AI-NNFlex

 view release on metacpan or  search on metacpan

CHANGES  view on Meta::CPAN

implemented node & layer connect methods, to allow recurrent
connections.

put sigmoid_slope function in mathlib, courtesy of frodo72
@ perlmonks

Implemented functions to save & load snns .pat files in Dataset

Altered Dataset constructor to allow an empty param set - you
can now construct a null Dataset & add items to it using the
$dataset->add([[0,1],[1]) method (also implemented in this 
version.

Altered feedforward run method to return output pattern - more
intuitive that way.

Implemented a Hopfield module. This is very much the first cut
at this, since I've never really used hopfield nets before, and
haven't put any debug in etc, until I've rethought the whole
approach to debug in this set of code.

Implemented dataset->delete method.

Put the pod documentation back in Dataset.pm :-)


###############################################################
0.21
20050313

Rewrote all the pod. Its probably a bit sparse now, but its 
much more accurate.

CHANGES  view on Meta::CPAN

Fixed a bug that allowed activation to flow through a node 
even if it was inactive

Altered the syntax for output to be param=>value instead of
an anonymous hash

As per Scott Fahlmans comments about neural net benchmarking,
(Fahlman S.E., (1988) 'An empirical study of learning speed in back-propagation networks'. Tech. Rep. CMU-CS-88-162, Carnegie Mellon University, Pittsburgh, PA.) , I've started using a more realistic benchmark than xor.
The 'cars' subfolder in examples contains the learning code
for this, drawn from
 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/car/





#############################################################

0.16
20050218

CHANGES  view on Meta::CPAN


Fixed a bug that allowed training to proceed even if the activation
function (s) can't be loaded.

################################################################

0.12
20050116

Fixed a bug in reinforce.pm reported by G M Passos
Inserted a catch in feedforward->run to call datasets if the syntax

$network->run($dataset) is called.

Strictly speaking this doesn't fit with the design, but its likely to
be used quite a bit so its worth catching


###############################################################

0.11
20050115
Added PNG support to AI::NNFlex::draw

Added AI::NNFlex::Dataset
This creates a dataset object that can be run against a
network

Added AI::NNFlex::lesion
Damages a network with a probability of losing a node
or a connection. See the perldoc

Cleaned up the POD docs a bit, although theres a lot still
to do.

################################################################

README.txt  view on Meta::CPAN


$network->add_layer(	nodes=>2,
			activationfunction=>"tanh");

$network->add_layer(	nodes=>1,
			activationfunction=>"linear");


$network->init();

my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[0],
			[0,1],[1],
			[1,0],[1],
			[1,1],[0]]);



my $counter=0;
my $err = 10;
while ($err >.001)
{
	$err = $dataset->learn($network);
	print "Epoch = $counter error = $err\n";
	$counter++;
}


foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}



TODO  view on Meta::CPAN

Put in some more error checking, particularly trying to create connections
between layers/nodes that don't exist.

Write a simple net simulator with syntax loosely based on xerion. At
present this lot is API driven, it should be straightforward to write
a basic simulator that calls the API in the backend.

read & write methods for both networks and datasets modelled on snns format (for use with frontend script). data should be snns format, network definition file will probably have to differ

Implement an error method in addition to dbug, and clean up the dbug & error calls


examples/add.pl  view on Meta::CPAN

$network->add_layer(    nodes=>2,
            activationfunction=>"linear");

$network->add_layer(    nodes=>1,
            activationfunction=>"linear");


$network->init();

# Taken from Mesh ex_add.pl
my $dataset = AI::NNFlex::Dataset->new([
[ 1,   1   ], [ 2    ],
[ 1,   2   ], [ 3    ],
[ 2,   2   ], [ 4    ],
[ 20,  20  ], [ 40   ],
[ 10,  10  ], [ 20   ],
[ 15,  15  ], [ 30   ],
[ 12,  8   ], [ 20   ],

