Error loss
package AI::MXNet::RMSE;
use Mouse;
use AI::MXNet::Base;

lib/AI/MXNet/Metric.pm  view on Meta::CPAN


method update(ArrayRef[AI::MXNet::NDArray] $labels, ArrayRef[AI::MXNet::NDArray] $preds)
{
    AI::MXNet::Metric::check_label_shapes($labels, $preds);
    zip(sub {
        my ($label, $pred) = @_;
        $label = $label->aspdl;
        $pred =  $pred->aspdl;
        if($label->ndims == 1)
        {
            $label = $label->reshape(1, $label->shape->at(0));
        }
        $self->sum_metric($self->sum_metric + sqrt((($label - $pred)**2)->avg));
        $self->num_inst($self->num_inst + 1);
    }, $labels, $preds);
}

# Calculate Cross Entropy loss
package AI::MXNet::CrossEntropy;
use Mouse;
use AI::MXNet::Base;

lib/AI/MXNet/Module.pm  view on Meta::CPAN

    $mod->params_initialized(1);
    if($load_optimizer_states)
    {
        $mod->_p->_preload_opt_states(sprintf('%s-%04d.states', $prefix, $epoch));
    }
    return $mod;
}

=head2 save_checkpoint

    Save current progress to a checkpoint.
    Use mx->callback->module_checkpoint as epoch_end_callback to save during training.

    Parameters
    ----------
    prefix : str
        The file prefix to checkpoint to
    epoch : int
        The current epoch number
    save_optimizer_states : bool
        Whether to save optimizer states for later training

lib/AI/MXNet/Module.pm  view on Meta::CPAN

{
    if(defined $symbol)
    {
        $symbol->save("$prefix-symbol.json");
    }
    my $param_name = sprintf('%s-%04d.params', $prefix, $epoch);
    $self->save_params($param_name, $arg_params, $aux_params);
    AI::MXNet::Logging->info('Saved checkpoint to "%s"', $param_name);
}

# Internal function to reset binded state.
method _reset_bind()
{
    $self->binded(0);
    $self->_p->_exec_group(undef);
    $self->_p->_data_shapes(undef);
    $self->_p->_label_shapes(undef);
}

method data_names()
{
    return $self->_p->_data_names;

lib/AI/MXNet/Module.pm  view on Meta::CPAN

                    # just in case the cached array is just the target itself
                    if($cache_arr->handle ne $arr->handle)
                    {
                        $cache_arr->copyto($arr);
                    }
                }
                else
                {
                    if(not $allow_missing)
                    {
                        confess("$name is not presented");
                    }
                    if(defined $initializer)
                    {
                        &{$initializer}($name, $arr);
                    }
                }
            }
            else
            {
                &{$initializer}($name, $arr) if defined $initializer;

lib/AI/MXNet/Module.pm  view on Meta::CPAN

        Default is 1. Whether the executors should be bind for training.
    :$inputs_need_grad : bool
        Default is 0. Whether the gradients to the input data need to be computed.
        Typically this is not needed. But this might be needed when implementing composition
        of modules.
    :$force_rebind : bool
        Default is 0. This function does nothing if the executors are already
        binded. But with this 1, the executors will be forced to rebind.
    :$shared_module : Module
        Default is undef. This is used in bucketing. When not undef, the shared module
        essentially corresponds to a different bucket -- a module with different symbol
        but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
=cut

method bind(
    ArrayRef[AI::MXNet::DataDesc|NameShape]        :$data_shapes,
    Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]] :$label_shapes=,
    Bool                                           :$for_training=1,
    Bool                                           :$inputs_need_grad=0,
    Bool                                           :$force_rebind=0,
    Maybe[AI::MXNet::Module]                       :$shared_module=,
    GradReq|HashRef[GradReq]|ArrayRef[GradReq]     :$grad_req='write',
    Maybe[ArrayRef[Str]]                           :$state_names=$self->_p->_state_names
)
{
    # force rebinding is typically used when one want to switch from
    # training to prediction phase.
    if($force_rebind)
    {
        $self->_reset_bind();
    }
    if($self->binded)
    {
        $self->logger->warning('Already binded, ignoring bind()');
        return;
    }
    $self->for_training($for_training);
    $self->inputs_need_grad($inputs_need_grad);
    $self->binded(1);
    $self->_p->_grad_req($grad_req);

lib/AI/MXNet/Module.pm  view on Meta::CPAN

        my %aux_params;
        @aux_params{ @{ $self->_p->_aux_names } } = @aux_arrays;
        $self->_p->_aux_params(\%aux_params);
    }
    if($shared_module and $shared_module->optimizer_initialized)
    {
        $self->borrow_optimizer($shared_module)
    }
}

=head2 reshape

    Reshape the module for new input shapes.
    Parameters
    ----------
    :$data_shapes : ArrayRef[AI::MXNet::DataDesc]
        Typically is $data_iter->provide_data.
    :$label_shapes= : Maybe[ArrayRef[AI::MXNet::DataDesc]]
        Typically is $data_iter->provide_label.
=cut

method reshape(
    ArrayRef[AI::MXNet::DataDesc|NameShape]        :$data_shapes,
    Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]] :$label_shapes=
)
{
    assert($self->binded);
    ($data_shapes, $label_shapes) = $self->_parse_data_desc(
        $self->data_names, $self->label_names, $data_shapes, $label_shapes
    );
    $self->_p->_data_shapes($data_shapes);
    $self->_p->_label_shapes($label_shapes);
    $self->_p->_exec_group->reshape($self->_p->_data_shapes, $self->_p->_label_shapes);
}

method init_optimizer(
    Str|AI::MXNet::KVStore :$kvstore='local',
    Optimizer              :$optimizer='sgd',
    HashRef                :$optimizer_params={ learning_rate => 0.01 },
    Bool                   :$force_init=0
)
{
    assert($self->binded and $self->params_initialized);

lib/AI/MXNet/Module.pm  view on Meta::CPAN

    my ($kvstore, $update_on_kvstore) = _create_kvstore(
        $kvstore,
        scalar(@{$self->_p->_context}),
        $self->_p->_arg_params
    );
    my $batch_size = $self->_p->_exec_group->_p->batch_size;
    if($kvstore and $kvstore->type =~ /dist/ and $kvstore->type =~ /_sync/)
    {
        $batch_size *= $kvstore->num_workers;
    }
    my $rescale_grad = 1/$batch_size;

    if(not blessed $optimizer)
    {
        my %idx2name;
        if($update_on_kvstore)
        {
            @idx2name{ 0..@{$self->_p->_exec_group->param_names}-1 } = @{$self->_p->_exec_group->param_names};
        }
        else
        {
            for my $k (0..@{$self->_p->_context}-1)
            {
                @idx2name{ map { $_ + $k } 0..@{$self->_p->_exec_group->param_names}-1 } = @{$self->_p->_exec_group->param_names};
            }
        }
        if(not exists $optimizer_params->{rescale_grad})
        {
            $optimizer_params->{rescale_grad} = $rescale_grad;
        }
        $optimizer = AI::MXNet::Optimizer->create(
            $optimizer,
            sym  => $self->symbol,
            param_idx2name => \%idx2name,
            %{ $optimizer_params }
        );
        if($optimizer->rescale_grad != $rescale_grad)
        {
            AI::MXNet::Logging->warning(
                "Optimizer created manually outside Module but rescale_grad "
                ."is not normalized to 1.0/batch_size/num_workers (%s vs. %s). "
                ."Is this intended?",
                $optimizer->rescale_grad, $rescale_grad
            );
        }
    }

    $self->_p->_optimizer($optimizer);
    $self->_p->_kvstore($kvstore);
    $self->_p->_update_on_kvstore($update_on_kvstore);
    $self->_p->_updater(undef);

    if($kvstore)

lib/AI/MXNet/Module.pm  view on Meta::CPAN

        elsif($data_batch->can('label') and $data_batch->label)
        {
            $new_lshape = [];
            zip(sub {
                my ($i, $j) = @_;
                push @{ $new_lshape }, AI::MXNet::DataDesc->new(
                    $i->name, $j->shape, $i->dtype, $i->layout
                );
            }, $self->label_shapes, $data_batch->label);
        }
        $self->reshape(data_shapes => $new_dshape, label_shapes => $new_lshape);
    }
    $self->_p->_exec_group->forward($data_batch, $is_train);
}

method backward(Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]] $out_grads=)
{
    assert($self->binded and $self->params_initialized);
    $self->_p->_exec_group->backward($out_grads);
}

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

    }
    else
    {
        $self->_check_names_match($label_names, [], 'label', 0);
    }
    return ($data_shapes, $label_shapes);
}

=head1 DESCRIPTION

    The base class of a modules. A module represents a computation component. The design
    purpose of a module is that it abstract a computation "machine", that one can run forward,
    backward, update parameters, etc. We aim to make the APIs easy to use, especially in the
    case when we need to use imperative API to work with multiple modules (e.g. stochastic
    depth network).

