Algorithm-Bertsekas
view release on metacpan or search on metacpan
indexes ( 5, 6 ), matrix value = 99 ; sum of values = 694
indexes ( 6, 2 ), matrix value = 99 ; sum of values = 793
indexes ( 2, 1 ), matrix value = 100 ; sum of values = 893
OPTIONS
matrix_ref => \@input_matrix, reference to array: matrix N x M.
maximize_total_benefit => 0, 0: minimize the total benefit ; 1: maximize the total benefit.
inicial_stepsize => 1, auction algorithm terminates with a feasible assignment if the problem data are integer and stepsize < 1/min(N,M).
inicial_price => 0,
verbose => 3, print messages on the screen, level of verbosity, 0: quiet; 1, 2, 3, 4, 5, 8, 9, 10: debug information.
EXPORT
"auction" function by default.
INPUT
The input matrix should be in a two dimensional array (array of array)
and the 'auction' subroutine expects a reference to this array.
lib/Algorithm/Bertsekas.pm view on Meta::CPAN
my ( $need_transpose, $inicial_price, $iter_count_global, $iter_count_local );
my ( $epsilon_scaling, $max_epsilon_scaling, $max_matrix_value, $target, $output );
my ( %index_correlation, %assignned_object, %assignned_person, %price_object );
my ( %objects_desired_by_this, %locked_list, %seen_person, %seen_assignned_objects );
sub auction { # => default values
my %args = ( matrix_ref => undef, # reference to array: matrix N x M
maximize_total_benefit => 0, # 0: minimize_total_benefit ; 1: maximize_total_benefit
inicial_stepsize => undef, # auction algorithm terminates with a feasible assignment if the problem data are integer and stepsize < 1/min(N,M)
inicial_price => 0,
verbose => 3, # level of verbosity, 0: quiet; 1, 2, 3, 4, 5, 8, 9, 10: debug information.
@_, # argument pair list goes here
);
$max_matrix_value = 0;
$iter_count_global = 0;
$epsilon_scaling = 0;
$need_transpose = 0;
%index_correlation = ();
%assignned_object = ();
%assignned_person = ();
lib/Algorithm/Bertsekas.pm view on Meta::CPAN
indexes ( 5, 6 ), matrix value = 99 ; sum of values = 694
indexes ( 6, 2 ), matrix value = 99 ; sum of values = 793
indexes ( 2, 1 ), matrix value = 100 ; sum of values = 893
=head1 OPTIONS
matrix_ref => \@input_matrix, reference to array: matrix N x M.
maximize_total_benefit => 0, 0: minimize the total benefit ; 1: maximize the total benefit.
inicial_stepsize => 1, auction algorithm terminates with a feasible assignment if the problem data are integer and stepsize < 1/min(N,M).
inicial_price => 0,
verbose => 3, print messages on the screen, level of verbosity, 0: quiet; 1, 2, 3, 4, 5, 8, 9, 10: debug information.
=head1 EXPORT
"auction" function by default.
=head1 INPUT
The input matrix should be in a two dimensional array (array of array)
and the 'auction' subroutine expects a reference to this array.
( run in 1.182 second using v1.01-cache-2.11-cpan-49f99fa48dc )