]);

my $err = 10;
# Stop after 4096 epochs -- don't want to wait more than that
for ( my $i = 0; ($err > 0.0001) && ($i < 4096); $i++ ) {
    $err = $dataset->learn($network);
    print "Epoch = $i error = $err\n";
}

foreach (@{$dataset->run($network)})
{
    foreach (@$_){print $_}
    print "\n";    
}

print "this should be 4000 - ";
$network->run([2000,2000]);
foreach ( @{$network->output}){print $_."\n";}

 foreach my $a ( 1..10 ) {

examples/bp.pl  view on Meta::CPAN

#==============================================================
#********** THIS IS THE MAIN PROGRAM **************************
#==============================================================

sub main
 {

 # initiate the weights
  initWeights();

 # load in the data
  initData();

 # train the network
    for(my $j = 0;$j <= $numEpochs;$j++)
    {

        for(my $i = 0;$i<$numPatterns;$i++)
        {

            #select a pattern at random

examples/bp.pl  view on Meta::CPAN

    }
  }

 }


#************************************
 sub initData()
 {

    print "initialising data\n";

    # the data here is the XOR data
    # it has been rescaled to the range
    # [-1][1]
    # an extra input valued 1 is also added
    # to act as the bias

    $trainInputs[0][0]  = 1;
    $trainInputs[0][1]  = -1;
    $trainInputs[0][2]  = 1;    #bias
    $trainOutput[0] = 1;

examples/cars/cars.pl  view on Meta::CPAN

#########################################################
# Benchmark using the car acceptability data from
# ftp://ftp.ics.uci.edu/pub/machine-learning-databases/car/
#
#########################################################

use strict;

#unacc, acc, good, vgood
#
#| attributes
#
#buying:   vhigh, high, med, low.
#maint:    vhigh, high, med, low.
#doors:    2, 3, 4, 5more.
#persons:  2, 4, more.
#lug_boot: small, med, big.
#safety:   low, med, high.
my @dataArray;

my %translate = (
	'accept'=>{'0 0'=>'unacc',
		'0 1'=>'acc',
		'1 0'=>'good',
		'1 1'=>'vgood',
		'unacc'=>'0 0',
		'acc'=>'0 1',
		'good'=>'1 0',
		'vgood'=>'1 1'},

examples/cars/cars.pl  view on Meta::CPAN

		'big'=>'1 1'},

	'safety'=>{'0 0'=>'low',
		'1 0'=>'med',
		'1 1'=>'high',
		'low'=>'0 0',
		'med'=>'1 0',
		'high'=>'1 1'});


open (CARS,"car_data.txt") or die "Can't open file";

while (<CARS>)
{
	chomp $_;

	if ($_ !~ /\w+/){next} # skip blank lines

	my ($buying,$maint,$doors,$persons,$lug_boot,$safety,$accept) = split /,/,$_;

	my $inputString = $translate{'buying'}->{$buying}. " "

examples/cars/cars.pl  view on Meta::CPAN

	my $outputString = $translate{'accept'}->{$accept};


	my @inputArray = split / /,$inputString;
	my @outputArray = split / /,$outputString;
if (scalar @inputArray != 12 || scalar @outputArray != 2)
{
	print "--$inputString $outputString\n";
}

	push @dataArray,\@inputArray,\@outputArray;
	
}

close CARS;


######################################################################
# data now constructed, we can do the NN thing
######################################################################

use AI::NNFlex::Backprop;
use AI::NNFlex::Dataset;

my $dataset = AI::NNFlex::Dataset->new(\@dataArray);


my $network = AI::NNFlex::Backprop->new( learningrate=>.1,
				fahlmanconstant=>0.1,
				bias=>1,
				momentum=>0.6);



$network->add_layer(	nodes=>12,

examples/cars/cars.pl  view on Meta::CPAN



$network->init();

$network->connect(fromlayer=>2,tolayer=>2);

my $counter=0;
my $err = 10;
while ($err >.001)
{
	$err = $dataset->learn($network);

	print "Epoch $counter: Error = $err\n";
	$counter++;
}


foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}



examples/hopfield.pl  view on Meta::CPAN

use AI::NNFlex::Hopfield;
use AI::NNFlex::Dataset;

my $network = AI::NNFlex::Hopfield->new();

$network->add_layer(nodes=>2);
$network->add_layer(nodes=>2);

$network->init();

my $dataset = AI::NNFlex::Dataset->new();

$dataset->add([-1, 1, -1, 1]);
$dataset->add([-1, -1, 1, 1]);

$network->learn($dataset);

#my $outputref = $network->run([-1,1,-1,1]);
#my $outputref = $network->run([-1,1,-1,1]);
#my $outputref = $network->run([-1,1,-1,1]);
my $outputref = $network->run([1,-1,1,1]);
my $outputref = $network->run([1,-1,1,1]);
my $outputref = $network->run([1,-1,1,1]);

print @$outputref;

examples/lesion.pl  view on Meta::CPAN

			persistentactivation=>0,
			decay=>0.0,
			randomactivation=>0,
			threshold=>0.0,
			activationfunction=>"linear",
			randomweights=>1);