    A module has several states:

        - Initial state. Memory is not allocated yet, not ready for computation yet.
        - Binded. Shapes for inputs, outputs, and parameters are all known, memory allocated,
        ready for computation.
        - Parameter initialized. For modules with parameters, doing computation before initializing
        the parameters might result in undefined outputs.
        - Optimizer installed. An optimizer can be installed to a module. After this, the parameters
        of the module can be updated according to the optimizer after gradients are computed
        (forward-backward).

    In order for a module to interact with others, a module should be able to report the
    following information in its raw stage (before binded)

        - data_names: array ref of string indicating the names of required data.
        - output_names: array ref of string indicating the names of required outputs.

    And also the following richer information after binded:

    - state information
        - binded: bool, indicating whether the memory buffers needed for computation
        has been allocated.
        - for_training: whether the module is binded for training (if binded).
        - params_initialized: bool, indicating whether the parameters of this modules
        has been initialized.
        - optimizer_initialized: bool, indicating whether an optimizer is defined
        and initialized.
        - inputs_need_grad: bool, indicating whether gradients with respect to the
        input data is needed. Might be useful when implementing composition of modules.

    - input/output information
        - data_shapes: am array ref of [name, shape]. In theory, since the memory is allocated,
        we could directly provide the data arrays. But in the case of data parallelization,
        the data arrays might not be of the same shape as viewed from the external world.
        - label_shapes: an array ref of [name, shape]. This might be [] if the module does
        not need labels (e.g. it does not contains a loss function at the top), or a module
        is not binded for training.
        - output_shapes: an array ref of [name, shape] for outputs of the module.

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN


    - setup
        - bind(): prepare environment for computation.
        - init_optimizer(): install optimizer for parameter updating.

    - computation
        - forward(data_batch): forward operation.
        - backward(out_grads=): backward operation.
        - update(): update parameters according to installed optimizer.
        - get_outputs(): get outputs of the previous forward operation.
        - get_input_grads(): get the gradients with respect to the inputs computed
        in the previous backward operation.
        - update_metric(metric, labels): update performance metric for the previous forward
        computed results.

    - other properties (mostly for backward compatability)
        - symbol: the underlying symbolic graph for this module (if any)
        This property is not necessarily constant. For example, for AI::MXNet::Module::Bucketing,
        this property is simply the *current* symbol being used. For other modules,
        this value might not be well defined.

    When those intermediate-level API are implemented properly, the following
    high-level API will be automatically available for a module:

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN


    Parameters
    ----------
    $eval_data   : AI::MXNet::DataIter
    $eval_metric : AI::MXNet::EvalMetric
    :$num_batch= : Maybe[Int]
        Number of batches to run. Default is undef, indicating run until the AI::MXNet::DataIter
        finishes.
    :$batch_end_callback= : Maybe[Callback]
        Could also be a array ref of functions.
    :$reset=1 : Bool
        Default 1, indicating whether we should reset $eval_data before starting
        evaluating.
    $epoch=0 : Int
        Default is 0. For compatibility, this will be passed to callbacks (if any). During
        training, this will correspond to the training epoch number.
=cut

method score(
    AI::MXNet::DataIter                 $eval_data,
    EvalMetric                          $eval_metric,
    Maybe[Int]                          :$num_batch=,
    Maybe[Callback]|ArrayRef[Callback]  :$batch_end_callback=,
    Maybe[Callback]|ArrayRef[Callback]  :$score_end_callback=,
    Bool                                :$reset=1,
    Int                                 :$epoch=0
)
{
    assert($self->binded and $self->params_initialized);
    $eval_data->reset if $reset;
    if(not blessed $eval_metric or not $eval_metric->isa('AI::MXNet::EvalMetric'))
    {
        $eval_metric = AI::MXNet::Metric->create($eval_metric);
    }

    $eval_metric->reset();
    my $actual_num_batch = 0;
    my $nbatch = 0;
    while(my $eval_batch = <$eval_data>)
    {
        last if (defined $num_batch and $nbatch == $num_batch);
        $self->forward($eval_batch, is_train => 0);
        $self->update_metric($eval_metric, $eval_batch->label);

        if (defined $batch_end_callback)
        {

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN


=head2  iter_predict

    Iterate over predictions.

    Parameters
    ----------
    $eval_data : AI::MXNet::DataIter
    :$num_batch= : Maybe[Int]
        Default is undef, indicating running all the batches in the data iterator.
    :$reset=1 : bool
        Default is 1, indicating whether we should reset the data iter before start
        doing prediction.
=cut

method iter_predict(AI::MXNet::DataIter $eval_data, Maybe[Int] :$num_batch=, Bool :$reset=1)
{
    assert($self->binded and $self->params_initialized);
    if($reset)
    {
        $eval_data->reset;
    }
    my $nbatch = 0;
    my @out;
    while(my $eval_batch = <$eval_data>)
    {
        last if defined $num_batch and $nbatch == $num_batch;
        $self->forward($eval_batch, is_train => 0);
        my $pad = $eval_batch->pad;
        my $outputs = [
            map { $_->slice([0, $_->shape->[0] - ($pad//0) - 1]) } @{ $self->get_outputs() }

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN


    Run prediction and collect the outputs.

    Parameters
    ----------
    $eval_data  : AI::MXNet::DataIter
    :$num_batch= : Maybe[Int]
        Default is undef, indicating running all the batches in the data iterator.
    :$merge_batches=1 : Bool
        Default is 1.
    :$reset=1 : Bool
        Default is 1, indicating whether we should reset the data iter before start
        doing prediction.
    :$always_output_list=0 : Bool
    Default is 0, see the doc for return values.

    Returns
    -------
    When $merge_batches is 1 (by default), the return value will be an array ref
    [$out1, $out2, $out3] where each element is concatenation of the outputs for
    all the mini-batches. If $always_output_list` also is 0 (by default),
    then in the case of a single output, $out1 is returned in stead of [$out1].

    When $merge_batches is 0, the return value will be a nested array ref like
    [[$out1_batch1, $out2_batch1], [$out1_batch2], ...]. This mode is useful because
    in some cases (e.g. bucketing), the module does not necessarily produce the same
    number of outputs.

