Math-Bacovia
view release on metacpan or search on metacpan
Build.PL
Changes
examples/basic.pl
examples/binomial_theorem.pl
examples/faulhaber_s_formula.pl
examples/faulhaber_s_formula_2.pl
examples/generalized_fibonacci.pl
examples/log_factorial_asymptotic.pl
examples/quadratic_polynomials_zeros.pl
examples/summation.pl
examples/trigonometric_function_simplifications.pl
examples/zeta_2n.pl
lib/Math/Bacovia.pm
lib/Math/Bacovia.pod
lib/Math/Bacovia/Difference.pm
lib/Math/Bacovia/Difference.pod
examples/faulhaber_s_formula.pl view on Meta::CPAN
#!/usr/bin/perl
# The formula for calculating the sum of consecutive
# numbers raised to a given power, such as:
# 1^p + 2^p + 3^p + ... + n^p
# where p is a positive integer.
# See also:
# https://en.wikipedia.org/wiki/Faulhaber%27s_formula
use 5.010;
use strict;
use warnings;
use lib qw(../lib);
use Math::Bacovia qw(:all);
use Math::AnyNum qw(binomial bernfrac);
# The Faulhaber's formula
# See: https://en.wikipedia.org/wiki/Faulhaber%27s_formula
sub faulhaber_s_formula {
my ($p, $n) = @_;
my $sum = Sum();
for my $j (0 .. $p) {
$sum += Number(binomial($p + 1, $j)) * Number(bernfrac($j)) * $n**($p + 1 - $j);
}
Fraction($sum, ($p + 1));
}
# Alternate expression using Bernoulli polynomials
# See: https://en.wikipedia.org/wiki/Faulhaber%27s_formula#Alternate_expressions
sub bernoulli_polynomials {
my ($n, $x) = @_;
my $sum = Sum();
for my $k (0 .. $n) {
$sum += Number(binomial($n, $k)) * Number(bernfrac($n - $k)) * $x**$k;
}
$sum;
}
sub faulhaber_s_formula_2 {
my ($p, $n) = @_;
1 + Fraction((bernoulli_polynomials($p + 1, $n) - bernoulli_polynomials($p + 1, 1)), ($p + 1));
}
foreach my $i (0 .. 10) {
say "F($i) = ", faulhaber_s_formula($i, Symbol('n'))->simple->pretty;
say "F($i) = ", faulhaber_s_formula_2($i, Symbol('n'))->simple->pretty;
}
examples/faulhaber_s_formula_2.pl view on Meta::CPAN
#!/usr/bin/perl
use utf8;
use 5.014;
use lib qw(../lib);
use Math::Bacovia qw(:all);
use Math::AnyNum qw(bernfrac binomial);
sub faulhaber_s_formula {
my ($p, $n) = @_;
my $sum = Sum();
foreach my $j (0 .. $p) {
$sum += Number(binomial($p + 1, $j) * bernfrac($j)) * $n**($p + 1 - $j);
}
$sum * Fraction(1, ($p + 1));
}
my $n = Symbol('n');
foreach my $p (0 .. 10) {
say "F($p) = ", faulhaber_s_formula($p, $n)->simple->pretty;
}
examples/quadratic_polynomials_zeros.pl view on Meta::CPAN
# Then:
# P(x) = c * (1 - x/m) * (1 - x/n)
use 5.014;
use strict;
use warnings;
use Math::Bacovia qw(:all);
use Math::AnyNum qw(isqrt);
sub integer_quadratic_formula {
my ($x, $y, $z) = @_;
(
Fraction((-$y + isqrt($y**2 - 4 * $x * $z)), (2 * $x)),
Fraction((-$y - isqrt($y**2 - 4 * $x * $z)), (2 * $x)),
);
}
my @poly = (
[ 3, -15, -42],
[ 20, -97, -2119],
[-43, 29, 14972],
);
my $x = Symbol('x');
foreach my $t (@poly) {
my ($x1, $x2) = integer_quadratic_formula(@$t);
my $expr = $t->[0] * $x**2 + $t->[1] * $x + $t->[2];
my $f1 = (1 - $x / $x1);
my $f2 = (1 - $x / $x2);
printf("%s = %s * %s * %s\n",
$expr->pretty,
$f1->simple->pretty,
$f2->simple->pretty,
( run in 0.235 second using v1.01-cache-2.11-cpan-26ccb49234f )