$network->init();

my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[0],
			[0,1],[1],
			[1,0],[1],
			[1,1],[0]]);



my $counter=0;
my $err = 10;
while ($err >.001)
{
	$err = $dataset->learn($network);

	print "Epoch $counter: Error = $err\n";
	$counter++;
}

$network->lesion(nodes=>0.5,connections=>0.5);

$network->dump_state(filename=>"weights-learned.wts",activations=>1);

foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}


examples/test.pl  view on Meta::CPAN



# create the numbers
my %numbers;
for (0..255)
{	
	my @array = split //,sprintf("%08b",$_);
	$numbers{$_} = \@array;
}

my @data;
for (my $counter=0;$counter < 14;$counter+=2)
{
	push @data,$numbers{$counter};

	push @data,$numbers{$counter*$counter};

}


# Create the network 

my $network = AI::NNFlex::Backprop->new(
				learningrate=>.05,
				bias=>1,
				fahlmanconstant=>0.1,

examples/test.pl  view on Meta::CPAN

$network->add_layer(	nodes=>8,
			errorfunction=>'atanh',
			activationfunction=>"tanh");

$network->add_layer(	nodes=>8,
			activationfunction=>"linear");


$network->init();

my $dataset = AI::NNFlex::Dataset->new(\@data);



my $counter=0;
my $err = 10;
while ($err >.01)
{
	$err = $dataset->learn($network);
	print "Epoch = $counter error = $err\n";
	$counter++;
}

$network->run([0,0,0,0,0,1,0,1]);
my $output = $network->output();
print $output."\n";

foreach (@$output){print $_}
print "\n";

examples/xor.pl  view on Meta::CPAN


$network->add_layer(	nodes=>2,
			activationfunction=>"tanh");

$network->add_layer(	nodes=>1,
			activationfunction=>"linear");


$network->init();

my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[0],
			[0,1],[1],
			[1,0],[1],
			[1,1],[0]]);

$dataset->save(filename=>'xor.pat');
$dataset->load(filename=>'xor.pat');


my $counter=0;
my $err = 10;
while ($err >.001)
#for (1..1500)
{
	$err = $dataset->learn($network);
	print "Epoch = $counter error = $err\n";
	$counter++;
}


foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}

print "this should be 1 - ".@{$network->run([0,1])}."\n";

examples/xor_minimal.pl  view on Meta::CPAN


$network->add_layer(	nodes=>2,
			activationfunction=>"tanh");

$network->add_layer(	nodes=>1,
			activationfunction=>"linear");


$network->init();

my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[0],
			[0,1],[1],
			[1,0],[1],
			[1,1],[0]]);



my $counter=0;
my $err = 10;
while ($err >.001)
{
	$err = $dataset->learn($network);

	print "Epoch $counter: Error = $err\n";
	$counter++;
}


foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}



examples/xorminus.pl  view on Meta::CPAN


$network->add_layer(	nodes=>2,
			activationfunction=>"tanh");

$network->add_layer(	nodes=>1,
			activationfunction=>"linear");


$network->init();

my $dataset = AI::NNFlex::Dataset->new([
			[-1,-1],[-1],
			[-1,1],[1],
			[1,-1],[1],
			[1,1],[-1]]);

$dataset->save(filename=>'xor.pat');
$dataset->load(filename=>'xor.pat');


my $counter=0;
my $err = 10;
while ($err >.001)
#for (1..1500)
{
	$err = $dataset->learn($network);
	print "Epoch = $counter error = $err\n";
	$counter++;
}


foreach (@{$dataset->run($network)})
{
	foreach (@$_){print $_}
	print "\n";	
}

print "this should be 1 - ".@{$network->run([-1,1])}."\n";

lib/AI/NNFlex.pm  view on Meta::CPAN

# to create meshes, apply input, and read output ONLY!
#
# Separate modules are to be written to perform feedback adjustments,
# various activation functions, text/gui front ends etc
#
###############################################################################
# Version Control
# ===============
#
# 0.1 20040905		CColbourn	New module
#					added NNFlex::datasets
#
# 0.11 20050113		CColbourn	Added NNFlex::lesion
#					Improved Draw
#					added NNFlex::datasets
#
# 0.12 20050116		CColbourn	Fixed reinforce.pm bug
# 					Added call into datasets
#					in ::run to offer alternative
#					syntax
#
# 0.13 20050121		CColbourn	Created momentum learning module
#
# 0.14 20050201		CColbourn	Abstracted derivatiive of activation
#					function into a separate function call
#					instead of hardcoded 1-y*y in backprop
#					tanh, linear & momentum
#

lib/AI/NNFlex.pm  view on Meta::CPAN


 clean up the perldocs some more
 write gamma modules
 write BPTT modules
 write a perceptron learning module
 speed it up
 write a tk gui