    The objects in the results are AI::MXNet::NDArray`s. If you need to work with pdl array,
    just call ->aspdl() on each AI::MXNet::NDArray.
=cut

method predict(
    AI::MXNet::DataIter $eval_data,
    Maybe[Int] :$num_batch=, Bool :$merge_batches=1, Bool :$reset=1, Bool :$always_output_list=0
)
{
    assert($self->binded and $self->params_initialized);
    $eval_data->reset() if $reset;

    my @output_list;
    my $nbatch = 0;
    while(my $eval_batch = <$eval_data>)
    {
        last if defined $num_batch and $nbatch == $num_batch;
        $self->forward($eval_batch, is_train => 0);
        my $pad = $eval_batch->pad;
        my $outputs = [map { $_->slice([0, $_->shape->[0]-($pad//0)-1])->copy } @{ $self->get_outputs }];
        push @output_list, $outputs;

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

    :$allow_missing=0 : Bool
        Default is 0. Indicates whether we allow missing parameters when $arg_params
        and $aux_params are not undefined. If this is 1, then the missing parameters
        will be initialized via the $initializer.
    :$force_rebind=0 : Bool
        Default is 0. Whether to force rebinding the executors if already binded.
    :$force_init=0 : Bool
        Default is 0. Indicates whether we should force initialization even if the
        parameters are already initialized.
    :$begin_epoch=0 : Int
        Default is 0. Indicates the starting epoch. Usually, if we are resuming from a
        checkpoint saved at a previous training phase at epoch N, then we should specify
        this value as N+1.
    :$num_epoch : Int
        Number of epochs for the training.
=cut


method fit(
    AI::MXNet::DataIter                 $train_data,
    Maybe[AI::MXNet::DataIter]         :$eval_data=,

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

    }
    $eval_metric = AI::MXNet::Metric->create($eval_metric)
        unless blessed $eval_metric;

    ################################################################################
    # training loop
    ################################################################################
    for my $epoch ($begin_epoch..$num_epoch-1)
    {
        my $tic = time;
        $eval_metric->reset;
        my $nbatch = 0;
        my $end_of_batch = 0;
        my $next_data_batch = <$train_data>;
        while(not $end_of_batch)
        {
            my $data_batch = $next_data_batch;
            $monitor->tic if $monitor;
            $self->forward_backward($data_batch);
            $self->update;
            $next_data_batch = <$train_data>;

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

        {
            for my $callback (@{ _as_list($epoch_end_callback) })
            {
                &{$callback}($epoch, $self->get_symbol, $arg_params, $aux_params);
            }
        }
        #----------------------------------------
        # evaluation on validation set
        if(defined $eval_data)
        {
            my $res = $self->score(
                $eval_data,
                $validation_metric,
                score_end_callback => $eval_end_callback,
                batch_end_callback => $eval_batch_end_callback,
                epoch              => $epoch
            );
            #TODO: pull this into default
            while(my ($name, $val) = each %{ $res })
            {
                $self->logger->info('Epoch[%d] Validation-%s=%f', $epoch, $name, $val);
            }
        }
        # end of 1 epoch, reset the data-iter for another epoch
        $train_data->reset;
    }
}

################################################################################
# Symbol information
################################################################################

=head2 get_symbol

    The symbol used by this module.

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN


=head2 get_states

    The states from all devices

    Parameters
    ----------
    $merge_multi_context=1 : Bool
        Default is true (1). In the case when data-parallelism is used, the states
        will be collected from multiple devices. A true value indicate that we
        should merge the collected results so that they look like from a single
        executor.

    Returns
    -------
    If $merge_multi_context is 1, it is like [$out1, $out2]. Otherwise, it
    is like [[$out1_dev1, $out1_dev2], [$out2_dev1, $out2_dev2]]. All the output
    elements are AI::MXNet::NDArray.
=cut

method get_states(Bool $merge_multi_context=1)

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

    ----------
    $mon : AI::MXNet::Monitor
=cut

method install_monitor(AI::MXNet::Monitor $mon) { confess("NotImplemented") }

=head2 prepare

    Prepare the module for processing a data batch.

    Usually involves switching a bucket and reshaping.

    Parameters
    ----------
    $data_batch : AI::MXNet::DataBatch
=cut

method prepare(AI::MXNet::DataBatch $data_batch){}

################################################################################
# Computations
################################################################################

=head2 forward

    Forward computation. It supports data batches with different shapes, such as
    different batch sizes or different image sizes.
    If reshaping of data batch relates to modification of symbol or module, such as
    changing image layout ordering or switching from training to predicting, module
    rebinding is required.

    Parameters
    ----------
    $data_batch : DataBatch
        Could be anything with similar API implemented.
    :$is_train= : Bool
        Default is undef, which means is_train takes the value of $self->for_training.
=cut

lib/AI/MXNet/Module/Base.pm  view on Meta::CPAN

        Default is 1. Whether the executors should be bind for training.
    :$inputs_need_grad=0 : Bool
        Default is 0. Whether the gradients to the input data need to be computed.
        Typically this is not needed. But this might be needed when implementing composition
        of modules.
    :$force_rebind=0 : Bool
        Default is 0. This function does nothing if the executors are already
        binded. But with this as 1, the executors will be forced to rebind.
    :$shared_module= : A subclass of AI::MXNet::Module::Base
        Default is undef. This is used in bucketing. When not undef, the shared module
        essentially corresponds to a different bucket -- a module with different symbol
        but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
    :$grad_req='write' : Str|ArrayRef[Str]|HashRef[Str]
        Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
        (defaults to 'write').
        Can be specified globally (str) or for each argument (array ref, hash ref).
=cut

method bind(
    ArrayRef[AI::MXNet::DataDesc]         $data_shapes,
    Maybe[ArrayRef[AI::MXNet::DataDesc]] :$label_shapes=,

lib/AI/MXNet/Module/Bucketing.pm  view on Meta::CPAN

    }

    my $sym_gen = sub {
        my $seq_len = shift;
        my $data  = mx->sym->Variable('data');
        my $label = mx->sym->Variable('softmax_label');
        my $embed = mx->sym->Embedding(
            data => $data, input_dim => scalar(keys %$vocabulary),
            output_dim => $num_embed, name => 'embed'
        );
        $stack->reset;
        my ($outputs, $states) = $stack->unroll($seq_len, inputs => $embed, merge_outputs => 1);
        my $pred = mx->sym->Reshape($outputs, shape => [-1, $num_hidden]);
        $pred    = mx->sym->FullyConnected(data => $pred, num_hidden => scalar(keys %$vocabulary), name => 'pred');
        $label   = mx->sym->Reshape($label, shape => [-1]);
        $pred    = mx->sym->SoftmaxOutput(data => $pred, label => $label, name => 'softmax');
        return ($pred, ['data'], ['softmax_label']);
    };

    my $contexts;
    if(defined $gpus)

lib/AI/MXNet/Module/Bucketing.pm  view on Meta::CPAN

    $self->_fixed_param_names([]) unless defined $original_params->{fixed_param_names};
    $self->_state_names([]) unless defined $original_params->{state_names};
    $self->_params_dirty(0);
    my ($symbol, $data_names, $label_names) = &{$self->_sym_gen}($self->_default_bucket_key);
    $self->_check_input_names($symbol, $data_names//[], "data", 1);
    $self->_check_input_names($symbol, $label_names//[], "label", 0);
    $self->_check_input_names($symbol, $self->_state_names, "state", 1);
    $self->_check_input_names($symbol, $self->_fixed_param_names, "fixed_param", 1);
}

method _reset_bind()
{
    $self->binded(0);
    $self->_buckets({});
    $self->_curr_module(undef);
    $self->_curr_bucket_key(undef);
}

method data_names()
{
    if($self->binded)

lib/AI/MXNet/Module/Bucketing.pm  view on Meta::CPAN


method set_states(:$states=, :$value=)
{
    assert($self->binded and $self->params_initialized);
    $self->_curr_module->set_states(states => $states, value => $value);
}

=head2 bind

    Binding for a AI::MXNet::Module::Bucketing means setting up the buckets and bind the
    executor for the default bucket key. Executors corresponding to other keys are
    binded afterwards with switch_bucket.

