AI-DecisionTree

 view release on metacpan or  search on metacpan

lib/AI/DecisionTree.pm  view on Meta::CPAN

}

sub prune_tree {
  my $self = shift;

  # We use a minimum-description-length approach.  We calculate the
  # score of each node:
  #  n = number of nodes below
  #  r = number of results (categories) in the entire tree
  #  i = number of instances in the entire tree
  #  e = number of errors below this node

  # Hypothesis description length (MML):
  #  describe tree: number of nodes + number of edges
  #  describe exceptions: num_exceptions * log2(total_num_instances) * log2(total_num_results)
  
  my $r = keys %{ $self->{results} };
  my $i = $self->{tree}{instances};
  my $exception_cost = log($r) * log($i) / log(2)**2;

  # Pruning can turn a branch into a leaf



( run in 0.329 second using v1.01-cache-2.11-cpan-65fba6d93b7 )