AI-ActivationFunctions
view release on metacpan or search on metacpan
examples/neural_network.pl view on Meta::CPAN
# Simple forward pass
print "Forward pass through network:\n";
foreach my $example (@training_data) {
my $input = $example->{input};
my $target = $example->{output}[0];
# Forward pass
my $hidden = neural_layer($input, \@weights, \@biases, \&sigmoid);
my $prediction = $hidden->[0];
# Calculate error
my $error = $target - $prediction;
printf("Input: [%d, %d] -> Prediction: %.4f (Target: %d, Error: %.4f)\n",
$input->[0], $input->[1], $prediction, $target, $error);
}
# Backpropagation example
print "\nBackpropagation step (simplified):\n";
my $example = $training_data[1]; # [0
test_minimal.pl view on Meta::CPAN
print " â Módulo carregado\n";
# Testa uma função
my $test = AI::ActivationFunctions::relu(10);
print " â relu(10) = $test\n";
1;
} or do {
print " â Erro: $@\n";
# Mostra o arquivo se houver erro
if (-f 'lib/AI/ActivationFunctions.pm') {
print "\nConteúdo do arquivo (primeiras 20 linhas):\n";
open my $fh, '<', 'lib/AI/ActivationFunctions.pm' or die $!;
my $linenum = 0;
while (<$fh>) {
$linenum++;
print "$linenum: $_";
last if $linenum >= 20;
}
close $fh;
( run in 0.316 second using v1.01-cache-2.11-cpan-0ffa90cfd1c )