view release on metacpan or search on metacpan
lib/AI/MXNet.pm view on Meta::CPAN
use AI::MXNet::Contrib::AutoGrad;
use AI::MXNet::CachedOp;
our $VERSION = '1.0102';
sub import
{
my ($class, $short_name) = @_;
if($short_name)
{
$short_name =~ s/[^\w:]//g;
if(length $short_name)
{
my $short_name_package =<<"EOP";
package $short_name;
no warnings 'redefine';
sub nd { 'AI::MXNet::NDArray' }
sub sym { 'AI::MXNet::Symbol' }
sub symbol { 'AI::MXNet::Symbol' }
sub init { 'AI::MXNet::Initializer' }
sub initializer { 'AI::MXNet::Initializer' }
sub optimizer { 'AI::MXNet::Optimizer' }
lib/AI/MXNet/Base.pm view on Meta::CPAN
{
my ($arg_names, $arg_types, $arg_descs, $remove_dup) = @_;
$remove_dup //= 1;
my %param_keys;
my @param_str;
zip(sub {
my ($key, $type_info, $desc) = @_;
return if exists $param_keys{$key} and $remove_dup;
$param_keys{$key} = 1;
my $ret = sprintf("%s : %s", $key, $type_info);
$ret .= "\n ".$desc if length($desc);
push @param_str, $ret;
},
$arg_names, $arg_types, $arg_descs
);
return sprintf("Parameters\n----------\n%s\n", join("\n", @param_str));
}
=head2 _notify_shutdown
Notify MXNet about shutdown.
lib/AI/MXNet/Callback.pm view on Meta::CPAN
AI::MXNet::ProgressBar - A callback to show a progress bar.
=head1 DESCRIPTION
Shows a progress bar.
Parameters
----------
total: Int
batch size, default is 1
length: Int
the length of the progress bar, default is 80 chars
=cut
has 'length' => (is => 'ro', isa => 'Int', default => 80);
has 'total' => (is => 'ro', isa => 'Int', required => 1);
method call(AI::MXNet::BatchEndParam $param)
{
my $count = $param->nbatch;
my $filled_len = int(0.5 + $self->length * $count / $self->total);
my $percents = int(100.0 * $count / $self->total) + 1;
my $prog_bar = ('=' x $filled_len) . ('-' x ($self->length - $filled_len));
print "[$prog_bar] $percents%\r";
}
*slice = \&call;
# Just logs the eval metrics at the end of an epoch.
package AI::MXNet::LogValidationMetricsCallback;
use Mouse;
extends 'AI::MXNet::Callback';
lib/AI/MXNet/Callback.pm view on Meta::CPAN
(batch_size => $args[0], frequent => $args[1], auto_reset => $args[2])
: @args == 2 ?
(batch_size => $args[0], frequent => $args[1])
: (batch_size => $args[0])
)
}
method ProgressBar(@args)
{
AI::MXNet::ProgressBar->new(
@args == 2 ? (total => $args[0], 'length' => $args[1]) : (total => $args[0])
)
}
method LogValidationMetricsCallback()
{
AI::MXNet::LogValidationMetricsCallback->new
}
1;
lib/AI/MXNet/Contrib/AutoGrad.pm view on Meta::CPAN
return;
}
my @ograd_handles;
for my $arr (@$out_grads)
{
push @ograd_handles, (defined $arr ? $arr->handle : undef);
}
assert(
(@ograd_handles == @output_handles),
"outputs and out_grads must have the same length"
);
check_call(
AI::MXNetCAPI::AutogradBackward(
scalar(@output_handles),
\@output_handles,
\@ograd_handles,
$retain_graph
)
);
lib/AI/MXNet/Executor.pm view on Meta::CPAN
confess("Found name \"$name\" that is not in the arguments");
}
}
}
}
=head2 reshape
Returns new executor with the same symbol and shared memory,
but different input/output shapes.
For runtime reshaping, variable length sequences, etc.
The returned executor shares state with the current one,
and cannot be used in parallel with it.