    Parameters
    ----------
    :$data_shapes : ArrayRef[AI::MXNet::DataDesc|NameShape]
        This should correspond to the symbol for the default bucket.
    :$label_shapes= : Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]]
        This should correspond to the symbol for the default bucket.
    :$for_training : Bool
        Default is 1.
    :$inputs_need_grad : Bool
        Default is 0.
    :$force_rebind : Bool
        Default is 0.
    :$shared_module : AI::MXNet::Module::Bucketing
        Default is undef. This value is currently not used.
    :$grad_req : str, array ref of str, hash ref of str to str
        Requirement for gradient accumulation. Can be 'write', 'add', or 'null'

lib/AI/MXNet/Module/Bucketing.pm  view on Meta::CPAN

{
    # in case we already initialized params, keep it
    my ($arg_params, $aux_params);
    if($self->params_initialized)
    {
        ($arg_params, $aux_params) = $self->get_params;
    }

    # force rebinding is typically used when one want to switch from
    # training to prediction phase.
    $self->_reset_bind if $force_rebind;

    if($self->binded)
    {
        $self->logger->warning('Already binded, ignoring bind()');
        return;
    }

    assert((not defined $shared_module), 'shared_module for BucketingModule is not supported');

    $self->for_training($for_training);

lib/AI/MXNet/Monitor.pm  view on Meta::CPAN


    Parameters
    ----------
    interval : int
        Number of batches between printing.
    stat_func : function
        a function that computes statistics of tensors.
        Takes a NDArray and returns a NDArray. defaults to mean
        absolute value |x|/size(x).
    pattern : str
        A regular expression specifying which tensors to monitor.
        Only tensors with names that match name_pattern will be included.
        For example, '.*weight|.*output' will print all weights and outputs;
        '.*backward.*' will print all gradients.
=cut

has 'interval'  => (is => 'ro', isa => 'Int', required => 1);
has 'stat_func' => (
    is => 'ro',
    isa => 'CodeRef',
    default => sub {

lib/AI/MXNet/Monitor.pm  view on Meta::CPAN

                $_->wait_to_read for @{ $exe->aux_arrays };
            }
            $self->queue([]);
            $self->activated(1);
        }
        $self->step($self->step + 1);
}

=head2 toc

    End collecting for current batch and return results.
    Call after computation of current batch.

    Returns
    -------
    res : array ref of array refs with debug info
=cut

method toc()
{
    return [] unless $self->activated;
    for my $exe (@{ $self->exes })
    {
        $_->wait_to_read for @{ $exe->arg_arrays };
        $_->wait_to_read for @{ $exe->aux_arrays };
    }

lib/AI/MXNet/Monitor.pm  view on Meta::CPAN

        zip(sub {
            my ($name, $array) = @_;
            push @{ $self->queue }, [$self->step, $name, $self->stat_func->($array)];
        }, $exe->_symbol->list_arguments, $exe->arg_arrays);
        zip(sub {
            my ($name, $array) = @_;
            push @{ $self->queue }, [$self->step, $name, $self->stat_func->($array)];
        }, $exe->_symbol->list_auxiliary_states, $exe->aux_arrays);
    }
    $self->activated(0);
    my @res;
    if($self->_sort)
    {
        @{ $self->queue } = sort { $a->[1] cmp $b->[1] } @{ $self->queue };
    }
    for my $q (@{ $self->queue })
    {
        my ($n, $k, $v_list) = @{ $q };
        if(ref $v_list ne 'ARRAY')
        {
            $v_list = [$v_list];

lib/AI/MXNet/Monitor.pm  view on Meta::CPAN

                unless blessed($v) and $v->isa('AI::MXNet::NDArray');
            if($v->size == 1)
            {
                $s .= $v->asscalar . "\t";
            }
            else
            {
                $s .= $v->aspdl . "\t";
            }
        }
        push @res, [$n, $k, $s];
    }
    $self->queue([]);
    return \@res;
}

=head2 toc_print

    End collecting and print results
=cut

method toc_print()
{
    my $res = $self->toc;
    for my $r (@{ $res })
    {
        AI::MXNet::Logging->info('Batch: %7d %30s %s', @{ $r });
    }
}

method Monitor(@args)
{
    __PACKAGE__->new(@args % 2 ? ('interval', @args) : @args);
}

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    ${$pdl->get_dataref} = $buf;
    $pdl->upd_data;
    return $pdl;
}


=head2 asmpdl

    Returns copied PDL::Matrix objectt of current array.

    Requires caller to "use PDL::Matrix" in user space.

    Returns
    -------
    array : PDL::Matrix
        A copy of array content.
=cut

method asmpdl()
{
    my $dtype = $self->dtype;

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

        $buf = pack("f*", map { AI::MXNetCAPI::_half_to_float($_) } unpack("S*", $buf));
    }
    ${$pdl->get_dataref} = $buf;
    $pdl->upd_data;
    return $pdl;
}


=head2 _slice

    Returns sliced NDArray that shares memory with the current one.

    Parameters
    ----------
    start : int
        Starting index of slice.
    stop : int
        Finishing index of slice.
=cut

method _slice (

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

            $self->handle,
            $start,
            $stop
        )
    );
    return __PACKAGE__->new(handle => $handle, writable => $self->writable);
}

=head2  _at

    Returns a sub NDArray that shares memory with current one.

    Parameters
    ----------
    idx : int
        index of the sub array.
=cut


method _at(Index $idx)
{
    my $handle = check_call(
                AI::MXNetCAPI::NDArrayAt(
                    $self->handle, $idx >=0 ? $idx : $self->shape->[0] + $idx
                )
    );
    return __PACKAGE__->new(handle => $handle, writable => $self->writable);
}

=head2 reshape

    Returns a reshaped NDArray that shares the memory with current one.
    One shape dimension can be -1. In this case, the value is inferred
    from the length of the array and remaining dimensions.

    Parameters
    ----------
    new_shape : Shape
        new shape of NDArray
=cut

method reshape(ArrayRef[Int] $new_shape)
{
    my $i = -1;
    my @inferred = map { $i++; $_ == -1 ? ($i) : () } @$new_shape;
    assert((@inferred <= 1), 'Only one dimension can be inferred.');
    if(@inferred)
    {
        $new_shape->[$inferred[0]] = product(@{ $self->shape })/product(map { abs($_) } @{ $new_shape });
    }
    my $handle = check_call(
                    AI::MXNetCAPI::NDArrayReshape(

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN


    Parameters
    ----------
    source : int
        Original position of the axes to move.
    destination : int
        Destination position for each of the original axes.

    Returns
    -------
    result :NDArray
    Array with moved axes.

    Examples
    --------
    > $X = mx->nd->array([[1, 2, 3],
                          [4, 5, 6]]);
    > print Dumper($X->moveaxis(0, 1)->shape)
    > [3, 2]
=cut

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    }
    @$cur_shape = ((1)x(@$shape - @$cur_shape), @$cur_shape);
    my $cur_shape_arr = pdl($cur_shape);
    my $broadcasting_axes = ($cur_shape_arr != pdl($shape))->which->unpdl;
    if (grep { $cur_shape->[$_] != 1 } @$broadcasting_axes)
    {
        confess($err_str);
    }
    if(join(',',@$cur_shape) ne join(',',@{ $self->shape }))
    {
        return __PACKAGE__->SUPER::broadcast_to($self->reshape($cur_shape),{ shape => $shape });
    }
    else
    {
        return __PACKAGE__->SUPER::broadcast_to($self, { shape => $shape });
    }
}

=head2 wait_to_read

    Block until all pending write operations on the NDArray are finished.

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

{
    check_call(AI::MXNetCAPI::NDArrayWaitToRead($self->handle));
}

=head2 shape

    Get the shape of current NDArray.

    Returns
    -------
    an array ref representing the shape of current ndarray
=cut

method shape()
{
    return scalar(check_call(AI::MXNetCAPI::NDArrayGetShape($self->handle)));
}

=head2 size

    Number of elements in the array.

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    );
}

=head2 dtype

    The data type of current NDArray.

    Returns
    -------
    a data type string ('float32', 'float64', 'float16', 'uint8', 'int32') 
    representing the data type of the ndarray.
    'float32' is the default dtype for the ndarray class.
=cut

method dtype()
{
    my $dtype = check_call(
        AI::MXNetCAPI::NDArrayGetDType(
            $self->handle
        )
    );

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    $dtype : Dtype

    Returns
    -------
    $array : ndarray
        A copy of the array content.
=cut

method astype(Dtype $dtype)
{
    my $res = __PACKAGE__->empty($self->shape, ctx => $self->context, dtype => $dtype);
    $self->copyto($res);
    return $res;
}

=head2 as_in_context

    Returns an NDArray in the target context.
    If the array is already in that context, self is returned. Otherwise, a copy is
    made.

    Parameters
    ----------

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    return $self->copyto($context);
}

=head2 onehot_encode

    One hot encoding indices into matrix out.

    Parameters
    ----------
    indices: NDArray
        An NDArray containing indices of the categorical features.

    out: NDArray
        The result of the encoding.

