AI-TensorFlow-Libtensorflow

 view release on metacpan or  search on metacpan

LICENSE  view on Meta::CPAN

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing

LICENSE  view on Meta::CPAN

      identification within third-party archives.

   Copyright 2022 Auto-Parallel Technologies, Inc

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

lib/AI/TensorFlow/Libtensorflow/Manual/Notebook/InferenceUsingTFHubCenterNetObjDetect.pod  view on Meta::CPAN

                  src => $images_for_test_to_uri{$image_name},
                  alt => $image_name,
                  width => '100%',
              })
          ),
      );
  }

=head2 Download the test image and transform it into suitable input data

We now fetch the image and prepare it to be in the needed format by using C<Imager>. Note that this model does not need the input image to be of a certain size so no resizing or padding is required.

Then we turn the C<Imager> data into a C<PDL> ndarray. Since we just need the 3 channels of the image as they are, they can be stored directly in a C<PDL> ndarray of type C<byte>.

The reason why we need to concatenate the C<PDL> ndarrays here despite the model only taking a single image at a time is to get an ndarray with four (4) dimensions with the last C<PDL> dimension of size one (1).

  sub load_image_to_pdl {
      my ($uri, $image_size) = @_;
  
      my $http = HTTP::Tiny->new;
      my $response = $http->get( $uri );



( run in 0.672 second using v1.01-cache-2.11-cpan-0a6323c29d9 )