=head1 CHANGES

v0.11 introduces the lesion method, png support in the draw module and datasets.

v0.12 fixes a bug in reinforce.pm & adds a reflector in feedforward->run to make $network->run($dataset) work.

v0.13 introduces the momentum learning algorithm and fixes a bug that allowed training to proceed even if the node activation function module can't be loaded

v0.14 fixes momentum and backprop so they are no longer nailed to tanh hidden units only.

v0.15 fixes a bug in feedforward, and reduces the debug overhead

v0.16 changes some underlying addressing of weights, to simplify and speed  

v0.17 is a bugfix release, plus some cleaning of UI

lib/AI/NNFlex/Backprop.pm  view on Meta::CPAN

########################################################
# AI::NNFlex::Backprop::learn
########################################################
sub learn
{

	my $network = shift;

	my $outputPatternRef = shift;

	# if this is an incorrect dataset call translate it
	if ($outputPatternRef =~/Dataset/)
	{
		return ($outputPatternRef->learn($network))
	}


	# Set a default value on the Fahlman constant
	if (!$network->{'fahlmanconstant'})
	{
		$network->{'fahlmanconstant'} = 0.1;

lib/AI/NNFlex/Backprop.pm  view on Meta::CPAN

 my $network = AI::NNFlex::Backprop->new(config parameter=>value);

 $network->add_layer(nodes=>x,activationfunction=>'function');

 $network->init(); 



 use AI::NNFlex::Dataset;

 my $dataset = AI::NNFlex::Dataset->new([
			[INPUTARRAY],[TARGETOUTPUT],
			[INPUTARRAY],[TARGETOUTPUT]]);

 my $sqrError = 10;

 while ($sqrError >0.01)

 {

	$sqrError = $dataset->learn($network);

 }

 $network->lesion({'nodes'=>PROBABILITY,'connections'=>PROBABILITY});

 $network->dump_state(filename=>'badgers.wts');

 $network->load_state(filename=>'badgers.wts');

 my $outputsRef = $dataset->run($network);

 my $outputsRef = $network->output(layer=>2,round=>1);

=head1 DESCRIPTION

AI::NNFlex::Backprop is a class to generate feedforward, backpropagation neural nets. It inherits various constructs from AI::NNFlex & AI::NNFlex::Feedforward, but is documented here as a standalone.

The code should be simple enough to use for teaching purposes, but a simpler implementation of a simple backprop network is included in the example file bp.pl. This is derived from Phil Brierleys freely available java code at www.philbrierley.com.

AI::NNFlex::Backprop leans towards teaching NN and cognitive modelling applications. Future modules are likely to include more biologically plausible nets like DeVries & Principes Gamma model.

lib/AI/NNFlex/Backprop.pm  view on Meta::CPAN

B<PROBABILITY>

A value between 0 and 1, denoting the probability of a given node or connection being damaged.

Note: this method may be called on a per network, per node or per layer basis using the appropriate object.

=head2 AN::NNFlex::Dataset

=head2 learn

 $dataset->learn($network)

'Teaches' the network the dataset using the networks defined learning algorithm. Returns sqrError;

=head2 run

 $dataset->run($network)

Runs the dataset through the network and returns a reference to an array of output patterns.

=head1 EXAMPLES

See the code in ./examples. For any given version of NNFlex, xor.pl will contain the latest functionality.


