view release on metacpan or search on metacpan
lib/AI/FANN/Evolving.pm view on Meta::CPAN
use File::Temp 'tempfile';
use AI::FANN::Evolving::Gene;
use AI::FANN::Evolving::Chromosome;
use AI::FANN::Evolving::Experiment;
use AI::FANN::Evolving::Factory;
use Algorithm::Genetic::Diploid;
use base qw'Algorithm::Genetic::Diploid::Base';
our $VERSION = '0.4';
our $AUTOLOAD;
my $log = __PACKAGE__->logger;
my %enum = (
'train' => {
# 'FANN_TRAIN_INCREMENTAL' => FANN_TRAIN_INCREMENTAL, # only want batch training
'FANN_TRAIN_BATCH' => FANN_TRAIN_BATCH,
'FANN_TRAIN_RPROP' => FANN_TRAIN_RPROP,
'FANN_TRAIN_QUICKPROP' => FANN_TRAIN_QUICKPROP,
},
'activationfunc' => {
'FANN_LINEAR' => FANN_LINEAR,
lib/AI/FANN/Evolving.pm view on Meta::CPAN
AI::FANN::Evolving - artificial neural network that evolves
=head1 METHODS
=over
=item new
Constructor requires 'file', or 'data' and 'neurons' arguments. Optionally takes
'connection_rate' argument for sparse topologies. Returns a wrapper around L<AI::FANN>.
=cut
sub new {
my $class = shift;
my %args = @_;
my $self = {};
bless $self, $class;
$self->_init(%args);
# de-serialize from a file
if ( my $file = $args{'file'} ) {
$self->{'ann'} = AI::FANN->new_from_file($file);
$log->debug("instantiating from file $file");
return $self;
}
# build new topology from input data
elsif ( my $data = $args{'data'} ) {
$log->debug("instantiating from data $data");
$data = $data->to_fann if $data->isa('AI::FANN::Evolving::TrainData');
# prepare arguments
my $neurons = $args{'neurons'} || ( $data->num_inputs + 1 );
my @sizes = (
$data->num_inputs,
$neurons,
$data->num_outputs
);
# build topology
if ( $args{'connection_rate'} ) {
$self->{'ann'} = AI::FANN->new_sparse( $args{'connection_rate'}, @sizes );
}
else {
$self->{'ann'} = AI::FANN->new_standard( @sizes );
}
# finalize the instance
return $self;
}
# build new ANN using argument as a template
elsif ( my $ann = $args{'ann'} ) {
$log->debug("instantiating from template $ann");
# copy the wrapper properties
%{ $self } = %{ $ann };
# instantiate the network dimensions
$self->{'ann'} = AI::FANN->new_standard(
$ann->num_inputs,
$ann->num_inputs + 1,
$ann->num_outputs,
);
lib/AI/FANN/Evolving.pm view on Meta::CPAN
Uses the object as a template for the properties of the argument, e.g.
$ann1->template($ann2) applies the properties of $ann1 to $ann2
=cut
sub template {
my ( $self, $other ) = @_;
# copy over the simple properties
$log->debug("copying over simple properties");
my %scalar_properties = __PACKAGE__->_scalar_properties;
for my $prop ( keys %scalar_properties ) {
my $val = $self->$prop;
$other->$prop($val);
}
# copy over the list properties
$log->debug("copying over list properties");
my %list_properties = __PACKAGE__->_list_properties;
for my $prop ( keys %list_properties ) {
my @values = $self->$prop;
$other->$prop(@values);
}
# copy over the layer properties
$log->debug("copying over layer properties");
my %layer_properties = __PACKAGE__->_layer_properties;
for my $prop ( keys %layer_properties ) {
for my $i ( 0 .. $self->num_layers - 1 ) {
for my $j ( 0 .. $self->layer_num_neurons($i) - 1 ) {
my $val = $self->$prop($i,$j);
$other->$prop($i,$j,$val);
}
}
}
return $self;
lib/AI/FANN/Evolving.pm view on Meta::CPAN
}
=item mutate
Mutates the object by the provided mutation rate
=cut
sub mutate {
my ( $self, $mu ) = @_;
$log->debug("going to mutate at rate $mu");
# mutate the simple properties
$log->debug("mutating scalar properties");
my %scalar_properties = __PACKAGE__->_scalar_properties;
for my $prop ( keys %scalar_properties ) {
my $handler = $scalar_properties{$prop};
my $val = $self->$prop;
if ( ref $handler ) {
$self->$prop( $handler->($val,$mu) );
}
else {
$self->$prop( _mutate_enum($handler,$val,$mu) );
