AI-MXNet-Gluon-ModelZoo

 view release on metacpan or  search on metacpan

lib/AI/MXNet/Gluon/ModelZoo/Vision/AlexNet.pm  view on Meta::CPAN

    classes : Int, default 1000
        Number of classes for the output layer.
=cut
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments() { ['classes'] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->name_scope(sub {
            $self->features->add(nn->Conv2D(64, kernel_size=>11, strides=>4,
                                            padding=>2, activation=>'relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
            $self->features->add(nn->Conv2D(192, kernel_size=>5, padding=>2,
                                            activation=>'relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
            $self->features->add(nn->Conv2D(384, kernel_size=>3, padding=>1,
                                            activation=>'relu'));
            $self->features->add(nn->Conv2D(256, kernel_size=>3, padding=>1,
                                            activation=>'relu'));
            $self->features->add(nn->Conv2D(256, kernel_size=>3, padding=>1,
                                            activation=>'relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
            $self->features->add(nn->Flatten());
            $self->features->add(nn->Dense(4096, activation=>'relu'));
            $self->features->add(nn->Dropout(0.5));
            $self->features->add(nn->Dense(4096, activation=>'relu'));
            $self->features->add(nn->Dropout(0.5));
        });
        $self->output(nn->Dense($self->classes));
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

=head2 alexnet

    AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997> paper.

lib/AI/MXNet/Gluon/ModelZoo/Vision/DenseNet.pm  view on Meta::CPAN

        for(1..$num_layers)
        {
            $out->add(_make_dense_layer($growth_rate, $bn_size, $dropout));
        }
    });
    return $out;
}

func _make_dense_layer($growth_rate, $bn_size, $dropout)
{
    my $new_features = nn->HybridSequential(prefix=>'');
    $new_features->add(nn->BatchNorm());
    $new_features->add(nn->Activation('relu'));
    $new_features->add(nn->Conv2D($bn_size * $growth_rate, kernel_size=>1, use_bias=>0));
    $new_features->add(nn->BatchNorm());
    $new_features->add(nn->Activation('relu'));
    $new_features->add(nn->Conv2D($growth_rate, kernel_size=>3, padding=>1, use_bias=>0));
    if($dropout)
    {
        $new_features->add(nn->Dropout($dropout));
    }

    my $out = nn->HybridConcurrent(axis=>1, prefix=>'');
    $out->add(nn->Identity());
    $out->add($new_features);

    return $out;
}

func _make_transition($num_output_features)
{
    my $out = nn->HybridSequential(prefix=>'');
    $out->add(nn->BatchNorm());
    $out->add(nn->Activation('relu'));
    $out->add(nn->Conv2D($num_output_features, kernel_size=>1, use_bias=>0));
    $out->add(nn->AvgPool2D(pool_size=>2, strides=>2));
    return $out;
}

=head1 NAME

    AI::MXNet::Gluon::ModelZoo::Vision::DenseNet - Densenet-BC model from the "Densely Connected Convolutional Networks"
=cut

=head1 DESCRIPTION

    Densenet-BC model from the "Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> paper.

    Parameters
    ----------
    num_init_features : Int
        Number of filters to learn in the first convolution layer.
    growth_rate : Int
        Number of filters to add each layer (`k` in the paper).
    block_config : array ref of Int
        List of integers for numbers of layers in each pooling block.
    bn_size : Int, default 4
        Multiplicative factor for number of bottle neck layers.
        (i.e. bn_size * k features in the bottleneck layer)
    dropout : float, default 0
        Rate of dropout after each dense layer.
    classes : int, default 1000
        Number of classification classes.
=cut
has [qw/num_init_features
        growth_rate/] => (is => 'ro', isa => 'Int', required => 1);
has 'block_config'    => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has 'bn_size'         => (is => 'ro', isa => 'Int', default => 4);
has 'dropout'         => (is => 'ro', isa => 'Num', default => 0);
has 'classes'         => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments(){ [qw/num_init_features growth_rate block_config bn_size dropout classes/] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(
            nn->Conv2D(
                $self->num_init_features, kernel_size=>7,
                strides=>2, padding=>3, use_bias=>0
            )
        );
        $self->features->add(nn->BatchNorm());
        $self->features->add(nn->Activation('relu'));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, padding=>1));
        # Add dense blocks
        my $num_features = $self->num_init_features;
        for(enumerate($self->block_config))
        {
            my ($i, $num_layers) = @$_;
            $self->features->add(_make_dense_block($num_layers, $self->bn_size, $self->growth_rate, $self->dropout, $i+1));
            $num_features += $num_layers * $self->growth_rate;
            if($i != @{ $self->block_config } - 1)
            {
                $self->features->add(_make_transition(int($num_features/2)));
                $num_features = int($num_features/2);
            }
        }
        $self->features->add(nn->BatchNorm());
        $self->features->add(nn->Activation('relu'));
        $self->features->add(nn->AvgPool2D(pool_size=>7));
        $self->features->add(nn->Flatten());