    Returns
    -------
        $out: NDArray
=cut

method onehot_encode(AI::MXNet::NDArray $indices, AI::MXNet::NDArray $out)
{
    return __PACKAGE__->_onehot_encode($indices, $out, { out => $out });
}

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    lfn_scalar : function
        function to be called if lhs is NDArray while rhs is numeric value

    rfn_scalar : function
        function to be called if lhs is numeric value while rhs is NDArray;
        if none is provided, then the function is commutative, so rfn_scalar is equal to lfn_scalar

    Returns
    -------
    out: NDArray
        result array
=cut

sub  _ufunc_helper
{
    my ($lhs, $rhs, $fn_array, $lfn_scalar, $rfn_scalar, $reverse) = @_;
    ($rhs, $lhs) = ($lhs, $rhs) if $reverse and $rfn_scalar;
    if(not ref $lhs)
    {
        if(not $rfn_scalar)
        {

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

=cut

method concatenate(ArrayRef[AI::MXNet::NDArray] $arrays, Index :$axis=0, :$always_copy=1)
{
    confess("no arrays provided") unless @$arrays > 0;
    if(not $always_copy and @$arrays == 1)
    {
        return $arrays->[0];
    }
    my $shape_axis = $arrays->[0]->shape->[$axis];
    my $shape_rest1 = [@{ $arrays->[0]->shape }[0..($axis-1)]];
    my $shape_rest2 = [@{ $arrays->[0]->shape }[($axis+1)..(@{ $arrays->[0]->shape }-1)]];
    my $dtype = $arrays->[0]->dtype;
    my $i = 1;
    for my $arr (@{ $arrays }[1..(@{ $arrays }-1)])
    {
        $shape_axis += $arr->shape->[$axis];
        my $arr_shape_rest1 = [@{ $arr->shape }[0..($axis-1)]];
        my $arr_shape_rest2 = [@{ $arr->shape }[($axis+1)..(@{ $arr->shape }-1)]];
        confess("first array $arrays->[0] and $i array $arr do not match") 
            unless  join(',',@$arr_shape_rest1) eq join(',',@$shape_rest1);
        confess("first array $arrays->[0] and $i array $arr do not match") 
            unless  join(',',@$arr_shape_rest2) eq join(',',@$shape_rest2);
        confess("first array $arrays->[0] and $i array $arr dtypes do not match") 
            unless  join(',',@$arr_shape_rest2) eq join(',',@$shape_rest2);
        $i++;
    }
    my $ret_shape = [@$shape_rest1, $shape_axis, @$shape_rest2];
    my $ret = __PACKAGE__->empty($ret_shape, ctx => $arrays->[0]->context, dtype => $dtype);
    my $idx = 0;
    my $begin = [(0)x@$ret_shape];
    my $end = [@$ret_shape];
    for my $arr (@$arrays)
    {
        if ($axis == 0)
        {
            $ret->slice([$idx,($idx+$arr->shape->[0]-1)]) .= $arr;
        }

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    Loads ndarrays from a binary file.

    You can also use Storable to do the job if you only work with Perl.
    The advantage of load/save is the file is language agnostic.
    This means the file saved using save can be loaded by other language binding of mxnet.
    You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)

    Parameters
    ----------
    fname : str
        The name of the file.Can be S3 or HDFS address (remember built with S3 support).
        Example of fname:

        - `s3://my-bucket/path/my-s3-ndarray`
        - `hdfs://my-bucket/path/my-hdfs-ndarray`
        - `/path-to/my-local-ndarray`

    Returns
    -------
    $out : array ref of NDArrays or hash ref with NDArrays
=cut

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

    Save array ref of NDArray or hash of str->NDArray to a binary file.

    You can also use Storable to do the job if you only work with Perl.
    The advantage of load/save is the file is language agnostic.
    This means the file saved using save can be loaded by other language binding of mxnet.
    You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)

    Parameters
    ----------
    fname : str
        The name of the file.Can be S3 or HDFS address (remember built with S3 support).
        Example of fname:

        - `s3://my-bucket/path/my-s3-ndarray`
        - `hdfs://my-bucket/path/my-hdfs-ndarray`
        - `/path-to/my-local-ndarray`

    $data : array ref of NDArrays or hash ref of NDArrays
        The data to be saved.
=cut

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

            $filename,
            scalar(@$handles),
            $handles,
            $names
        )
    );
}

=head2 imdecode

    Decode an image from string. Requires OpenCV to work.

    Parameters
    ----------
    $str_img : str
        binary image data
    :$clip_rect : iterable of 4 int
        clip decoded image to rectangle (x0, y0, x1, y1)
    :$out= : Maybe[NDArray]
        output buffer. can be 3 dimensional (c, h, w) or 4 dimensional (n, c, h, w)
    :$index : int

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

        $channels,
        length($str_img),
        { str_img => $str_img, ($out ? (out => $out) : ()) }
    );
}

=head2 _new_empty_handle

    Returns a new empty handle.

    Empty handle can be used to hold result

    Returns
    -------
        a new empty ndarray handle
=cut

sub _new_empty_handle
{
    my $hdl = check_call(AI::MXNetCAPI::NDArrayCreateNone());
    return $hdl;
}

=head2 _new_alloc_handle

    Returns a new handle with specified shape and context.

    Empty handle is only used to hold results

    Returns
    -------
    a new empty ndarray handle
=cut

func _new_alloc_handle($shape, $ctx, $delay_alloc, $dtype)
{
    my $hdl = check_call(AI::MXNetCAPI::NDArrayCreateEx(
        $shape,

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN


    Wait for all async operations to finish in MXNet.
    This function is used for benchmarks only.
=cut

method waitall()
{
    check_call(AI::MXNetCAPI::NDArrayWaitAll());
}

=head2 _fresh_grad

        Parameters:
        ----------
        Maybe[Bool] $state=

        Whether this array's corresponding gradient array
        (registered via `autograd->mark_variables`) has been
        updated by `autograd->backward` since last reset.

        `_fresh_grad` need to be manually set to False
        after consuming gradient (usually after updating this
        array).
=cut

method _fresh_grad(Maybe[Bool] $state=)
{
    if(defined $state)
    {
        check_call(AI::MXNetCAPI::NDArraySetGradState($self->handle, $state));
        return $state;
    }
    else
    {
        return scalar(check_call(AI::MXNetCAPI::NDArrayGetGradState($self->handle)));
    }

lib/AI/MXNet/NDArray.pm  view on Meta::CPAN

            [$self->handle],
            [defined $out_grad ? $out_grad->handle : undef],
            $retain_graph
        )
    )
}

method CachedOp(@args) { AI::MXNet::CachedOp->new(@args) }

my $lvalue_methods = join "\n", map {"use attributes 'AI::MXNet::NDArray', \\&AI::MXNet::NDArray::$_, 'lvalue';"}
qw/at slice aspdl asmpdl reshape copy sever T astype as_in_context copyto empty zero ones full
                       array/;
eval << "EOV" if ($^V and $^V >= 5.006007);
{
  no warnings qw(misc);
  $lvalue_methods
}
EOV

__PACKAGE__->meta->make_immutable;

lib/AI/MXNet/NDArray/Doc.pm  view on Meta::CPAN

        $key_var_num_args,
        $ret_type) = @_;
    my $param_str = build_param_doc($arg_names, $arg_types, $arg_desc);
    if($key_var_num_args)
    {
        $desc .= "\nThis function support variable length of positional input."
    }
    my $doc_str = sprintf("%s\n\n" .
               "%s\n" .
               "out : NDArray, optional\n" .
               "    The output NDArray to hold the result.\n\n".
               "Returns\n" .
               "-------\n" .
               "out : NDArray or list of NDArray\n" .
               "    The output of this function.", $desc, $param_str);
    return $doc_str
}

1;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

=head2 create_optimizer

        Create an optimizer with specified name.