Parameters
----------
$kwargs : HashRef[Shape]
new shape for arguments.
:$partial_shaping : bool
Whether to allow changing the shape of unspecified arguments.
:$allow_up_sizing : bool
lib/AI/MXNet/Executor/Group.pm view on Meta::CPAN
in the computation graph.
for_training : Bool
Indicate whether the executors should be bind for training. When not doing training,
the memory for gradients will not be allocated.
inputs_need_grad : Bool
Indicate whether the gradients for the input data should be computed. This is currently
not used. It will be useful for implementing composition of modules.
shared_group : AI::MXNet::DataParallelExecutorGroup
Default is undef. This is used in bucketing. When not undef, it should be a executor
group corresponding to a different bucket. In other words, it will correspond to a different
symbol with the same set of parameters (e.g. unrolled RNNs with different lengths).
In this case the memory regions of the parameters will be shared.
logger : Logger
Default is AI::MXNet::Logging->get_logger.
fixed_param_names: Maybe[ArrayRef[Str]]
Indicate parameters to be fixed during training. Parameters in this array ref will not allocate
space for gradient, nor do gradient calculation.
grad_req : ArrayRef[GradReq]|HashRef[GradReq]|GradReq
Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
(default to 'write').
Can be specified globally (str) or for each argument (array ref, hash ref).
lib/AI/MXNet/Image.pm view on Meta::CPAN
0 for BGR format (OpenCV default). 1 for RGB format (MXNet default).
:$out : NDArray
Output buffer. Do not specify for automatic allocation.
=cut
method imdecode(Str|PDL $buf, Int :$flag=1, Int :$to_rgb=1, Maybe[AI::MXNet::NDArray] :$out=)
{
if(not ref $buf)
{
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{'uint8'});
my $len; { use bytes; $len = length $buf; }
my $pdl = PDL->new_from_specification($pdl_type, $len);
${$pdl->get_dataref} = $buf;
$pdl->upd_data;
$buf = $pdl;
}
if(not (blessed $buf and $buf->isa('AI::MXNet::NDArray')))
{
$buf = AI::MXNet::NDArray->array($buf, dtype=>'uint8');
}
return AI::MXNet::NDArray->_cvimdecode($buf, { flag => $flag, to_rgb => $to_rgb, ($out ? (out => $out) : ()) });
lib/AI/MXNet/Image.pm view on Meta::CPAN
{
AI::MXNet::Logging->debug('Invalid image, skipping.');
next;
}
for my $aug (@{ $self->aug_list })
{
$data = [map { @{ $aug->($_) } } @$data];
}
for my $d (@$data)
{
assert(($i < $batch_size), 'Batch size must be multiples of augmenter output length');
$batch_data->at($i) .= AI::MXNet::NDArray->transpose($d, { axes=>[2, 0, 1] });
$batch_label->at($i) .= $label;
$i++;
}
}
return undef if not $i;
return AI::MXNet::DataBatch->new(data=>[$batch_data], label=>[$batch_label], pad => $batch_size-$i);
}
1;
lib/AI/MXNet/Module.pm view on Meta::CPAN
:$inputs_need_grad : bool
Default is 0. Whether the gradients to the input data need to be computed.
Typically this is not needed. But this might be needed when implementing composition
of modules.
:$force_rebind : bool
Default is 0. This function does nothing if the executors are already
binded. But with this 1, the executors will be forced to rebind.
:$shared_module : Module
Default is undef. This is used in bucketing. When not undef, the shared module
essentially corresponds to a different bucket -- a module with different symbol
but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
=cut
method bind(
ArrayRef[AI::MXNet::DataDesc|NameShape] :$data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc|NameShape]] :$label_shapes=,
Bool :$for_training=1,
Bool :$inputs_need_grad=0,
Bool :$force_rebind=0,
Maybe[AI::MXNet::Module] :$shared_module=,
GradReq|HashRef[GradReq]|ArrayRef[GradReq] :$grad_req='write',
lib/AI/MXNet/Module/Base.pm view on Meta::CPAN
:$inputs_need_grad=0 : Bool
Default is 0. Whether the gradients to the input data need to be computed.