=head1 PREREQs

None. NNFlex::Backprop should run OK on any version of Perl 5 >. 

lib/AI/NNFlex/Dataset.pm  view on Meta::CPAN

##########################################################
# AI::NNFlex::Dataset
##########################################################
# Dataset methods for AI::NNFlex - perform learning etc
# on groups of data
#
##########################################################
# Versions
# ========
#
# 1.0	20050115	CColbourn	New module
#
# 1.1	20050324	CColbourn	Added load support
#
##########################################################

lib/AI/NNFlex/Dataset.pm  view on Meta::CPAN

package AI::NNFlex::Dataset;


###########################################################
# AI::NNFlex::Dataset::new
###########################################################
sub new
{
	my $class = shift;
	my $params = shift;
	my $dataset;
	if ($class =~ /HASH/)
	{
		$dataset = $class;
		$dataset->{'data'} = $params;
		return 1;
	}

	my %attributes;
	$attributes{'data'} = $params;

	$dataset = \%attributes;
	bless $dataset,$class;
	return $dataset;
}


###########################################################
# AI::NNFlex::Datasets::run
###########################################################
sub run
{
	my $self = shift;
	my $network = shift;
	my @outputs;
	my $counter=0;

	for (my $itemCounter=0;$itemCounter<(scalar @{$self->{'data'}});$itemCounter +=2)
	{
		$network->run(@{$self->{'data'}}[$itemCounter]);
		$outputs[$counter] = $network->output();
		$counter++;
	}

	return \@outputs;

}

###############################################################
# AI::NNFlex::Dataset::learn
###############################################################
sub learn
{
	my $self = shift;
	my $network = shift;
	my $error;

	for (my $itemCounter=0;$itemCounter<(scalar @{$self->{'data'}});$itemCounter +=2)
	{
		$network->run(@{$self->{'data'}}[$itemCounter]);
		$error += $network->learn(@{$self->{'data'}}[$itemCounter+1]);
	}

	$error = $error*$error;

	return $error;
}

#################################################################
# AI::NNFlex::Dataset::save
#################################################################
# save a dataset in an snns .pat file
#################################################################
sub save
{
	my $dataset = shift;
	my %config = @_;

	open (OFILE,">".$config{'filename'}) or return "File error $!";

	print OFILE "No. of patterns : ".((scalar @{$dataset->{'data'}})/2)."\n";
	print OFILE "No. of input units : ".(scalar @{$dataset->{'data'}->[0]})."\n";
	print OFILE "No. of output units : ".(scalar @{$dataset->{'data'}->[1]})."\n\n";

	my $counter = 1;
	my @values = @{$dataset->{'data'}};
	while (@values)
	{
		print OFILE "# Input pattern $counter:\n";
		my $input = shift (@values); 
		my @array = join " ",@$input;
		print OFILE @array;
		print OFILE "\n";

		print OFILE "# Output pattern $counter:\n";
		my $output = shift(@values); 

lib/AI/NNFlex/Dataset.pm  view on Meta::CPAN

	close OFILE;
	return 1;
}


#############################################################
# AI::NNFlex::Dataset::load
#############################################################
sub load
{
	my $dataset = shift;
	my %params = @_;

	my @data;

	my $filename = $params{'filename'};
	if (!$filename)
	{
		return "No filename specified";
	}

	open (IFILE,"$filename") or return "Unable to load $filename - $!";

	my %config;

lib/AI/NNFlex/Dataset.pm  view on Meta::CPAN

	{
		if($_ =~ /^#/ || $_ =~ /^\n/){next}
		$filecontent .= $_;
	}

	my @individualvals = split /\s+/s,$filecontent;

	for (my $offset=0;$offset<(scalar @individualvals);$offset+=($config{'no.ofinputunits'} + $config{'no.ofoutputunits'}))
	{
		my @input=@individualvals[$offset..($offset+$config{'no.ofinputunits'}-1)];
		push @data,\@input;
		if ($config{'no.ofoutputunits'} > 0)
		{
			my @output=@individualvals[($offset+$config{'no.ofinputunits'})..($offset+$config{'no.ofinputunits'}+$config{'no.ofoutputunits'}-1)];
			push @data,\@output;
		}
	}

		
	$dataset->new(\@data);

	return 1;
}
	
##########################################################
# AI::NNFlex::Dataset::add
##########################################################
# add an input/output pair to the dataset
##########################################################
sub add
{
	my $dataset= shift;
	my $params = shift;

	if (!$params){return "Nothing to add"};
	if ($params !~/ARRAY/){return "Need a reference to an array"}

