AI-MXNet-Gluon-ModelZoo
view release on metacpan or search on metacpan
lib/AI/MXNet/Gluon/ModelZoo/Vision.pm view on Meta::CPAN
use AI::MXNet::Gluon::ModelZoo::Vision::ResNet;
use AI::MXNet::Gluon::ModelZoo::Vision::SqueezeNet;
use AI::MXNet::Gluon::ModelZoo::Vision::VGG;
sub import
{
my ($class, $short_name) = @_;
if($short_name)
{
$short_name =~ s/[^\w:]//g;
if(length $short_name)
{
my $short_name_package =<<"EOP";
package $short_name;
\@${short_name}::ISA = ('AI::MXNet::Gluon::ModelZoo::Vision');
1;
EOP
eval $short_name_package;
}
}
}
lib/AI/MXNet/Gluon/ModelZoo/Vision/VGG.pm view on Meta::CPAN
=head1 DESCRIPTION
VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition"
<https://arxiv.org/abs/1409.1556> paper.
Parameters
----------
layers : array ref of Int
Numbers of layers in each feature block.
filters : array ref of Int
Numbers of filters in each feature block. List length should match the layers.
classes : Int, default 1000
Number of classification classes.
batch_norm : Bool, default 0
Use batch normalization.
=cut
method python_constructor_arguments() { [qw/layers filters classes batch_norm/] }
has ['layers',
'filters'] => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
has 'batch_norm' => (is => 'ro', isa => 'Bool', default => 0);
( run in 0.902 second using v1.01-cache-2.11-cpan-65fba6d93b7 )