Typically this is not needed. But this might be needed when implementing composition
of modules.
:$force_rebind=0 : Bool
Default is 0. This function does nothing if the executors are already
binded. But with this as 1, the executors will be forced to rebind.
:$shared_module= : A subclass of AI::MXNet::Module::Base
Default is undef. This is used in bucketing. When not undef, the shared module
essentially corresponds to a different bucket -- a module with different symbol
but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
:$grad_req='write' : Str|ArrayRef[Str]|HashRef[Str]
Requirement for gradient accumulation. Can be 'write', 'add', or 'null'
(defaults to 'write').
Can be specified globally (str) or for each argument (array ref, hash ref).
=cut
method bind(
ArrayRef[AI::MXNet::DataDesc] $data_shapes,
Maybe[ArrayRef[AI::MXNet::DataDesc]] :$label_shapes=,
Bool :$for_training=1,
lib/AI/MXNet/NDArray.pm view on Meta::CPAN
method STORABLE_freeze($cloning)
{
my $buf = check_call(AI::MXNetCAPI::NDArraySaveRawBytes($self->handle));
return ($buf,\ $self->writable);
}
method STORABLE_thaw($cloning, $buf, $writable)
{
my $handle = check_call(
AI::MXNetCAPI::NDArrayLoadFromRawBytes(
$buf, length($buf)
)
);
$self->handle($handle);
$self->writable($$writable);
}
method at(Index @indices)
{
confess("No idxs supplied") unless @indices;
my $shape = $self->shape;
lib/AI/MXNet/NDArray.pm view on Meta::CPAN
$self->handle, $idx >=0 ? $idx : $self->shape->[0] + $idx
)
);
return __PACKAGE__->new(handle => $handle, writable => $self->writable);
}
=head2 reshape
Returns a reshaped NDArray that shares the memory with current one.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.
Parameters
----------
new_shape : Shape
new shape of NDArray
=cut
method reshape(ArrayRef[Int] $new_shape)
{
my $i = -1;
lib/AI/MXNet/NDArray.pm view on Meta::CPAN
=cut
method imdecode($str_img, ArrayRef[Int] :$clip_rect=[0, 0, 0, 0],
Maybe[AI::MXNet::NDArray] :$out=, Int :$index=0, Int :$channels=3, Maybe[AI::MXNet::NDArray] :$mean=)
{
return __PACKAGE__->_imdecode(
$mean//__PACKAGE__->_new_empty_handle(),
$index,
@$clip_rect,
$channels,
length($str_img),
{ str_img => $str_img, ($out ? (out => $out) : ()) }
);
}
=head2 _new_empty_handle
Returns a new empty handle.
Empty handle can be used to hold result
lib/AI/MXNet/NDArray/Doc.pm view on Meta::CPAN
my ($func_name,
$desc,
$arg_names,
$arg_types,
$arg_desc,
$key_var_num_args,
$ret_type) = @_;
my $param_str = build_param_doc($arg_names, $arg_types, $arg_desc);
if($key_var_num_args)
{
$desc .= "\nThis function support variable length of positional input."
}
my $doc_str = sprintf("%s\n\n" .
"%s\n" .
"out : NDArray, optional\n" .
" The output NDArray to hold the result.\n\n".
"Returns\n" .
"-------\n" .
"out : NDArray or list of NDArray\n" .
" The output of this function.", $desc, $param_str);
return $doc_str
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
}
return \%args;
}
=head2 unroll
Unroll an RNN cell across time steps.
Parameters
----------
:$length : Int
number of steps to unroll
:$inputs : AI::MXNet::Symbol, array ref of Symbols, or undef
if inputs is a single Symbol (usually the output
of Embedding symbol), it should have shape
of [$batch_size, $length, ...] if layout == 'NTC' (batch, time series)
or ($length, $batch_size, ...) if layout == 'TNC' (time series, batch).
If inputs is a array ref of symbols (usually output of
previous unroll), they should all have shape
($batch_size, ...).