        Parameters
        ----------
        name: str
            Name of required optimizer. Should be the name
            of a subclass of Optimizer. Case insensitive.

        rescale_grad : float
            Rescaling factor on gradient. Normally should be 1/batch_size.

        kwargs: dict
            Parameters for optimizer

        Returns
        -------
        opt : Optimizer
            The result optimizer.
=cut

method create_optimizer(Str $name, %kwargs)
{
    if(exists $opt_registry{ lc $name })
    {
        my $rescale_grad = delete($kwargs{rescale_grad})//1;
        return $opt_registry{ lc $name }->new(
            rescale_grad => $rescale_grad,
            %kwargs
        );
    }
    confess("Cannot find optimizer $name");
}

*create = \&create_optimizer;

has 'rescale_grad'        => (is => "rw", isa => "Num", default=>1);
has 'lr'                  => (is => "rw", isa => "Num");
has 'learning_rate'       => (is => "rw", isa => "Num", default => 0.01);
has 'lr_scheduler'        => (is => "rw", isa => "Maybe[AI::MXNet::LRScheduler]");
has 'wd'                  => (is => "rw", isa => "Num", default => 0);
has 'lr_mult'             => (is => "rw", isa => "HashRef", default => sub { +{} });
has 'wd_mult'             => (is => "rw", isa => "HashRef", , default => sub { +{} });
has 'num_update'          => (is => "rw", isa => "Int");
has 'begin_num_update'    => (is => "rw", isa => "Int", default => 0);
has '_index_update_count' => (is => "rw", isa => "HashRef", default => sub { +{} });
has 'clip_gradient'       => (is => "rw", isa => "Maybe[Num]");

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    ----------
    learning_rate : float, optional
        learning_rate of SGD

    momentum : float, optional
       momentum value

    wd : float, optional
        L2 regularization coefficient add to all the weights

    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.

    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]

    param_idx2name : hash of string/int to float, optional
        special treat weight decay in parameter ends with bias, gamma, and beta

    multi_precision: bool, optional
        Flag to control the internal precision of the optimizer.
        False results in using the same precision as the weights (default),
        True makes internal 32-bit copy of the weights and applies gradients
        in 32-bit precision even if actual weights used in the model have lower precision.
        Turning this on can improve convergence and accuracy when training with float16.
=cut

package AI::MXNet::SGD;
use Mouse;
extends 'AI::MXNet::Optimizer';

has 'kwargs'   => (is => "rw", isa => "HashRef[Num]");
has 'momentum' => (is => "rw", isa => "Num", default => 0);
has 'multi_precision' => (is => "ro", isa => "Bool", default => 0);

sub BUILD
{
    my $self = shift;
    $self->kwargs({ rescale_grad => $self->rescale_grad });
    if($self->momentum)
    {
        $self->kwargs->{momentum} = $self->momentum;
    }
    if($self->clip_gradient)
    {
        $self->kwargs->{clip_gradient} = $self->clip_gradient;
    }
}

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN


    momentum : float, optional
       momentum value

    lamda : float, optional
       scale DC value

    wd : float, optional
        L2 regularization coefficient add to all the weights

    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.

    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]

    param_idx2name : hash ref of string/int to float, optional
        special treat weight decay in parameter ends with bias, gamma, and beta
=cut
has 'momentum'        => (is => 'ro', isa => 'Num', default => 0);
has 'lamda'           => (is => 'ro', isa => 'Num', default => 0.04);
has 'weight_previous' => (is => 'rw', init_arg => undef);

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

method update(
    Index                     $index,
    AI::MXNet::NDArray        $weight,
    AI::MXNet::NDArray        $grad,
    Maybe[AI::MXNet::NDArray] $state
)
{
    my $lr = $self->_get_lr($index);
    my $wd = $self->_get_wd($index);
    $self->_update_count($index);
    $grad *= $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
            $self->clip_gradient
        );
    }
    my ($mom, $weight_previous) = @{ $state };
    if(defined $mom)

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

method update(
    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    AI::MXNet::NDArray|Undef $state
)
{
    my $lr = $self->_get_lr($index);
    my $wd = $self->_get_wd($index);
    $self->_update_count($index);
    $grad = $grad * $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad, 
            -$self->clip_gradient,
            $self->clip_gradient
        );
    }
    if($state)
    {

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    Stochastic Langevin Dynamics Updater to sample from a distribution.

    Parameters
    ----------
    learning_rate : float, optional
        learning_rate of SGD

    wd : float, optional
        L2 regularization coefficient add to all the weights

    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.

    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]

    param_idx2name : dict of string/int to float, optional
        special treat weight decay in parameter ends with bias, gamma, and beta
=cut

package AI::MXNet::SLGD;
use Mouse;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

method update(
    Index $index, 
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    AI::MXNet::NDArray|Undef $state
)
{
    my $lr = $self->_get_lr($index);
    my $wd = $self->_get_wd($index);
    $self->_update_count($index);
    $grad *= $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }
    $weight +=  - $lr/2 * ($grad + $wd * $weight)
                    +

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    beta2 : float, optional
        Exponential decay rate for the second moment estimates.
        Default value is set to 0.999.
    epsilon : float, optional
        Default value is set to 1e-8.
    decay_factor : float, optional
        Default value is set to 1 - 1e-8.

    wd : float, optional
        L2 regularization coefficient add to all the weights
    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.

    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]
=cut
package AI::MXNet::Adam;
use Mouse;

extends 'AI::MXNet::Optimizer';

has 'kwargs'   => (is => "rw", isa => "HashRef[Num]");
has '+learning_rate' => (default => 0.001);
has 'beta1'    => (is => "rw", isa => "Num", default => 0.9);
has 'beta2'    => (is => "rw", isa => "Num", default => 0.999);
has 'epsilon'  => (is => "rw", isa => "Num", default => 1e-8);
has 'decay_factor'  => (is => "rw", isa => "Num", default => (1 - 1e-8));

sub BUILD
{
    my $self = shift;
    $self->kwargs({
        rescale_grad => $self->rescale_grad,
        beta1   => $self->beta1,
        beta2   => $self->beta2,
        epsilon => $self->epsilon
    });
    if($self->clip_gradient)
    {
        $self->kwargs->{clip_gradient} = $self->clip_gradient;
    }
}

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN


    Parameters
    ----------
    learning_rate : float, optional
        Step size.
        Default value is set to 0.05.

    wd : float, optional
        L2 regularization coefficient add to all the weights

    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.

    eps: float, optional
        A small float number to make the updating processing stable
        Default value is set to 1e-7.

    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]
=cut
package AI::MXNet::AdaGrad;
use Mouse;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

method update(
    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    AI::MXNet::NDArray $state
)
{
    my $lr = $self->_get_lr($index);
    my $wd = $self->_get_wd($index);
    $self->_update_count($index);
    $grad *= $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }
    my $history = $state;
    $history += ($grad * $grad);

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    gamma2: float, optional
        "momentum" factor.
        Default value if set to 0.9.
        Only used if centered=True
    epsilon : float, optional
        Default value is set to 1e-8.
    centered : bool, optional
        Use Graves or Tielemans & Hintons version of RMSProp
    wd : float, optional
        L2 regularization coefficient add to all the weights
    rescale_grad : float, optional
        rescaling factor of gradient.
    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]
    clip_weights : float, optional
        clip weights in range [-clip_weights, clip_weights]
=cut

package AI::MXNet::RMSProp;
use Mouse;

extends 'AI::MXNet::Optimizer';

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

has 'gamma2'         => (is => "ro", isa => "Num",  default => 0.9);
has 'epsilon'        => (is => "ro", isa => "Num",  default => 1e-8);
has 'centered'       => (is => "ro", isa => "Bool", default => 0);
has 'clip_weights'   => (is => "ro", isa => "Num");
has 'kwargs'         => (is => "rw", init_arg => undef);

sub BUILD
{
    my $self = shift;
    $self->kwargs({
        rescale_grad => $self->rescale_grad,
        gamma1       => $self->gamma1,
        epsilon      => $self->epsilon
    });
    if($self->centered)
    {
        $self->kwargs->{gamma2} = $self->gamma2;
    }
    if($self->clip_gradient)
    {
        $self->kwargs->{clip_gradient} = $self->clip_gradient;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    http://arxiv.org/abs/1212.5701