        $self->output(nn->Dense($self->classes));
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

my %densenet_spec = (
    121 => [64, 32, [6, 12, 24, 16]],
    161 => [96, 48, [6, 12, 36, 24]],
    169 => [64, 32, [6, 12, 32, 32]],

lib/AI/MXNet/Gluon/ModelZoo/Vision/DenseNet.pm  view on Meta::CPAN

=cut

method get_densenet(
    Int $num_layers, Bool :$pretrained=0, :$ctx=AI::MXNet::Context->cpu(),
    :$root='~/.mxnet/models',
    Int :$bn_size=4,
    Num :$dropout=0,
    Int :$classes=1000
)
{
    my ($num_init_features, $growth_rate, $block_config) = @{ $densenet_spec{$num_layers} };
    my $net = AI::MXNet::Gluon::ModelZoo::Vision::DenseNet->new(
        $num_init_features, $growth_rate, $block_config,
        $bn_size, $dropout, $classes
    );
    if($pretrained)
    {
        $net->load_parameters(
            AI::MXNet::Gluon::ModelZoo::ModelStore->get_model_file(
                "densenet$num_layers",
                root=>$root
            ),
            ctx=>$ctx

lib/AI/MXNet/Gluon/ModelZoo/Vision/Inception.pm  view on Meta::CPAN

            if(defined $value)
            {
                $kwargs{ $setting_names[$i] } = $value;
            }
        }
        $out->add(_make_basic_conv(%kwargs));
    }
    return $out;
}

func _make_A($pool_features, $prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [64, 1, undef, undef]));
        $out->add(_make_branch(
            '',
            [48, 1, undef, undef],
            [64, 5, undef, 2]
        ));
        $out->add(_make_branch(
            '',
            [64, 1, undef, undef],
            [96, 3, undef, 1],
            [96, 3, undef, 1]
        ));
        $out->add(_make_branch('avg', [$pool_features, 1, undef, undef]));
    });
    return $out;
}

func _make_B($prefix)
{
    my $out = nn->HybridConcurrent(axis=>1, prefix=>$prefix);
    $out->name_scope(sub {
        $out->add(_make_branch('', [384, 3, 2, undef]));
        $out->add(_make_branch(

lib/AI/MXNet/Gluon/ModelZoo/Vision/Inception.pm  view on Meta::CPAN

        Number of classification classes.
=cut

has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments(){ ['classes'] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(_make_basic_conv(channels=>32, kernel_size=>3, strides=>2));
        $self->features->add(_make_basic_conv(channels=>32, kernel_size=>3));
        $self->features->add(_make_basic_conv(channels=>64, kernel_size=>3, padding=>1));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
        $self->features->add(_make_basic_conv(channels=>80, kernel_size=>1));
        $self->features->add(_make_basic_conv(channels=>192, kernel_size=>3));
        $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2));
        $self->features->add(_make_A(32, 'A1_'));
        $self->features->add(_make_A(64, 'A2_'));
        $self->features->add(_make_A(64, 'A3_'));
        $self->features->add(_make_B('B_'));
        $self->features->add(_make_C(128, 'C1_'));
        $self->features->add(_make_C(160, 'C2_'));
        $self->features->add(_make_C(160, 'C3_'));
        $self->features->add(_make_C(192, 'C4_'));
        $self->features->add(_make_D('D_'));
        $self->features->add(_make_E('E1_'));
        $self->features->add(_make_E('E2_'));
        $self->features->add(nn->AvgPool2D(pool_size=>8));
        $self->features->add(nn->Dropout(0.5));