If inputs is undef, a placeholder variables are
automatically created.
:$begin_state : array ref of Symbol
input states. Created by begin_state()
or output state of another cell. Created
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
:$input_prefix : str
prefix for automatically created input
placehodlers.
:$layout : str
layout of input symbol. Only used if the input
is a single Symbol.
:$merge_outputs : Bool
If 0, returns outputs as an array ref of Symbols.
If 1, concatenates the output across the time steps
and returns a single symbol with the shape
[$batch_size, $length, ...) if the layout equal to 'NTC',
or [$length, $batch_size, ...) if the layout equal tp 'TNC'.
If undef, output whatever is faster
Returns
-------
$outputs : array ref of Symbol or Symbol
output symbols.
$states : Symbol or nested list of Symbol
has the same structure as begin_state()
=cut
method unroll(
Int $length,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
Str :$input_prefix='',
Str :$layout='NTC',
Maybe[Bool] :$merge_outputs=
)
{
$self->reset;
my $axis = index($layout, 'T');
if(not defined $inputs)
{
$inputs = [
map { AI::MXNet::Symbol->Variable("${input_prefix}t${_}_data") } (0..$length-1)
];
}
elsif(blessed($inputs))
{
assert(
(@{ $inputs->list_outputs() } == 1),
"unroll doesn't allow grouped symbol as input. Please "
."convert to list first or let unroll handle slicing"
);
$inputs = AI::MXNet::Symbol->SliceChannel(
$inputs,
axis => $axis,
num_outputs => $length,
squeeze_axis => 1
);
}
else
{
assert(@$inputs == $length);
}
$begin_state //= $self->begin_state;
my $states = $begin_state;
my $outputs;
my @inputs = @{ $inputs };
for my $i (0..$length-1)
{
my $output;
($output, $states) = &{$self}(
$inputs[$i],
$states
);
push @$outputs, $output;
}
if($merge_outputs)
{
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
$args{ $self->_parameter->name } = $arr;
return \%args;
}
method call(AI::MXNet::Symbol $inputs, SymbolOrArrayOfSymbols $states)
{
confess("AI::MXNet::RNN::FusedCell cannot be stepped. Please use unroll");
}
method unroll(
Int $length,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
Str :$input_prefix='',
Str :$layout='NTC',
Maybe[Bool] :$merge_outputs=
)
{
$self->reset;
my $axis = index($layout, 'T');
$inputs //= AI::MXNet::Symbol->Variable("${input_prefix}data");
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
);
$inputs = AI::MXNet::Symbol->SwapAxis($inputs, dim1 => 0, dim2 => 1);
}
else
{
assert($axis == 0, "Unsupported layout $layout");
}
}
else
{
assert(@$inputs == $length);
$inputs = [map { AI::MXNet::Symbol->expand_dims($_, axis => 0) } @{ $inputs }];
$inputs = AI::MXNet::Symbol->Concat(@{ $inputs }, dim => 0);
}
$begin_state //= $self->begin_state;
my $states = $begin_state;
my @states = @{ $states };
my %states;
if($self->_mode eq 'lstm')
{
%states = (state => $states[0], state_cell => $states[1]);
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
if(defined $merge_outputs and not $merge_outputs)
{
AI::MXNet::Logging->warning(
"Call RNN::FusedCell->unroll with merge_outputs=1 "
."for faster speed"
);
$outputs = [@ {
AI::MXNet::Symbol->SliceChannel(
$outputs,
axis => 0,
num_outputs => $length,
squeeze_axis => 1
)
}];
}
elsif($axis == 1)
{
$outputs = AI::MXNet::Symbol->SwapAxis($outputs, dim1 => 0, dim2 => 1);
}
return ($outputs, $states);
}
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
my $n = scalar(@{ $cell->state_info });
my $state = [@{ $states }[$p..$p+$n-1]];
$p += $n;
($inputs, $state) = &{$cell}($inputs, $state);
push @next_states, $state;
}
return ($inputs, [map { @$_} @next_states]);
}
method unroll(
Int $length,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
Str :$input_prefix='',
Str :$layout='NTC',
Maybe[Bool] :$merge_outputs=
)
{
my $num_cells = @{ $self->_cells };
$begin_state //= $self->begin_state;
my $p = 0;
my $states;
my @next_states;
enumerate(sub {
my ($i, $cell) = @_;
my $n = @{ $cell->state_info };
$states = [@{$begin_state}[$p..$p+$n-1]];
$p += $n;
($inputs, $states) = $cell->unroll(
$length,
inputs => $inputs,
input_prefix => $input_prefix,
begin_state => $states,
layout => $layout,
merge_outputs => ($i < $num_cells-1) ? undef : $merge_outputs
);
push @next_states, $states;
}, $self->_cells);
return ($inputs, [map { @{ $_ } } @next_states]);
}
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
method begin_state(@kwargs)
{
assert((not $self->_modified),
"After applying modifier cells (e.g. DropoutCell) the base "
."cell cannot be called directly. Call the modifier cell instead."
