AI-XGBoost
view release on metacpan or search on metacpan
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item handle
instance of data matrix to be sliced
=item idxset
index set
=item len
length of index set
=item out
a sliced new matrix
=back
=head2 XGDMatrixNumRow
Get number of rows.
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item field
field name, can be label, weight
=item array
pointer to float vector
=item len
length of array
=back
=head2 XGDMatrixSetUIntInfo
Set uint32 vector to a content in info
Parameters:
=over 4
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item field
field name, can be label, weight
=item array
pointer to unsigned int vector
=item len
length of array
=back
=head2 XGDMatrixSetGroup
Set label of the training matrix
Parameters:
=over 4
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item handle
a instance of data matrix
=item group
pointer to group size
=item len
length of the array
=back
=head2 XGDMatrixGetFloatInfo
Get float info vector from matrix
Parameters:
=over 4
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item handle
a instance of data matrix
=item field
field name
=item out_len
used to set result length
=item out_dptr
pointer to the result
=back
=head2 XGDMatrixGetUIntInfo
Get uint32 info vector from matrix
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item handle
a instance of data matrix
=item field
field name
=item out_len
The length of the field
=item out_dptr
pointer to the result
=back
=head2 XGDMatrixFree
Free space in data matrix
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
Parameters:
=over 4
=item dmats
matrices that are set to be cached
=item len
length of dmats
=item out
handle to the result booster
=back
=head2 XGBoosterFree
Free obj in handle
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=item grad
gradient statistics
=item hess
second order gradinet statistics
=item len
length of grad/hess array
=back
=head2 XGBoosterUpdateOneIter
Update the model in one round using dtrain
Parameters:
=over 4
lib/AI/XGBoost/CAPI/RAW.pm view on Meta::CPAN
=back
=item ntree_limit
limit number of trees used for prediction, this is only valid for boosted trees
when the parameter is set to 0, we will use all the trees
=item out_len
used to store length of returning result
=item out_result
used to set a pointer to array
=back
=head2 XGBoosterLoadModel
Load model form existing file
( run in 0.999 second using v1.01-cache-2.11-cpan-65fba6d93b7 )