}
}
# mutate the list properties
$log->debug("mutating list properties");
my %list_properties = __PACKAGE__->_list_properties;
for my $prop ( keys %list_properties ) {
my $handler = $list_properties{$prop};
my @values = $self->$prop;
if ( ref $handler ) {
$self->$prop( map { $handler->($_,$mu) } @values );
}
else {
$self->$prop( map { _mutate_enum($handler,$_,$mu) } @values );
}
}
# mutate the layer properties
$log->debug("mutating layer properties");
my %layer_properties = __PACKAGE__->_layer_properties;
for my $prop ( keys %layer_properties ) {
my $handler = $layer_properties{$prop};
for my $i ( 1 .. $self->num_layers ) {
for my $j ( 1 .. $self->layer_num_neurons($i) ) {
my $val = $self->$prop($i,$j);
if ( ref $handler ) {
$self->$prop( $handler->($val,$mu) );
}
else {
lib/AI/FANN/Evolving.pm view on Meta::CPAN
=item defaults
Getter/setter to influence default ANN configuration
=cut
sub defaults {
my $self = shift;
my %args = @_;
for my $key ( keys %args ) {
$log->info("setting $key to $args{$key}");
if ( $key eq 'activation_function' ) {
$args{$key} = $constant{$args{$key}};
}
$default{$key} = $args{$key};
}
return %default;
}
sub _init {
my $self = shift;
lib/AI/FANN/Evolving.pm view on Meta::CPAN
}
=item clone
Clones the object
=cut
sub clone {
my $self = shift;
$log->debug("cloning...");
# we delete the reference here so we can use
# Algorithm::Genetic::Diploid::Base's cloning method, which
# dumps and loads from YAML. This wouldn't work if the
# reference is still attached because it cannot be
# stringified, being an XS data structure
my $ann = delete $self->{'ann'};
my $clone = $self->SUPER::clone;
# clone the ANN by writing it to a temp file in "FANN/FLO"
lib/AI/FANN/Evolving.pm view on Meta::CPAN
=item train
Trains the AI on the provided data object
=cut
sub train {
my ( $self, $data ) = @_;
if ( $self->train_type eq 'cascade' ) {
$log->debug("cascade training");
# set learning curve
$self->cascade_activation_functions( $self->activation_function );
# train
$self->{'ann'}->cascadetrain_on_data(
$data,
$self->neurons,
$self->neuron_printfreq,
$self->error,
);
}
else {
$log->debug("normal training");
# set learning curves
$self->hidden_activation_function( $self->activation_function );
$self->output_activation_function( $self->activation_function );
# train
$self->{'ann'}->train_on_data(
$data,
$self->epochs,
$self->epoch_printfreq,
lib/AI/FANN/Evolving.pm view on Meta::CPAN
=item error
Getter/setter for the error rate. Default is 0.0001
=cut
sub error {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting error threshold to $value");
return $self->{'error'} = $value;
}
else {
$log->debug("getting error threshold");
return $self->{'error'};
}
}
=item epochs
Getter/setter for the number of training epochs, default is 500000
=cut
sub epochs {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting training epochs to $value");
return $self->{'epochs'} = $value;
}
else {
$log->debug("getting training epochs");
return $self->{'epochs'};
}
}
=item epoch_printfreq
Getter/setter for the number of epochs after which progress is printed. default is 1000
=cut
sub epoch_printfreq {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting epoch printfreq to $value");
return $self->{'epoch_printfreq'} = $value;
}
else {
$log->debug("getting epoch printfreq");
return $self->{'epoch_printfreq'}
}
}
=item neurons
Getter/setter for the number of neurons. Default is 15
=cut
sub neurons {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting neurons to $value");
return $self->{'neurons'} = $value;
}
else {
$log->debug("getting neurons");
return $self->{'neurons'};
}
}
=item neuron_printfreq
Getter/setter for the number of cascading neurons after which progress is printed.
