AI-NeuralNet-Simple
view release on metacpan or search on metacpan
1234567891011121314Changes
examples/game_ai.pl
examples/logical_or.pl
Makefile.PL
MANIFEST
META.yml Module meta-data (added by MakeMaker)
README
Simple.xs
lib/AI/NeuralNet/Simple.pm
t/10nn_simple.t
t/20nn_multi.t
t/30nn_storable.t
t/pod-coverage.t
t/pod.t
413414415416417418419420421422423424425426427428429430431432433
av_store(av, i, build_rv(av2));
}
return
build_rv(av);
}
#define EXPORT_VERSION 1
#define EXPORTED_ITEMS 9
/*
* Exports the C data structures to the Perl world
for
serialization
* by Storable. We don't want to duplicate the logic of Storable here
* even though we have to
do
some low-level Perl object construction.
*
* The structure we
return
is an array reference, which contains the
* following items:
*
* 0 the export version number, in case
format
changes later
* 1 the amount of neurons in the input layer
* 2 the amount of neurons in the hidden layer
* 3 the amount of neurons in the output layer
504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
croak(
"row %d of serialized item %d is not an array ref"
, i, idx);
subav = get_array(rv);
for
(j = 0; j < columns; j++)
row[j] = get_float_element(subav, j);
}
}
/*
* Create new network from a retrieved data structure, such as the one
* produced by c_export_network().
*/
int
c_import_network(SV
*rv
)
{
NEURAL_NETWORK
*n
;
int
handle;
SV *
*sav
;
AV
*av
;
int
i = 0;
/*
* Unfortunately, since those data come from the outside, we need
* to validate most of the structural information to make sure
* we're not fed garbage or something we cannot process, like a
* newer version of the serialized data. This makes the code heavy.
* --RAM
*/
if
(!is_array_ref(rv))
croak(
"c_import_network() not given an array reference"
);
av = get_array(rv);
/* Check version number */
sav = av_fetch(av, i++, 0);
803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848double
*input
,
*output
; /* C arrays */
double max_error = 0.0;
int
set_length=0;
int
i,j;
int
index
;
set_length = av_len(get_array(set))+1;
if
(!set_length)
croak(
"_train_set() array ref has no data"
);
if
(set_length % 2)
croak(
"_train_set array ref must have an even number of elements"
);
/* allocate memory
for
out input and output arrays */
input_array = get_array_from_aoa(set, 0);
input = malloc(sizeof(double) * set_length * (av_len(input_array)+1));
output_array = get_array_from_aoa(set, 1);
output = malloc(sizeof(double) * set_length * (av_len(output_array)+1));
for
(i=0; i < set_length; i += 2) {
input_array = get_array_from_aoa(set, i);
if
(av_len(input_array)+1 != n->size.input)
croak(
"Length of input data does not match"
);
/* iterate over the input_array and assign the floats to input */
for
(j = 0; j < n->size.input; j++) {
index
= (i/2
*n
->size.input)+j;
input[
index
] = get_float_element(input_array, j);
}
output_array = get_array_from_aoa(set, i+1);
if
(av_len(output_array)+1 != n->size.output)
croak(
"Length of output data does not match"
);
for
(j = 0; j < n->size.output; j++) {
index
= (i/2
*n
->size.output)+j;
output[
index
] = get_float_element(output_array, j);
}
}
for
(i = 0; i < iterations; i++) {
max_error = 0.0;
868869870871872873874875876877878879880881882883884885886887888
return
max_error;
}
SV* c_infer(
int
handle, SV
*array_ref
)
{
NEURAL_NETWORK
*n
= c_get_network(handle);
int
i;
AV
*perl_array
,
*result
= newAV();
/* feed the data */
perl_array = get_array(array_ref);
for
(i = 0; i < n->size.input; i++)
n->tmp[i] = get_float_element(perl_array, i);
c_feed(n, n->tmp, NULL, 0);
/*
read
the results */
for
(i = 0; i < n->size.output; i++) {
av_push(result, newSVnv(n->neuron.output[i]));
examples/game_ai.pl view on Meta::CPAN
93949596979899100101102103104105106107108109110111112113114
$message
;
chomp
(
$response
= <STDIN>);
exit
if
substr
(
lc
$response
, 0, 1) eq
'q'
;
$valid_response
=
$response
=~ /
$domain
/;
}
until
$valid_response
;
return
$response
;
}
sub
display_result
{
my
(
$net
,
@data
) =
@_
;
my
$result
=
$net
->winner(\
@data
);
my
@health
=
qw/Poor Average Good/
;
my
@knife
=
qw/No Yes/
;
my
@gun
=
qw/No Yes/
;
printf
$format
,
$health
[
$_
[1]],
$knife
[
$_
[2]],
$gun
[
$_
[3]],
$_
[4],
# number of enemies
$actions
[
$result
];
}
lib/AI/NeuralNet/Simple.pm view on Meta::CPAN
7475767778798081828384858687888990919293949596979899100101102}
sub
use_bipolar {
my
(
$self
,
$bipolar
) =
@_
;
return
c_get_use_bipolar(
$self
->handle )
unless
defined
$bipolar
;
c_set_use_bipolar(
$self
->handle,
$bipolar
);
return
$self
;
}
sub
infer {
my
(
$self
,
$data
) =
@_
;
c_infer(
$self
->handle,
$data
);
}
sub
winner {
# returns index of largest value in inferred answer
my
(
$self
,
$data
) =
@_
;
my
$arrayref
= c_infer(
$self
->handle,
$data
);
my
$largest
= 0;
for
( 0 ..