);
return $self->_cells_begin_state($self->_cells, @kwargs);
}
method unroll(
Int $length,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
Str :$input_prefix='',
Str :$layout='NTC',
Maybe[Bool] :$merge_outputs=
)
{
my $axis = index($layout, 'T');
if(not defined $inputs)
{
$inputs = [
map { AI::MXNet::Symbol->Variable("${input_prefix}t${_}_data") } (0..$length-1)
];
}
elsif(blessed($inputs))
{
assert(
(@{ $inputs->list_outputs() } == 1),
"unroll doesn't allow grouped symbol as input. Please "
."convert to list first or let unroll handle slicing"
);
$inputs = [ @{ AI::MXNet::Symbol->SliceChannel(
$inputs,
axis => $axis,
num_outputs => $length,
squeeze_axis => 1
) }];
}
else
{
assert(@$inputs == $length);
}
$begin_state //= $self->begin_state;
my $states = $begin_state;
my ($l_cell, $r_cell) = @{ $self->_cells };
my ($l_outputs, $l_states) = $l_cell->unroll(
$length, inputs => $inputs,
begin_state => [@{$states}[0..@{$l_cell->state_info}-1]],
layout => $layout,
merge_outputs => $merge_outputs
);
my ($r_outputs, $r_states) = $r_cell->unroll(
$length, inputs => [reverse @{$inputs}],
begin_state => [@{$states}[@{$l_cell->state_info}..@{$states}-1]],
layout => $layout,
merge_outputs => $merge_outputs
);
if(not defined $merge_outputs)
{
$merge_outputs = (
blessed $l_outputs and $l_outputs->isa('AI::MXNet::Symbol')
and
blessed $r_outputs and $r_outputs->isa('AI::MXNet::Symbol')
);
if(not $merge_outputs)
{
if(blessed $l_outputs and $l_outputs->isa('AI::MXNet::Symbol'))
{
$l_outputs = [
@{ AI::MXNet::Symbol->SliceChannel(
$l_outputs, axis => $axis,
num_outputs => $length,
squeeze_axis => 1
) }
];
}
if(blessed $r_outputs and $r_outputs->isa('AI::MXNet::Symbol'))
{
$r_outputs = [
@{ AI::MXNet::Symbol->SliceChannel(
$r_outputs, axis => $axis,
num_outputs => $length,
squeeze_axis => 1
) }
];
}
}
}
if($merge_outputs)
{
$l_outputs = [@{ $l_outputs }];
$r_outputs = [@{ AI::MXNet::Symbol->reverse(blessed $r_outputs ? $r_outputs : @{ $r_outputs }, axis=>$axis) }];
lib/AI/MXNet/RNN/Cell.pm view on Meta::CPAN
method call(AI::MXNet::Symbol $inputs, SymbolOrArrayOfSymbols $states)
{
my $output;
($output, $states) = &{$self->base_cell}($inputs, $states);
$output = AI::MXNet::Symbol->elemwise_add($output, $inputs, name => $output->name.'_plus_residual');
return ($output, $states)
}
method unroll(
Int $length,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$inputs=,
Maybe[AI::MXNet::Symbol|ArrayRef[AI::MXNet::Symbol]] :$begin_state=,
Str :$input_prefix='',
Str :$layout='NTC',
Maybe[Bool] :$merge_outputs=
)
{
$self->reset;
$self->base_cell->_modified(0);
my ($outputs, $states) = $self->base_cell->unroll($length, inputs=>$inputs, begin_state=>$begin_state,
layout=>$layout, merge_outputs=>$merge_outputs);
$self->base_cell->_modified(1);
$merge_outputs //= (blessed($outputs) and $outputs->isa('AI::MXNet::Symbol'));