        $self->output(nn->Dense($self->classes));
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

=head2 inception_v3

    Inception v3 model from
    "Rethinking the Inception Architecture for Computer Vision"

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

{
    _add_conv($out, channels=>$dw_channels, kernel=>3, stride=>$stride,
              pad=>1, num_group=>$dw_channels, relu6=>$relu6);
    _add_conv($out, channels=>$channels, relu6=>$relu6);
}

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->name_scope(sub {
            _add_conv($self->features, channels=>int(32 * $self->multiplier), kernel=>3, pad=>1, stride=>2);
            my $dw_channels = [map { int($_ * $self->multiplier) } (32, 64, (128)x2, (256)x2, (512)x6, 1024)];
            my $channels = [map { int($_ * $self->multiplier) } (64, (128)x2, (256)x2, (512)x6, (1024)x2)];
            my $strides = [(1, 2)x3, (1)x5, 2, 1];
            for(zip($dw_channels, $channels, $strides))
            {
                my ($dwc, $c, $s) = @$_;
                _add_conv_dw($self->features, dw_channels=>$dwc, channels=>$c, stride=>$s);
            }
            $self->features->add(nn->GlobalAvgPool2D());
            $self->features->add(nn->Flatten());
        });
        $self->output(nn->Dense($self->classes));
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision::MobileNetV2;
use AI::MXNet::Gluon::Mouse;
use AI::MXNet::Base;
extends 'AI::MXNet::Gluon::HybridBlock';
has 'multiplier' => (is => 'ro', isa => 'Num', default => 1);
has 'classes'    => (is => 'ro', isa => 'Int', default => 1000);

lib/AI/MXNet/Gluon/ModelZoo/Vision/MobileNet.pm  view on Meta::CPAN

    if($active)
    {
        $out->add($relu6 ? AI::MXNet::Gluon::ModelZoo::Vision::MobileNet::RELU6->new : nn->Activation('relu'));
    }
}

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>'features_'));
        $self->features->name_scope(sub {
            _add_conv(
                $self->features, int(32 * $self->multiplier), kernel=>3,
                stride=>2, pad=>1, relu6=>1
            );

            my $in_channels_group = [map { int($_ * $self->multiplier) } (32, 16, (24)x2, (32)x3, (64)x4, (96)x3, (160)x3)];
            my $channels_group = [map { int($_ * $self->multiplier) } (16, (24)x2, (32)x3, (64)x4, (96)x3, (160)x3, 320)];
            my $ts = [1, (6)x16];
            my $strides = [(1, 2)x2, 1, 1, 2, (1)x6, 2, (1)x3];

            for(zip($in_channels_group, $channels_group, $ts, $strides))
            {
                my ($in_c, $c, $t, $s) = @$_;
                $self->features->add(
                    AI::MXNet::Gluon::ModelZoo::Vision::MobileNet::LinearBottleneck->new(
                        in_channels=>$in_c, channels=>$c,
                        t=>$t, stride=>$s
                    )
                );
            }

            my $last_channels = $self->multiplier > 1 ? int(1280 * $self->multiplier) : 1280;
            _add_conv($self->features, $last_channels, relu6=>1);
            $self->features->add(nn->GlobalAvgPool2D());
        });

        $self->output(nn->HybridSequential(prefix=>'output_'));
        $self->output->name_scope(sub {
            $self->output->add(
                nn->Conv2D($self->classes, 1, use_bias=>0, prefix=>'pred_'),
                nn->Flatten()
            );
        });
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

