AI-MXNet-Gluon-Contrib
view release on metacpan or search on metacpan
lib/AI/MXNet/Gluon/Contrib/NN/BasicLayers.pm view on Meta::CPAN
$net = nn->Concurrent();
# use net's name_scope to give children blocks appropriate names.
$net->name_scope(sub {
$net->add(nn->Dense(10, activation=>'relu'));
$net->add(nn->Dense(20));
$net->add(nn->Identity());
});
Parameters
----------
axis : int, default -1
The axis on which to concatenate the outputs.
=cut
has 'axis' => (is => 'rw', isa => 'Int', default => -1);
method python_constructor_arguments() { ['axis'] }
method forward(GluonInput $x)
{
return AI::MXNet::NDArray->concat((map { $_->($x) } $self->_children->values), dim=>$self->axis);
}
__PACKAGE__->register('AI::MXNet::Gluon::NN');
package AI::MXNet::Gluon::NN::HybridConcurrent;
lib/AI/MXNet/Gluon/Contrib/NN/BasicLayers.pm view on Meta::CPAN
$net = nn->HybridConcurrent();
# use net's name_scope to give children blocks appropriate names.
$net->name_scope(sub {
$net->add(nn->Dense(10, activation=>'relu'));
$net->add(nn->Dense(20));
$net->add(nn->Identity());
});
Parameters
----------
axis : int, default -1
The axis on which to concatenate the outputs.
=cut
has 'axis' => (is => 'rw', isa => 'Int', default => -1);
method python_constructor_arguments() { ['axis'] }
method hybrid_forward(GluonClass $F, GluonInput $x)
{
return $F->concat((map { $_->($x) } $self->_children->values), dim=>$self->axis);
}
__PACKAGE__->register('AI::MXNet::Gluon::NN');
package AI::MXNet::Gluon::NN::Identity;
lib/AI/MXNet/Gluon/Contrib/NN/BasicLayers.pm view on Meta::CPAN
This SparseBlock is designed for distributed training with extremely large
input dimension. Both weight and gradient w.r.t. weight are AI::MXNet::NDArray::RowSparse.
Parameters
----------
input_dim : int
Size of the vocabulary, i.e. maximum integer index + 1.
output_dim : int
Dimension of the dense embedding.
dtype : Dtype, default 'float32'
Data type of output embeddings.
weight_initializer : Initializer
Initializer for the embeddings matrix.
=cut
has 'input_dim' => (is => 'ro', isa => 'Int', required => 1);
has 'output_dim' => (is => 'ro', isa => 'Int', required => 1);
has 'dtype' => (is => 'ro', isa => 'Dtype', default => 'float32');
has 'weight_initializer' => (is => 'ro', isa => 'Maybe[Initializer]');
method python_constructor_arguments() { [qw/input_dim output_dim dtype weight_initializer/] }
sub BUILD
{
my $self = shift;
$self->_kwargs({
input_dim => $self->input_dim,
output_dim => $self->output_dim,
dtype => $self->dtype,
( run in 0.406 second using v1.01-cache-2.11-cpan-0a6323c29d9 )