($inputs) = _normalize_sequence($length, $inputs, $layout, $merge_outputs);
if($merge_outputs)
{
$outputs = AI::MXNet::Symbol->elemwise_add($outputs, $inputs, name => $outputs->name . "_plus_residual");
}
else
{
my @temp;
zip(sub {
my ($output_sym, $input_sym) = @_;
push @temp, AI::MXNet::Symbol->elemwise_add($output_sym, $input_sym,
name=>$output_sym->name."_plus_residual");
}, [@{ $outputs }], [@{ $inputs }]);
$outputs = \@temp;
}
return ($outputs, $states);
}
func _normalize_sequence($length, $inputs, $layout, $merge, $in_layout=)
{
assert((defined $inputs),
"unroll(inputs=>undef) has been deprecated. ".
"Please create input variables outside unroll."
);
my $axis = index($layout, 'T');
my $in_axis = defined $in_layout ? index($in_layout, 'T') : $axis;
if(blessed($inputs))
{
if(not $merge)
{
assert(
(@{ $inputs->list_outputs() } == 1),
"unroll doesn't allow grouped symbol as input. Please "
."convert to list first or let unroll handle splitting"
);
$inputs = [ @{ AI::MXNet::Symbol->split(
$inputs,
axis => $in_axis,
num_outputs => $length,
squeeze_axis => 1
) }];
}
}
else
{
assert(not defined $length or @$inputs == $length);
if($merge)
{
$inputs = [map { AI::MXNet::Symbol->expand_dims($_, axis=>$axis) } @{ $inputs }];
$inputs = AI::MXNet::Symbol->Concat(@{ $inputs }, dim=>$axis);
$in_axis = $axis;
}
}
if(blessed($inputs) and $axis != $in_axis)
{
lib/AI/MXNet/RNN/IO.pm view on Meta::CPAN
key for invalid label, e.g. <end-of-sentence>
dtype : str, default 'float32'
data type
buckets : array ref of int
size of data buckets. Automatically generated if undef.
data_name : str, default 'data'
name of data
label_name : str, default 'softmax_label'
name of label
layout : str
format of data and label. 'NT' means (batch_size, length)
and 'TN' means (length, batch_size).
=cut
use Mouse;
use AI::MXNet::Base;
use List::Util qw(shuffle max);
extends 'AI::MXNet::DataIter';
has 'sentences' => (is => 'ro', isa => 'ArrayRef[ArrayRef]', required => 1);
has '+batch_size' => (is => 'ro', isa => 'Int', required => 1);
has 'invalid_label' => (is => 'ro', isa => 'Int', default => -1);
has 'data_name' => (is => 'ro', isa => 'Str', default => 'data');
lib/AI/MXNet/RecordIO.pm view on Meta::CPAN
$buf : a buffer to write.
=cut
method write(Str $buf)
{
assert($self->writable);
check_call(
AI::MXNetCAPI::RecordIOWriterWriteRecord(
$self->handle,
$buf,
length($buf)
)
);
}
=head2 read
Read a record as a string.
Returns
----------
lib/AI/MXNet/Symbol.pm view on Meta::CPAN
list_auxiliary_states is not empty.
- If type is array ref of NDArray, the position is in the same order of list_auxiliary_states
- If type is hash ref of str to NDArray, then it maps the name of auxiliary_states
to the corresponding NDArray,
- In either case, all the auxiliary_states need to be provided.