    Parameters
    ----------
    rho: float
        Decay rate for both squared gradients and delta x
    epsilon : float
        The constant as described in the thesis
    wd : float
        L2 regularization coefficient add to all the weights
    rescale_grad : float, optional
        rescaling factor of gradient. Normally should be 1/batch_size.
    clip_gradient : float, optional
        clip gradient in range [-clip_gradient, clip_gradient]
=cut
package AI::MXNet::AdaDelta;
use Mouse;

extends 'AI::MXNet::Optimizer';

has 'rho'    => (is => "rw", isa => "Num", default => 0.9);
has 'epsilon'    => (is => "rw", isa => "Num", default => 1e-5);

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN


method update(
    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    ArrayRef[AI::MXNet::NDArray] $state
)
{
    my $wd = $self->_get_wd($index);
    $self->_update_count($index);
    $grad *= $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }
    my ($acc_g, $acc_delta) = @{ $state };
    $acc_g .= $self->rho * $acc_g + (1 - $self->rho) * $grad * $grad;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN


# Create a state to duplicate weight
method create_state(Index $index, AI::MXNet::NDArray $weight)
{
    return AI::MXNet::NDArray->zeros(
                $weight->shape, 
                ctx => $weight->context
    );
}

# performs w += rescale_grad * grad
method update(
    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    AI::MXNet::NDArray $state
)
{
    $weight += $grad * $self->rescale_grad;
    $state .= $weight;
}

__PACKAGE__->register;

package AI::MXNet::Ftrl;

=head1 NAME

    AI::MXNet::Ftrl

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

method update(
    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    ArrayRef[AI::MXNet::NDArray] $state
)
{
    $self->_update_count($index);
    my $wd = $self->_get_wd($index);
    my $lr = $self->_get_lr($index);
    $grad *= $self->rescale_grad;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }
    my ($dn, $n) = @{ $state };
    $dn += $grad - (($n + $grad * $grad)->sqrt - $n->sqrt) * $weight / $lr;

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    AI::MXNet::NDArray $grad,
    ArrayRef[AI::MXNet::NDArray] $state
)
{
    my $wd = $self->_get_wd($index);
    my $lr = $self->_get_lr($index);
    $self->_update_count($index);
    my $t = $self->_index_update_count->{$index};
    $lr /= (1 - $self->beta1**$t);

    $grad = $grad * $self->rescale_grad + $wd * $weight;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }

    # update m_t and u_t

lib/AI/MXNet/Optimizer.pm  view on Meta::CPAN

    Index $index,
    AI::MXNet::NDArray $weight,
    AI::MXNet::NDArray $grad,
    ArrayRef[AI::MXNet::NDArray] $state
)
{
    my $wd = $self->_get_wd($index);
    my $lr = $self->_get_lr($index);
    $self->_update_count($index);
    my $t = $self->_index_update_count->{$index};
    $grad = $grad * $self->rescale_grad + $wd * $weight;
    if($self->clip_gradient)
    {
        $grad = AI::MXNet::NDArray->clip(
            $grad,
            -$self->clip_gradient,
             $self->clip_gradient
        );
    }
    # warming momentum schedule
    my $momentum_t    = $self->beta1 * (1 - 0.5 * (0.96**($t * $self->schedule_decay)));

lib/AI/MXNet/RNN.pm  view on Meta::CPAN

    $period = max(1, $period);
    return sub {
        my ($iter_no, $sym, $arg, $aux) = @_;
        if (($iter_no + 1) % $period == 0)
        {
            __PACKAGE__->save_rnn_checkpoint($cells, $prefix, $iter_no+1, $sym, $arg, $aux);
        }
    };
}

## In order to closely resemble the Python's usage
method RNNCell(@args)            { AI::MXNet::RNN::Cell->new(@args % 2 ? ('num_hidden', @args) : @args) }
method LSTMCell(@args)           { AI::MXNet::RNN::LSTMCell->new(@args % 2 ? ('num_hidden', @args) : @args) }
method GRUCell(@args)            { AI::MXNet::RNN::GRUCell->new(@args % 2 ? ('num_hidden', @args) : @args) }
method FusedRNNCell(@args)       { AI::MXNet::RNN::FusedCell->new(@args % 2 ? ('num_hidden', @args) : @args) }
method SequentialRNNCell(@args)  { AI::MXNet::RNN::SequentialCell->new(@args) }
method BidirectionalCell(@args)  { AI::MXNet::RNN::BidirectionalCell->new(@args) }
method DropoutCell(@args)        { AI::MXNet::RNN::DropoutCell->new(@args) }
method ZoneoutCell(@args)        { AI::MXNet::RNN::ZoneoutCell->new(@args) }
method ConvRNNCell(@args)        { AI::MXNet::RNN::ConvCell->new(@args) }
method ConvLSTMCell(@args)       { AI::MXNet::RNN::ConvLSTMCell->new(@args) }

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

    if(not defined $self->_params)
    {
        $self->_own_params(1);
        $self->_params(AI::MXNet::RNN::Params->new($self->_prefix));
    }
    else
    {
        $self->_own_params(0);
    }
    $self->_modified(0);
    $self->reset;
}

=head2 reset

    Reset before re-using the cell for another graph
=cut

method reset()
{
    $self->_init_counter(-1);
    $self->_counter(-1);
}

=head2 call

    Construct symbol for one step of RNN.

    Parameters

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN


method unroll(
    Int $length,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
    Str                                                  :$input_prefix='',
    Str                                                  :$layout='NTC',
    Maybe[Bool]                                          :$merge_outputs=
)
{
    $self->reset;
    my $axis = index($layout, 'T');
    if(not defined $inputs)
    {
        $inputs = [
            map { AI::MXNet::Symbol->Variable("${input_prefix}t${_}_data") } (0..$length-1)
        ];
    }
    elsif(blessed($inputs))
    {
        assert(

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

        name       => "${name}h2h"
    );
    my ($i2h_r, $i2h_z);
    ($i2h_r, $i2h_z, $i2h) = @{ AI::MXNet::Symbol->SliceChannel(
        $i2h, num_outputs => 3, name => "${name}_i2h_slice"
    ) };
    my ($h2h_r, $h2h_z);
    ($h2h_r, $h2h_z, $h2h) = @{ AI::MXNet::Symbol->SliceChannel(
        $h2h, num_outputs => 3, name => "${name}_h2h_slice"
    ) };
    my $reset_gate = AI::MXNet::Symbol->Activation(
        $i2h_r + $h2h_r, act_type => "sigmoid", name => "${name}_r_act"
    );
    my $update_gate = AI::MXNet::Symbol->Activation(
        $i2h_z + $h2h_z, act_type => "sigmoid", name => "${name}_z_act"
    );
    my $next_h_tmp = AI::MXNet::Symbol->Activation(
        $i2h + $reset_gate * $h2h, act_type => "tanh", name => "${name}_h_act"
    );
    my $next_h = AI::MXNet::Symbol->_plus(
        (1 - $update_gate) * $next_h_tmp, $update_gate * $prev_state_h,
        name => "${name}out"
    );
    return ($next_h, [$next_h]);
}

package AI::MXNet::RNN::FusedCell;
use Mouse;

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

    {
        for my $direction (@directions)
        {
            for my $gate (@gate_names)
            {
                my $name = sprintf('%s%s%d_i2h%s_weight', $self->_prefix, $direction, $layer, $gate);
                my $size;
                if($layer > 0)
                {
                    $size = $b*$lh*$lh;
                    $args{$name} = $arr->slice([$p,$p+$size-1])->reshape([$lh, $b*$lh]);
                }
                else
                {
                    $size = $li*$lh;
                    $args{$name} = $arr->slice([$p,$p+$size-1])->reshape([$lh, $li]);
                }
                $p += $size;
            }
            for my $gate (@gate_names)
            {
                my $name = sprintf('%s%s%d_h2h%s_weight', $self->_prefix, $direction, $layer, $gate);
                my $size = $lh**2;
                $args{$name} = $arr->slice([$p,$p+$size-1])->reshape([$lh, $lh]);
                $p += $size;
            }
        }
    }
    for my $layer (0..$self->_num_layers-1)
    {
        for my $direction (@directions)
        {
            for my $gate (@gate_names)
            {