default is 10
=cut
sub neuron_printfreq {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting neuron printfreq to $value");
return $self->{'neuron_printfreq'} = $value;
}
else {
$log->debug("getting neuron printfreq");
return $self->{'neuron_printfreq'};
}
}
=item train_type
Getter/setter for the training type: 'cascade' or 'ordinary'. Default is ordinary
=cut
sub train_type {
my $self = shift;
if ( @_ ) {
my $value = lc shift;
$log->debug("setting train type to $value");
return $self->{'train_type'} = $value;
}
else {
$log->debug("getting train type");
return $self->{'train_type'};
}
}
=item activation_function
Getter/setter for the function that maps inputs to outputs. default is
FANN_SIGMOID_SYMMETRIC
=back
=cut
sub activation_function {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->debug("setting activation function to $value");
return $self->{'activation_function'} = $value;
}
else {
$log->debug("getting activation function");
return $self->{'activation_function'};
}
}
# this is here so that we can trap method calls that need to be
# delegated to the FANN object. at this point we're not even
# going to care whether the FANN object implements these methods:
# if it doesn't we get the normal error for unknown methods, which
# the user then will have to resolve.
sub AUTOLOAD {
lib/AI/FANN/Evolving/Chromosome.pm view on Meta::CPAN
package AI::FANN::Evolving::Chromosome;
use strict;
use AI::FANN::Evolving;
use AI::FANN::Evolving::Experiment;
use Algorithm::Genetic::Diploid;
use base 'Algorithm::Genetic::Diploid::Chromosome';
my $log = __PACKAGE__->logger;
=head1 NAME
AI::FANN::Evolving::Chromosome - chromosome of an evolving, diploid AI
=head1 METHODS
=over
=item recombine
Recombines properties of the AI during meiosis in proportion to the crossover_rate
=cut
sub recombine {
$log->debug("recombining chromosomes");
# get the genes and columns for the two chromosomes
my ( $chr1, $chr2 ) = @_;
my ( $gen1 ) = map { $_->mutate } $chr1->genes;
my ( $gen2 ) = map { $_->mutate } $chr2->genes;
my ( $ann1, $ann2 ) = ( $gen1->ann, $gen2->ann );
$ann1->recombine($ann2,$chr1->experiment->crossover_rate);
# assign the genes to the chromosomes (this because they are clones
# so we can't use the old object reference)
$chr1->genes($gen1);
lib/AI/FANN/Evolving/Experiment.pm view on Meta::CPAN
package AI::FANN::Evolving::Experiment;
use strict;
use warnings;
use AI::FANN ':all';
use AI::FANN::Evolving;
use File::Temp 'tempfile';
use Algorithm::Genetic::Diploid;
use base 'Algorithm::Genetic::Diploid::Experiment';
my $log = __PACKAGE__->logger;
=head1 NAME
AI::FANN::Evolving::Experiment - an experiment in evolving artificial intelligence
=head1 METHODS
=over
=item new
lib/AI/FANN/Evolving/Experiment.pm view on Meta::CPAN
Getter/Setter for the workdir where L<AI::FANN> artificial neural networks will be
written during the experiment. The files will be named after the ANN's error, which
needs to be minimized.
=cut
sub workdir {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->info("assigning new workdir $value");
$self->{'workdir'} = $value;
}
else {
$log->debug("retrieving workdir");
}
return $self->{'workdir'};
}
=item traindata
Getter/setter for the L<AI::FANN::TrainData> object.
=cut
sub traindata {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->info("assigning new traindata $value");
$self->{'traindata'} = $value;
}
else {
$log->debug("retrieving traindata");
}
return $self->{'traindata'};
}
=item run
Runs the experiment!
