Alien-XGBoost
view release on metacpan or search on metacpan
xgboost/R-package/src/xgboost_R.h view on Meta::CPAN
* \param missing which value to represent missing value
* \return created dmatrix
*/
XGB_DLL SEXP XGDMatrixCreateFromMat_R(SEXP mat,
SEXP missing);
/*!
* \brief create a matrix content from CSC format
* \param indptr pointer to column headers
* \param indices row indices
* \param data content of the data
* \param num_row numer of rows (when it's set to 0, then guess from data)
* \return created dmatrix
*/
XGB_DLL SEXP XGDMatrixCreateFromCSC_R(SEXP indptr,
SEXP indices,
SEXP data,
SEXP num_row);
/*!
* \brief create a new dmatrix from sliced content of existing matrix
* \param handle instance of data matrix to be sliced
xgboost/demo/kaggle-otto/understandingXGBoostModel.Rmd view on Meta::CPAN
* remove `1` to the new value
```{r classToIntegers}
# Convert from classes to numbers
y <- train[, nameLastCol, with = F][[1]] %>% gsub('Class_','',.) %>% {as.integer(.) -1}
# Display the first 5 levels
y[1:5]
```
We remove label column from training dataset, otherwise **XGBoost** would use it to guess the labels!
```{r deleteCols, results='hide'}
train[, nameLastCol:=NULL, with = F]
```
`data.table` is an awesome implementation of data.frame, unfortunately it is not a format supported natively by **XGBoost**. We need to convert both datasets (training and test) in `numeric` Matrix format.
```{r convertToNumericMatrix}
trainMatrix <- train[,lapply(.SD,as.numeric)] %>% as.matrix
testMatrix <- test[,lapply(.SD,as.numeric)] %>% as.matrix
xgboost/demo/regression/machine.names view on Meta::CPAN
- Predicted attribute: cpu relative performance (numeric)
4. Relevant Information:
-- The estimated relative performance values were estimated by the authors
using a linear regression method. See their article (pp 308-313) for
more details on how the relative performance values were set.
5. Number of Instances: 209
6. Number of Attributes: 10 (6 predictive attributes, 2 non-predictive,
1 goal field, and the linear regression's guess)
7. Attribute Information:
1. vendor name: 30
(adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec,
dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson,
microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry,
sratus, wang)
2. Model Name: many unique symbols
3. MYCT: machine cycle time in nanoseconds (integer)
4. MMIN: minimum main memory in kilobytes (integer)
xgboost/dmlc-core/tracker/dmlc_tracker/opts.py view on Meta::CPAN
parser.add_argument('--queue', default='default', type=str,
help='The submission queue the job should goes to.')
parser.add_argument('--log-level', default='INFO', type=str,
choices=['INFO', 'DEBUG'],
help='Logging level of the logger.')
parser.add_argument('--log-file', default=None, type=str,
help=('Output log to the specific log file, ' +
'the log is still printed on stderr.'))
parser.add_argument('--host-ip', default=None, type=str,
help=('Host IP addressed, this is only needed ' +
'if the host IP cannot be automatically guessed.'))
parser.add_argument('--hdfs-tempdir', default='/tmp', type=str,
help=('Temporary directory in HDFS, ' +
' only needed in YARN mode.'))
parser.add_argument('--host-file', default=None, type=str,
help=('The file contains the list of hostnames, needed for MPI and ssh.'))
parser.add_argument('--sge-log-dir', default=None, type=str,
help=('Log directory of SGD jobs, only needed in SGE mode.'))
parser.add_argument(
'--auto-file-cache', default=True, type=bool,
help=('Automatically cache files appeared in the command line' +
xgboost/dmlc-core/tracker/dmlc_tracker/tracker.py view on Meta::CPAN
def main():
"""Main function if tracker is executed in standalone mode."""
parser = argparse.ArgumentParser(description='Rabit Tracker start.')
parser.add_argument('--num-workers', required=True, type=int,
help='Number of worker proccess to be launched.')
parser.add_argument('--num-servers', default=0, type=int,
help='Number of server process to be launched. Only used in PS jobs.')
parser.add_argument('--host-ip', default=None, type=str,
help=('Host IP addressed, this is only needed ' +
'if the host IP cannot be automatically guessed.'))
parser.add_argument('--log-level', default='INFO', type=str,
choices=['INFO', 'DEBUG'],
help='Logging level of the logger.')
args = parser.parse_args()
fmt = '%(asctime)s %(levelname)s %(message)s'
if args.log_level == 'INFO':
level = logging.INFO
elif args.log_level == 'DEBUG':
level = logging.DEBUG
xgboost/doc/Doxyfile view on Meta::CPAN
OPTIMIZE_OUTPUT_VHDL = NO
# Doxygen selects the parser to use depending on the extension of the files it
# parses. With this tag you can assign which parser to use for a given
# extension. Doxygen has a built-in mapping, but you can override or extend it
# using this tag. The format is ext=language, where ext is a file extension, and
# language is one of the parsers supported by doxygen: IDL, Java, Javascript,
# C#, C, C++, D, PHP, Objective-C, Python, Fortran (fixed format Fortran:
# FortranFixed, free formatted Fortran: FortranFree, unknown formatted Fortran:
# Fortran. In the later case the parser tries to guess whether the code is fixed
# or free formatted code, this is the default for Fortran type files), VHDL. For
# instance to make doxygen treat .inc files as Fortran files (default is PHP),
# and .f files as C (default is Fortran), use: inc=Fortran f=C.
#
# Note For files without extension you can use no_extension as a placeholder.
#
# Note that for custom extensions you also need to set FILE_PATTERNS otherwise
# the files are not read by doxygen.
EXTENSION_MAPPING =
xgboost/include/xgboost/c_api.h view on Meta::CPAN
const char* cache_info,
DMatrixHandle *out);
/*!
* \brief create a matrix content from CSR format
* \param indptr pointer to row headers
* \param indices findex
* \param data fvalue
* \param nindptr number of rows in the matrix + 1
* \param nelem number of nonzero elements in the matrix
* \param num_col number of columns; when it's set to 0, then guess from data
* \param out created dmatrix
* \return 0 when success, -1 when failure happens
*/
XGB_DLL int XGDMatrixCreateFromCSREx(const size_t* indptr,
const unsigned* indices,
const float* data,
size_t nindptr,
size_t nelem,
size_t num_col,
DMatrixHandle* out);
xgboost/include/xgboost/c_api.h view on Meta::CPAN
bst_ulong nindptr,
bst_ulong nelem,
DMatrixHandle *out);
/*!
* \brief create a matrix content from CSC format
* \param col_ptr pointer to col headers
* \param indices findex
* \param data fvalue
* \param nindptr number of rows in the matrix + 1
* \param nelem number of nonzero elements in the matrix
* \param num_row number of rows; when it's set to 0, then guess from data
* \param out created dmatrix
* \return 0 when success, -1 when failure happens
*/
XGB_DLL int XGDMatrixCreateFromCSCEx(const size_t* col_ptr,
const unsigned* indices,
const float* data,
size_t nindptr,
size_t nelem,
size_t num_row,
DMatrixHandle* out);
( run in 1.376 second using v1.01-cache-2.11-cpan-702932259ff )