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN


method unroll(
    Int $length,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
    Str                                                  :$input_prefix='',
    Str                                                  :$layout='NTC',
    Maybe[Bool]                                          :$merge_outputs=
)
{
    $self->reset;
    my $axis = index($layout, 'T');
    $inputs //= AI::MXNet::Symbol->Variable("${input_prefix}data");
    if(blessed($inputs))
    {
        assert(
            (@{ $inputs->list_outputs() } == 1),
            "unroll doesn't allow grouped symbol as input. Please "
            ."convert to list first or let unroll handle slicing"
        );
        if($axis == 1)

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

}

method call(AI::MXNet::Symbol $inputs, AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol] $states)
{
    $self->_counter($self->_counter + 1);
    my $name = sprintf('%st%d_', $self->_prefix, $self->_counter);
    my ($i2h, $h2h) = $self->_conv_forward($inputs, $states, $name);
    my ($i2h_r, $i2h_z, $h2h_r, $h2h_z);
    ($i2h_r, $i2h_z, $i2h) = @{ AI::MXNet::Symbol->SliceChannel($i2h, num_outputs => 3, name => "${name}_i2h_slice") };
    ($h2h_r, $h2h_z, $h2h) = @{ AI::MXNet::Symbol->SliceChannel($h2h, num_outputs => 3, name => "${name}_h2h_slice") };
    my $reset_gate = AI::MXNet::Symbol->Activation(
        $i2h_r + $h2h_r, act_type => "sigmoid",
        name => "${name}_r_act"
    );
    my $update_gate = AI::MXNet::Symbol->Activation(
        $i2h_z + $h2h_z, act_type => "sigmoid",
        name => "${name}_z_act"
    );
    my $next_h_tmp = $self->_get_activation($i2h + $reset_gate * $h2h, $self->_activation, name => "${name}_h_act");
    my $next_h = AI::MXNet::Symbol->_plus(
        (1 - $update_gate) * $next_h_tmp, $update_gate * @{$states}[0],
        name => "${name}out"
    );
    return ($next_h, [$next_h]);
}

package AI::MXNet::RNN::ModifierCell;
use Mouse;
use AI::MXNet::Base;

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

        "BidirectionalCell doesn't support zoneout since it doesn't support step. ".
        "Please add ZoneoutCell to the cells underneath instead."
    );
    assert(
        (not $self->base_cell->isa('AI::MXNet::RNN::SequentialCell') or not $self->_bidirectional),
        "Bidirectional SequentialCell doesn't support zoneout. ".
        "Please add ZoneoutCell to the cells underneath instead."
    );
}

method reset()
{
    $self->SUPER::reset;
    $self->prev_output(undef);
}

method call(AI::MXNet::Symbol $inputs, SymbolOrArrayOfSymbols $states)
{
    my ($cell, $p_outputs, $p_states) = ($self->base_cell, $self->zoneout_outputs, $self->zoneout_states);
    my ($next_output, $next_states) = &{$cell}($inputs, $states);
    my $mask = sub {
        my ($p, $like) = @_;
        AI::MXNet::Symbol->Dropout(

lib/AI/MXNet/RNN/Cell.pm  view on Meta::CPAN

use AI::MXNet::Base;
extends 'AI::MXNet::RNN::ModifierCell';

=head1 NAME

    AI::MXNet::RNN::ResidualCell
=cut

=head1 DESCRIPTION

    Adds residual connection as described in Wu et al, 2016
    (https://arxiv.org/abs/1609.08144).
    Output of the cell is output of the base cell plus input.
=cut

method call(AI::MXNet::Symbol $inputs, SymbolOrArrayOfSymbols $states)
{
    my $output;
    ($output, $states) = &{$self->base_cell}($inputs, $states);
    $output = AI::MXNet::Symbol->elemwise_add($output, $inputs, name => $output->name.'_plus_residual');
    return ($output, $states)
}

method unroll(
    Int $length,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
    Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
    Str                                                  :$input_prefix='',
    Str                                                  :$layout='NTC',
    Maybe[Bool]                                          :$merge_outputs=
)
{
    $self->reset;
    $self->base_cell->_modified(0);
    my ($outputs, $states) = $self->base_cell->unroll($length, inputs=>$inputs, begin_state=>$begin_state,
                                                layout=>$layout, merge_outputs=>$merge_outputs);
    $self->base_cell->_modified(1);
    $merge_outputs //= (blessed($outputs) and $outputs->isa('AI::MXNet::Symbol'));
    ($inputs) = _normalize_sequence($length, $inputs, $layout, $merge_outputs);
    if($merge_outputs)
    {
        $outputs = AI::MXNet::Symbol->elemwise_add($outputs, $inputs, name => $outputs->name . "_plus_residual");
    }
    else
    {
        my @temp;
        zip(sub {
            my ($output_sym, $input_sym) = @_;
            push @temp, AI::MXNet::Symbol->elemwise_add($output_sym, $input_sym,
                            name=>$output_sym->name."_plus_residual");
        }, [@{ $outputs }], [@{ $inputs }]);
        $outputs = \@temp;
    }
    return ($outputs, $states);
}

func _normalize_sequence($length, $inputs, $layout, $merge, $in_layout=)
{
    assert((defined $inputs),
        "unroll(inputs=>undef) has been deprecated. ".

lib/AI/MXNet/RNN/IO.pm  view on Meta::CPAN

    :$invalid_label : int, default -1
        Index for invalid token, like <end-of-sentence>
    :$invalid_key : str, default '\n'
        Key for invalid token. Uses '\n' for end
        of sentence by default.
    :$start_label=0 : int
        lowest index.

    Returns
    -------
    $result : array ref of array refs of int
        encoded sentences
    $vocab : hash ref of str -> int
        result vocabulary
=cut


method encode_sentences(
    ArrayRef[ArrayRef]  $sentences,
    Maybe[HashRef]     :$vocab=,
    Int                :$invalid_label=-1,
    Str                :$invalid_key="\n",
    Int                :$start_label=0
)

lib/AI/MXNet/RNN/IO.pm  view on Meta::CPAN

    my $new_vocab;
    if(not defined $vocab)
    {
        $vocab = { $invalid_key => $invalid_label };
        $new_vocab = 1;
    }
    else
    {
        $new_vocab = 0;
    }
    my @res;
    for my $sent (@{ $sentences })
    {
        my @coded;
        for my $word (@{ $sent })
        {
            if(not exists $vocab->{ $word })
            {
                assert($new_vocab, "Unknown token: $word");
                if($idx == $invalid_label)
                {
                    $idx += 1;
                }
                $vocab->{$word} = $idx;
                $idx += 1;
            }
            push @coded, $vocab->{ $word };
        }
        push @res, \@coded;
    }
    return (\@res, $vocab);
}

package AI::MXNet::BucketSentenceIter;

=encoding UTF-8

=head1 NAME

    AI::MXNet::BucketSentenceIter
=cut

lib/AI/MXNet/RNN/IO.pm  view on Meta::CPAN

        my $buck_len = $buck->shape->at(-1);
        for my $j (0..($buck_len - $self->batch_size))
        {
            if(not $j%$self->batch_size)
            {
                push @{ $self->idx }, [$i, $j];
            }
        }
    }, $self->data);
    $self->curr_idx(0);
    $self->reset;
}

method reset()
{
    $self->curr_idx(0);
    @{ $self->idx } = shuffle(@{ $self->idx });
    $self->nddata([]);
    $self->ndlabel([]);
    for my $buck (@{ $self->data })
    {
        $buck = pdl_shuffle($buck);
        my $label = $buck->zeros;
        $label->slice([0, -2], 'X')  .= $buck->slice([1, -1], 'X');

lib/AI/MXNet/Random.pm  view on Meta::CPAN

=head1 DESCRIPTION

    Handling of randomization in MXNet.
=cut

=head2 seed

    Seed the random number generators in mxnet.

    This seed will affect behavior of functions in this module,
    as well as results from executors that contains Random number
    such as Dropout operators.

    Parameters
    ----------
    seed_state : int
        The random number seed to set to all devices.

    Notes
    -----
    The random number generator of mxnet is by default device specific.



( run in 1.645 second using v1.01-cache-2.11-cpan-49f99fa48dc )