=cut
sub run {
my $self = shift;
my $log = $self->logger;
$log->info("going to run experiment");
my @results;
for my $i ( 1 .. $self->ngens ) {
# modify workdir
my $wd = $self->{'workdir'};
$wd =~ s/\d+$/$i/;
$self->{'workdir'} = $wd;
mkdir $wd;
my $optimum = $self->optimum($i);
$log->debug("optimum at generation $i is $optimum");
my ( $fittest, $fitness ) = $self->population->turnover($i,$self->env,$optimum);
push @results, [ $fittest, $fitness ];
}
my ( $fittest, $fitness ) = map { @{ $_ } } sort { $a->[1] <=> $b->[1] } @results;
return $fittest, $fitness;
}
=item optimum
The optimal fitness is zero error in the ANN's classification. This method returns
lib/AI/FANN/Evolving/Experiment.pm view on Meta::CPAN
=cut
sub error_func {
my $self = shift;
# process the argument
if ( @_ ) {
my $arg = shift;
if ( ref $arg eq 'CODE' ) {
$self->{'error_func'} = $arg;
$log->info("using custom error function");
}
elsif ( $arg eq 'sign' ) {
$self->{'error_func'} = \&_sign;
$log->info("using sign test error function");
}
elsif ( $arg eq 'mse' ) {
$self->{'error_func'} = \&_mse;
$log->info("using MSE error function");
}
else {
$log->warn("don't understand error func '$arg'");
}
}
# map the constructor-supplied argument
if ( $self->{'error_func'} and $self->{'error_func'} eq 'sign' ) {
$self->{'error_func'} = \&_sign;
$log->info("using error function 'sign'");
}
elsif ( $self->{'error_func'} and $self->{'error_func'} eq 'mse' ) {
$self->{'error_func'} = \&_mse;
$log->info("using error function 'mse'");
}
return $self->{'error_func'} || \&_mse;
}
1;
lib/AI/FANN/Evolving/Gene.pm view on Meta::CPAN
use strict;
use warnings;
use List::Util 'shuffle';
use File::Temp 'tempfile';
use Scalar::Util 'refaddr';
use AI::FANN::Evolving;
use Algorithm::Genetic::Diploid::Gene;
use base 'Algorithm::Genetic::Diploid::Gene';
use Data::Dumper;
my $log = __PACKAGE__->logger;
=head1 NAME
AI::FANN::Evolving::Gene - gene that codes for an artificial neural network (ANN)
=head1 METHODS
=over
=item new
lib/AI/FANN/Evolving/Gene.pm view on Meta::CPAN
=item ann
Getter/setter for an L<AI::FANN::Evolving> ANN
=cut
sub ann {
my $self = shift;
if ( @_ ) {
my $ann = shift;
$log->debug("setting ANN $ann");
return $self->{'ann'} = $ann;
}
else {
$log->debug("getting ANN");
return $self->{'ann'};
}
}
=item make_function
Returns a code reference to the fitness function, which when executed returns a fitness
value and writes the corresponding ANN to file
=cut
sub make_function {
my $self = shift;
my $ann = $self->ann;
my $error_func = $self->experiment->error_func;
$log->debug("making fitness function");
# build the fitness function
return sub {
# train the AI
$ann->train( $self->experiment->traindata );
# isa TrainingData object, this is what we need to use
# to make our prognostications. It is a different data
# set (out of sample) than the TrainingData object that
lib/AI/FANN/Evolving/Gene.pm view on Meta::CPAN
# this is a number which we try to keep as near to zero
# as possible
my $fitness = 0;
# iterate over the list of input/output pairs
for my $i ( 0 .. ( $env->length - 1 ) ) {
my ( $input, $expected ) = $env->data($i);
my $observed = $ann->run($input);
use Data::Dumper;
$log->debug("Observed: ".Dumper($observed));
$log->debug("Expected: ".Dumper($expected));
# invoke the error_func provided by the experiment
$fitness += $error_func->($observed,$expected);
}
$fitness /= $env->length;
# store result
$self->{'fitness'} = $fitness;
# store the AI
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
package AI::FANN::Evolving::TrainData;
use strict;
use List::Util 'shuffle';
use AI::FANN ':all';
use Algorithm::Genetic::Diploid::Base;
use base 'Algorithm::Genetic::Diploid::Base';
our $AUTOLOAD;
my $log = __PACKAGE__->logger;
=head1 NAME
AI::FANN::Evolving::TrainData - wrapper class for FANN data
=head1 METHODS
=over
=item new
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
}
=item read_data
Reads provided input file
=cut
sub read_data {
my ( $self, $file ) = @_; # file is tab-delimited
$log->debug("reading data from file $file");
open my $fh, '<', $file or die "Can't open $file: $!";
my ( %header, @table );
while(<$fh>) {
chomp;
next if /^\s*$/;
my @fields = split /\t/, $_;
if ( not %header ) {
my $i = 0;
%header = map { $_ => $i++ } @fields;
}
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
=cut
sub write_data {
my ( $self, $file ) = @_;
# use file or STDOUT
my $fh;
if ( $file ) {
open $fh, '>', $file or die "Can't write to $file: $!";
$log->info("writing data to $file");
}
else {
$fh = \*STDOUT;
$log->info("writing data to STDOUT");
}
# print header
my $h = $self->{'header'};
print $fh join "\t", sort { $h->{$a} <=> $h->{$b} } keys %{ $h };
print $fh "\n";
# print rows
for my $row ( @{ $self->{'table'} } ) {
print $fh join "\t", @{ $row };
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
=cut
sub trim_data {
my $self = shift;
my @trimmed;
ROW: for my $row ( @{ $self->{'table'} } ) {
next ROW if grep { not defined $_ } @{ $row };
push @trimmed, $row;
}
my $num = $self->{'size'} - scalar @trimmed;
$log->info("removed $num incomplete rows");
$self->{'table'} = \@trimmed;
}
=item sample_data
Sample a fraction of the data
=cut
sub sample_data {
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
Creates two clones that partition the data according to the provided ratio.