:$group2ctx : hash ref of string to AI::MXNet::Context
The mapping of the ctx_group attribute to the context assignment.
:$shared_exec : AI::MXNet::Executor
Executor to share memory with. This is intended for runtime reshaping, variable length
sequences, etc. The returned executor shares state with shared_exec, and should not be
used in parallel with it.
Returns
-------
$executor : AI::MXNet::Executor
The generated Executor
Notes
-----
lib/AI/MXNet/Symbol/Doc.pm view on Meta::CPAN
ArrayRef[Str] $arg_names,
ArrayRef[Str] $arg_types,
ArrayRef[Str] $arg_desc,
Str $key_var_num_args=,
Str $ret_type=
)
{
my $param_str = build_param_doc($arg_names, $arg_types, $arg_desc);
if($key_var_num_args)
{
$desc .= "\nThis function support variable length of positional input."
}
my $doc_str = sprintf("%s\n\n" .
"%s\n" .
"name : string, optional.\n" .
" Name of the resulting symbol.\n\n" .
"Returns\n" .
"-------\n" .
"symbol: Symbol\n" .
" The result symbol.", $desc, $param_str);
return $doc_str;
lib/AI/MXNet/Visualization.pm view on Meta::CPAN
=head2 print_summary
convert symbol for detail information
Parameters
----------
symbol: AI::MXNet::Symbol
symbol to be visualized
shape: hashref
hashref of shapes, str->shape (arrayref[int]), given input shapes
line_length: int
total length of printed lines
positions: arrayref[float]
relative or absolute positions of log elements in each line
Returns
------
nothing
=cut
method print_summary(
AI::MXNet::Symbol $symbol,
Maybe[HashRef[Shape]] $shape=,
Int $line_length=120,
ArrayRef[Num] $positions=[.44, .64, .74, 1]
)
{
my $show_shape;
my %shape_dict;
if(defined $shape)
{
$show_shape = 1;
my $interals = $symbol->get_internals;
my (undef, $out_shapes, undef) = $interals->infer_shape(%{ $shape });
Carp::confess("Input shape is incomplete")
unless defined $out_shapes;
@shape_dict{ @{ $interals->list_outputs } } = @{ $out_shapes };
}
my $conf = decode_json($symbol->tojson);
my $nodes = $conf->{nodes};
my %heads = map { $_ => 1 } @{ $conf->{heads}[0] };
if($positions->[-1] <= 1)
{
$positions = [map { int($line_length * $_) } @{ $positions }];
}
# header names for the different log elements
my $to_display = ['Layer (type)', 'Output Shape', 'Param #', 'Previous Layer'];
my $print_row = sub { my ($fields, $positions) = @_;
my $line = '';
enumerate(sub {
my ($i, $field) = @_;
$line .= $field//'';
$line = substr($line, 0, $positions->[$i]);
$line .= ' ' x ($positions->[$i] - length($line));
}, $fields);
print $line,"\n";
};
print('_' x $line_length,"\n");
$print_row->($to_display, $positions);
print('=' x $line_length,"\n");
my $print_layer_summary = sub { my ($node, $out_shape) = @_;
my $op = $node->{op};
my $pre_node = [];
my $pre_filter = 0;
if($op ne 'null')
{
my $inputs = $node->{inputs};
for my $item (@{ $inputs })
{
my $input_node = $nodes->[$item->[0]];
lib/AI/MXNet/Visualization.pm view on Meta::CPAN
if(exists $shape_dict{ $key })
{
my $end = @{ $shape_dict{ $key } };
@{ $out_shape } = @{ $shape_dict{ $key } }[1..$end-1];
}
}
}
$total_params += $print_layer_summary->($nodes->[$i], $out_shape);
if($i == @{ $nodes } - 1)
{
print('=' x $line_length, "\n");
}
else
{
print('_' x $line_length, "\n");
}
}, $nodes);
print("Total params: $total_params\n");
print('_' x $line_length, "\n");
}
=head2 plot_network
convert symbol to dot object for visualization
Parameters
----------
title: str
title of the dot graph