$#$arrayref
) {
$largest
=
$_
if
$arrayref
->[
$_
] >
$arrayref
->[
$largest
];
}
return
$largest
;
}
sub
learn_rate {
my
(
$self
,
$rate
) =
@_
;
lib/AI/NeuralNet/Simple.pm view on Meta::CPAN
309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341=item 1 Designing
This is choosing the number of layers and the number of neurons per layer. In
C<AI::NeuralNet::Simple>, the number of layers is fixed.
With more complete neural net packages, you can also pick which activation
functions you wish to use and the "learn rate" of the neurons.
=item 2 Training
This involves feeding the neural network enough data until the error rate is
low enough to be acceptable. Often we have a large data set and merely keep
iterating until the desired error rate is achieved.
=item 3 Measuring results
One frequent mistake made with neural networks is failing to test the network
with different data from the training data. It's quite possible for a
backpropagation network to hit what is known as a "local minimum" which is not
truly where it should be. This will cause false results. To check for this,
after training we often feed in other known good data for verification. If the
results are not satisfactory, perhaps a different number of neurons per layer
should be tried or a different set of training data should be supplied.
=back
=head1 Programming C<AI::NeuralNet::Simple>
=head2 C<new($input, $hidden, $output)>
C<new()> accepts three integers. These number represent the number of nodes in
the input, hidden, and output layers, respectively. To create the "logical or"
network described earlier:
lib/AI/NeuralNet/Simple.pm view on Meta::CPAN
368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416=head2 C<use_bipolar($boolean)>
Returns whether the network currently uses a bipolar activation function.
If an argument is supplied, instruct the network to use a bipolar activation
function or not.
You should not change the activation function during the traning.
=head2 C<train(\@input, \@output)>
This method trains the network to associate the input data set with the output
data set. Representing the "logical or" is as follows:
$net->train([1,1] => [0,1]);
$net->train([1,0] => [0,1]);
$net->train([0,1] => [0,1]);
$net->train([0,0] => [1,0]);
Note that a one pass through the data is seldom sufficient to train a network.
In the example "logical or" program, we actually run this data through the
network ten thousand times.
for (1 .. 10000) {
$net->train([1,1] => [0,1]);
$net->train([1,0] => [0,1]);
$net->train([0,1] => [0,1]);
$net->train([0,0] => [1,0]);
}
The routine returns the Mean Squared Error (MSE) representing how far the
network answered.
It is far preferable to use C<train_set()> as this lets you control the MSE
over the training set and it is more efficient because there are less memory
copies back and forth.
=head2 C<train_set(\@dataset, [$iterations, $mse])>
Similar to train, this method allows us to train an entire data set at once.
It is typically faster than calling individual "train" methods. The first
argument is expected to be an array ref of pairs of input and output array
refs.
The second argument is the number of iterations to train the set. If
this argument is not provided here, you may use the C<iterations()> method to
set it (prior to calling C<train_set()>, of course). A default of 10,000 will
be provided if not set.
The third argument is the targeted Mean Square Error (MSE). When provided,
lib/AI/NeuralNet/Simple.pm view on Meta::CPAN
430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470seen over the whole training set (and not an average MSE).
=head2 C<iterations([$integer])>
If called with a positive integer argument, this method will allow you to set
number of iterations that train_set will use and will return the network
object. If called without an argument, it will return the number of iterations
it was set to.
$net->iterations; # returns 100000
my @training_data = (
[1,1] => [0,1],
[1,0] => [0,1],
[0,1] => [0,1],
[0,0] => [1,0],
);
$net->iterations(100000) # let's have lots more iterations!
->train_set(\@training_data);
=head2 C<learn_rate($rate)>)
This method, if called without an argument, will return the current learning
rate. .20 is the default learning rate.
If called with an argument, this argument must be greater than zero and less
than one. This will set the learning rate and return the object.
$net->learn_rate; #returns the learning rate
$net->learn_rate(.1)
->iterations(100000)
->train_set(\@training_data);
If you choose a lower learning rate, you will train the network slower, but you
may get a better accuracy. A higher learning rate will train the network
faster, but it can have a tendancy to "overshoot" the answer when learning and
not learn as accurately.
=head2 C<infer(\@input)>
This method, if provided with an input array reference, will return an array
reference corresponding to the output values that it is guessing. Note that
t/10nn_simple.t view on Meta::CPAN
293031323334353637383940414243444546474849
'... and setting it outside of legal boundaries should die'
;
is(
sprintf
(
"%.1f"
,
$net
->learn_rate),
"0.2"
,
'... and it should have the correct learn rate'
);
isa_ok(
$net
->learn_rate(.3),
$CLASS
=>
'... and setting it should return the object'
);
is(
sprintf
(
"%.1f"
,
$net
->learn_rate),
"0.3"
,
'... and should set it correctly'
);
$net
->learn_rate(.2);
can_ok(
$net
,
'train'
);
# teach the network logical 'or'
ok(
$net
->train([1,1], [0,1]),
'Calling train() with valid data should succeed'
);
for
(1 .. 10000) {
$net
->train([1,1],[0,1]);
$net
->train([1,0],[0,1]);
$net
->train([0,1],[0,1]);
$net
->train([0,0],[1,0]);
}
can_ok(
$net
,
'winner'
);
is(
$net
->winner([1,1]), 1,
'... and it should return the index of the highest valued result'
);
is(
$net
->winner([1,0]), 1,
'... and it should return the index of the highest valued result'
);
( run in 1.062 second using v1.01-cache-2.11-cpan-49f99fa48dc )