=cut
sub partition_data {
my $self = shift;
my $sample = shift || 0.5;
my $clone1 = $self->clone;
my $clone2 = $self->clone;
my $remain = 1 - $sample;
$log->info("going to partition into $sample : $remain");
# compute number of different dependent patterns and ratios of each
my @dependents = $self->dependent_data;
my %seen;
for my $dep ( @dependents ) {
my $key = join '/', @{ $dep };
$seen{$key}++;
}
# adjust counts to sample size
for my $key ( keys %seen ) {
$log->debug("counts: $key => $seen{$key}");
$seen{$key} = int( $seen{$key} * $sample );
$log->debug("rescaled: $key => $seen{$key}");
}
# start the sampling
my @dc = map { $self->{'header'}->{$_} } $self->dependent_columns;
my @new_table; # we will populate this
my @table = @{ $clone1->{'table'} }; # work on cloned instance
# as long as there is still sampling to do
SAMPLE: while( grep { !!$_ } values %seen ) {
for my $i ( 0 .. $#table ) {
my @r = @{ $table[$i] };
my $key = join '/', @r[@dc];
if ( $seen{$key} ) {
my $rand = rand(1);
if ( $rand < $sample ) {
push @new_table, \@r;
splice @table, $i, 1;
$seen{$key}--;
$log->debug("still to go for $key: $seen{$key}");
next SAMPLE;
}
}
}
}
$clone2->{'table'} = \@new_table;
$clone1->{'table'} = \@table;
return $clone2, $clone1;
}
lib/AI/FANN/Evolving/TrainData.pm view on Meta::CPAN
sub size { scalar @{ shift->{'table'} } }
=item to_fann
Packs data into an L<AI::FANN> TrainData structure
=cut
sub to_fann {
$log->debug("encoding data as FANN struct");
my $self = shift;
my @cols = @_ ? @_ : $self->predictor_columns;
my @deps = $self->dependent_data;
my @pred = $self->predictor_data( 'cols' => \@cols );
my @interdigitated;
for my $i ( 0 .. $#deps ) {
push @interdigitated, $pred[$i], $deps[$i];
}
return AI::FANN::TrainData->new(@interdigitated);
}
script/aivolver view on Meta::CPAN
use warnings;
use Pod::Usage;
use Getopt::Long;
use YAML::Any 'LoadFile';
use File::Path 'make_path';
use AI::FANN::Evolving;
use AI::FANN::Evolving::TrainData;
use Algorithm::Genetic::Diploid::Logger ':levels';
# initialize config variables
my $verbosity = WARN; # log level
my $formatter = 'simple'; # log formatter
my %initialize; # settings to start the population
my %data; # train and test data files
my %experiment; # experiment settings
my %ann; # ANN settings
my $outfile;
# there are no arguments
if ( not @ARGV ) {
pod2usage( '-verbose' => 0 );
}
script/aivolver view on Meta::CPAN
'data=s' => \%data,
'experiment=s' => \%experiment,
'ann=s' => \%ann,
'help|?' => sub { pod2usage( '-verbose' => 1 ) },
'manual' => sub { pod2usage( '-verbose' => 2 ) },
);
# configure ANN
AI::FANN::Evolving->defaults(%ann);
# configure logger
my $log = Algorithm::Genetic::Diploid::Logger->new;
$log->level( 'level' => $verbosity );
$log->formatter( $formatter );
# read input data
my $deps = join ', ', @{ $data{'dependent'} };
my $ignore = join ', ', @{ $data{'ignore'} };
$log->info("going to read train data $data{file}, ignoring '$ignore', dependent columns are '$deps'");
my $inputdata = AI::FANN::Evolving::TrainData->new(
'file' => $data{'file'},
'dependent' => $data{'dependent'},
'ignore' => $data{'ignore'},
);
my ( $traindata, $testdata );
if ( $data{'type'} and lc $data{'type'} eq 'continuous' ) {
( $traindata, $testdata ) = $inputdata->sample_data( $data{'fraction'} );
}
else {
( $traindata, $testdata ) = $inputdata->partition_data( $data{'fraction'} );
}
$log->info("number of training data records: ".$traindata->size);
$log->info("number of test data records: ".$testdata->size);
# create first work dir
my $wd = delete $experiment{'workdir'};
make_path($wd);
$wd .= '/0';
# create the experiment
my $exp = AI::FANN::Evolving::Experiment->new(
'traindata' => $traindata->to_fann,
'env' => $testdata->to_fann,
'workdir' => $wd,
%experiment,
);
# initialize the experiment
$exp->initialize(%initialize);