=head2 get_mobilenet

    MobileNet model from the
    "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == (@{ $self->channels } - 1));
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        if($self->thumbnail)
        {
            $self->features->add(_conv3x3($self->channels->[0], 1, 0));
        }
        else
        {
            $self->features->add(nn->Conv2D($self->channels->[0], 7, 2, 3, use_bias=>0));
            $self->features->add(nn->BatchNorm());
            $self->features->add(nn->Activation('relu'));
            $self->features->add(nn->MaxPool2D(3, 2, 1));
        }
        for(enumerate($self->layers))
        {
            my ($i, $num_layer) = @$_;
            my $stride = $i == 0 ? 1 : 2;
            $self->features->add(
                $self->_make_layer(
                    $self->block, $num_layer, $self->channels->[$i+1],
                    $stride, $i+1, in_channels=>$self->channels->[$i]
                )
            );
        }
        $self->features->add(nn->GlobalAvgPool2D());
        $self->output(nn->Dense($self->classes, in_units=>$self->channels->[-1]));
    });
}

method _make_layer($block, $layers, $channels, $stride, $stage_index, :$in_channels=0)
{
    my $layer = nn->HybridSequential(prefix=>"stage${stage_index}_");
    $layer->name_scope(sub {
        $layer->add(
            $block->new(

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

        for(1..$layers-1)
        {
            $layer->add($block->new($channels, 1, 0, in_channels=>$channels, prefix=>''));
        }
    });
    return $layer;
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}


package AI::MXNet::Gluon::ModelZoo::Vision::ResNet::V2;
use AI::MXNet::Gluon::Mouse;
extends 'AI::MXNet::Gluon::HybridBlock';
use AI::MXNet::Base;

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

        $channels, kernel_size=>3, strides=>$stride, padding=>1,
        use_bias=>0, in_channels=>$in_channels
    );
}

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == (@{ $self->channels } - 1));
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        $self->features->add(nn->BatchNorm(scale=>0, center=>0));
        if($self->thumbnail)
        {
            $self->features->add(_conv3x3($self->channels->[0], 1, 0));
        }
        else
        {
            $self->features->add(nn->Conv2D($self->channels->[0], 7, 2, 3, use_bias=>0));
            $self->features->add(nn->BatchNorm());
            $self->features->add(nn->Activation('relu'));
            $self->features->add(nn->MaxPool2D(3, 2, 1));
        }
        my $in_channels = $self->channels->[0];
        for(enumerate($self->layers))
        {
            my ($i, $num_layer) = @$_;
            my $stride = $i == 0 ? 1 : 2;
            $self->features->add(
                $self->_make_layer(
                    $self->block, $num_layer, $self->channels->[$i+1],
                    $stride, $i+1, in_channels=>$in_channels
                )
            );
            $in_channels = $self->channels->[$i+1];
        }
        $self->features->add(nn->BatchNorm());
        $self->features->add(nn->Activation('relu'));
        $self->features->add(nn->GlobalAvgPool2D());
        $self->features->add(nn->Flatten());
        $self->output(nn->Dense($self->classes, in_units=>$in_channels));
    });
}

method _make_layer($block, $layers, $channels, $stride, $stage_index, :$in_channels=0)
{
    my $layer = nn->HybridSequential(prefix=>"stage${stage_index}_");
    $layer->name_scope(sub {
        $layer->add(
            $block->new(

lib/AI/MXNet/Gluon/ModelZoo/Vision/ResNet.pm  view on Meta::CPAN

        for(1..$layers-1)
        {
            $layer->add($block->new($channels, 1, 0, in_channels=>$channels, prefix=>''));
        }
    });
    return $layer;
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

# Specification
my %resnet_spec = (
    18  => ['basic_block', [2, 2, 2, 2], [64, 64, 128, 256, 512]],
    34  => ['basic_block', [3, 4, 6, 3], [64, 64, 128, 256, 512]],

lib/AI/MXNet/Gluon/ModelZoo/Vision/SqueezeNet.pm  view on Meta::CPAN

=cut

has 'version' => (is => 'ro', isa => enum([qw[1.0 1.1]]), required => 1);
has 'classes' => (is => 'ro', isa => 'Int', default => 1000);
method python_constructor_arguments() { [qw/version classes/] }

sub BUILD
{
    my $self = shift;
    $self->name_scope(sub {
        $self->features(nn->HybridSequential(prefix=>''));
        if($self->version eq '1.0')
        {
            $self->features->add(nn->Conv2D(96, kernel_size=>7, strides=>2));
            $self->features->add(nn->Activation('relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(_make_fire(32, 128, 128));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(32, 128, 128));
            $self->features->add(_make_fire(48, 192, 192));
            $self->features->add(_make_fire(48, 192, 192));
            $self->features->add(_make_fire(64, 256, 256));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(64, 256, 256));
        }
        else
        {
            $self->features->add(nn->Conv2D(64, kernel_size=>3, strides=>2));
            $self->features->add(nn->Activation('relu'));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(_make_fire(16, 64, 64));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(32, 128, 128));
            $self->features->add(_make_fire(32, 128, 128));
            $self->features->add(nn->MaxPool2D(pool_size=>3, strides=>2, ceil_mode=>1));
            $self->features->add(_make_fire(48, 192, 192));
            $self->features->add(_make_fire(48, 192, 192));
            $self->features->add(_make_fire(64, 256, 256));
            $self->features->add(_make_fire(64, 256, 256));
        }
        $self->features->add(nn->Dropout(0.5));

        $self->output(nn->HybridSequential(prefix=>''));
        $self->output->add(nn->Conv2D($self->classes, kernel_size=>1));
        $self->output->add(nn->Activation('relu'));
        $self->output->add(nn->AvgPool2D(13));
        $self->output->add(nn->Flatten());
    });
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}


package AI::MXNet::Gluon::ModelZoo::Vision;

=head2 get_squeezenet

    SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

lib/AI/MXNet/Gluon/ModelZoo/Vision/VGG.pm  view on Meta::CPAN

=cut

=head1 DESCRIPTION

    VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition"
    <https://arxiv.org/abs/1409.1556> paper.

    Parameters
    ----------
    layers : array ref of Int
        Numbers of layers in each feature block.
    filters : array ref of Int
        Numbers of filters in each feature block. List length should match the layers.
    classes : Int, default 1000
        Number of classification classes.
    batch_norm : Bool, default 0
        Use batch normalization.
=cut
method python_constructor_arguments() { [qw/layers filters classes batch_norm/] }
has ['layers',
     'filters']   => (is => 'ro', isa => 'ArrayRef[Int]', required => 1);
has  'classes'    => (is => 'ro', isa => 'Int', default => 1000);
has  'batch_norm' => (is => 'ro', isa => 'Bool', default => 0);

sub BUILD
{
    my $self = shift;
    assert(@{ $self->layers } == @{ $self->filters });
    $self->name_scope(sub {
        $self->features($self->_make_features());
        $self->features->add(nn->Dense(4096, activation=>'relu',
                                       weight_initializer=>'normal',
                                       bias_initializer=>'zeros'));
        $self->features->add(nn->Dropout(rate=>0.5));
        $self->features->add(nn->Dense(4096, activation=>'relu',
                                       weight_initializer=>'normal',
                                       bias_initializer=>'zeros'));
        $self->features->add(nn->Dropout(rate=>0.5));
        $self->output(nn->Dense($self->classes,
                                   weight_initializer=>'normal',
                                   bias_initializer=>'zeros'));
    });
}

method _make_features()
{
    my $featurizer = nn->HybridSequential(prefix=>'');
    for(enumerate($self->layers))
    {
        my ($i, $num) = @$_;
        for(0..$num-1)
        {
            $featurizer->add(
                nn->Conv2D(
                    $self->filters->[$i], kernel_size => 3, padding => 1,

lib/AI/MXNet/Gluon/ModelZoo/Vision/VGG.pm  view on Meta::CPAN

            }
            $featurizer->add(nn->Activation('relu'));
        }
        $featurizer->add(nn->MaxPool2D(strides=>2));
    }
    return $featurizer;
}

method hybrid_forward(GluonClass $F, GluonInput $x)
{
    $x = $self->features->($x);
    $x = $self->output->($x);
    return $x;
}

package AI::MXNet::Gluon::ModelZoo::Vision;

# Specification
my %vgg_spec = (
    11 => [[1, 1, 2, 2, 2], [64, 128, 256, 512, 512]],
    13 => [[2, 2, 2, 2, 2], [64, 128, 256, 512, 512]],



( run in 0.266 second using v1.01-cache-2.11-cpan-4d50c553e7e )