# run!
my ( $fittest, $fitness ) = $exp->run();
$log->info("*** overall best fitness: $fitness");
my ($gene) = sort { $a->fitness <=> $b->fitness } map { $_->genes } $fittest->chromosomes;
$gene->ann->save($outfile);
__END__
=pod
=head1 NAME
aivolver - Evolves optimal artificial neural networks
script/aivolver view on Meta::CPAN
evolving population. The key/value pairs are as follows:
=over
=item B<individual_count=<countE<gt>>
Defines the number of individuals in the population.
=item B<chromosome_count=<countE<gt>>
Defines the number of non-homologous chromosomes (i.e. n for diploid org). Normally
1 chromosome suffices.
=item B<gene_count=<countE<gt>>
Defines the number of genes per chromosome. Normally 1 gene (i.e. 1 ANN) suffices.
=back
=item B<-e/--experiment <key=valueE<gt>>
script/aivolver view on Meta::CPAN
Output directory.
=back
=back
=head1 DESCRIPTION
Artificial neural networks (ANNs) are decision-making machines that develop their
capabilities by training on input data. During this training, the ANN builds a
topology of input neurons, hidden neurons, and output neurons that respond to signals
in ways (and with sensitivities) that are determined by a variety of parameters. How
these parameters will interact to give rise to the final functionality of the ANN is
hard to predict I<a priori>, but can be optimized in a variety of ways.
C<aivolver> is a program that does this by evolving parameter settings using a genetic
algorithm that runs for a number of generations determined by C<ngens>. During this
process it writes the intermediate ANNs into the C<workdir> until the best result is
written to the C<outfile>.
The genetic algorithm proceeds by simulating a population of C<individual_count> diploid
individuals that each have C<chromosome_count> chromosomes whose C<gene_count> genes
encode the parameters of the ANN. During each generation, each individual is trained
on a sample data set, and the individual's fitness is then calculated by testing its
predictive abilities on an out-of-sample data set. The fittest individuals (whose
fraction of the total is determined by C<reproduction_rate>) are selected for breeding
in proportion to their fitness.
Before breeding, each individual undergoes a process of mutation, where a fraction of
the ANN parameters is randomly perturbed. Both the size of the fraction and the
maximum extent of the perturbation is determined by C<mutation_rate>. Subsequently, the
homologous chromosomes recombine (i.e. exchange parameters) at a rate determined by
C<crossover_rate>, which then results in (haploid) gametes. These gametes are fused with
those of other individuals to give rise to the next generation.
=head1 TRAINING AND TEST DATA
The data that is used for training the ANNs and for subsequently testing their predictive
abilities are provided as tab-separated tables. An example of an input data set is here:
L<https://github.com/naturalis/ai-fann-evolving/blob/master/examples/butterbeetles.tsv>
use File::Temp 'tempdir';
# attempt to load the classes of interest
BEGIN {
use_ok('AI::FANN::Evolving::Factory');
use_ok('AI::FANN::Evolving::TrainData');
use_ok('AI::FANN::Evolving');
use_ok('Algorithm::Genetic::Diploid::Logger');
}
# create and configure logger
my $log = new_ok('Algorithm::Genetic::Diploid::Logger');
$log->level( 'level' => 4 );
$log->formatter(sub{
my %args = @_;
if ( $args{'msg'} =~ /fittest at generation (\d+): (.+)/ ) {
my ( $gen, $fitness ) = ( $1, $2 );
ok( $fitness, "generation $gen/2, fitness: $fitness" );
}
return '';
});
# set quieter and quicker to give up
AI::FANN::Evolving->defaults( 'epoch_printfreq' => 0, 'epochs' => 200 );