	# support adding single patterns (for Hopfield type nets)
	if ($$params[0] !~ /ARRAY/)
	{
		push @{$dataset->{'data'}},$params;
	}
	else
	{
		push @{$dataset->{'data'}},$$params[0];
		push @{$dataset->{'data'}},$$params[1];
	}

	return 1;
}

##################################################################
# AI::NNFlex::Dataset::delete
##################################################################
# delete an item from the dataset by index
##################################################################
sub delete
{
	my $dataset = shift;
	my $index = shift;
	my @indexarray;

	if (!$index){return 0}

	if ($index =~ /ARRAY/)
	{
		@indexarray = @$index;
	}
	else
	{
		$indexarray[0] = $index;
	}

	my @newarray;
	my $counter=0;
	foreach (@indexarray)
	{
		unless ($counter == $_)
		{
			push @newarray,${$dataset->{'data'}}[$_];
		}
	}

	$dataset->{'data'} = \@newarray;

	return 1;
}



1;
=pod

=head1 NAME

AI::NNFlex::Dataset - support for creating/loading/saving datasets for NNFlex nets

=head1 SYNOPSIS

 use AI::NNFlex::Dataset;

 my $dataset = AI::NNFlex::Dataset->new([[0,1,1,0],[0,0,1,1]]);

 $dataset->add([[0,1,0,1],[1,1,0,0]]);

 $dataset->add([0,1,0,0]);

 $dataset->save(filename=>'test.pat');

 $dataset->load(filename=>'test.pat');

=head1 DESCRIPTION

This module allows you to construct, load, save and maintain datasets for use with neural nets implemented using the AI::NNFlex classes. The dataset consists of an array of references to arrays of data. Items may be added in pairs (useful for feedfor...

=head1 CONSTRUCTOR 

=head2 AI::NNFlex::Dataset->new([[INPUT],[TARGET]]);

Parameters:

The constructor takes an (optional) reference to an array of one or more arrays. For convenience you can specify two values at a time (for INPUT and OUTPUT values) or a single value at a time. You can also leave the parameters blank, in which case th...

The return value is an AI::NNFlex::Dataset object.

=head1 METHODS

This is a short list of the main methods implemented in AI::NNFlex::Dataset


=head2 add

 Syntax:

 $dataset->add([[INPUT],[OUTPUT]]);

or

 $dataset->add([VALUE]);

This method adds new values to the end of the dataset. You can specify the values as pairs or individually.

=head2 load

 Syntax:

 $dataset->load(filename=>'filename.pat');

Loads an SNNS type .pat file into a blank dataset. If called on an existing dataset IT WILL OVERWRITE IT!

=head2 save

 $dataset->save(filename=>'filename.pat');

Save the existing dataset as an SNNS .pat file. If the file already exists it will be overwritten.

=head2 delete

 $dataset->delete(INDEX);

or

 $dataset->delete([ARRAY OF INDICES]);

Deletes 1 or more items from the dataset by their index (counting from 0). Note that if you are using pairs of values (in a backprop net for example) you MUST delete in pairs - otherwise you will delete only the input/target, and the indices will be ...

=head1 EXAMPLES

See the code in ./examples.


=head1 PREREQs

None.

=head1 SEE ALSO

 AI::NNFlex


=head1 TODO

Method to delete existing dataset entries by index

Method to validate linear separability of a dataset.

=head1 CHANGES


=head1 COPYRIGHT

Copyright (c) 2004-2005 Charles Colbourn. All rights reserved. This program is free software; you can redistribute it and/or modify 
it under the same terms as Perl itself.

=head1 CONTACT

lib/AI/NNFlex/Feedforward.pm  view on Meta::CPAN

##########################################################
# This is the first propagation module for NNFlex
#
##########################################################
# Versions
# ========
#
# 1.0	20040910	CColbourn	New module
#
# 1.1	20050116	CColbourn	Added call to 
#					datasets where run
#					is erroneously called
#					with a dataset
#
# 1.2	20050206	CColbourn	Fixed a bug where
#					transfer function
#					was called on every
#					input to a node
#					instead of total
#
# 1.3	20050218	CColbourn	Changed to reflect
#					new weight indexing
#					(arrays) in nnflex 0.16

lib/AI/NNFlex/Feedforward.pm  view on Meta::CPAN

# $network->run([0,1,1,1,0,1,1]);
#
#
###########################################################
sub run
{
	my $network = shift;

	my $inputPatternRef = shift;
	
	# if this is an incorrect dataset call translate it
	if ($inputPatternRef =~/Dataset/)
	{
		return ($inputPatternRef->run($network))
	}


	my @inputPattern = @$inputPatternRef;

	my @debug = @{$network->{'debug'}};
	if (scalar @debug> 0)

lib/AI/NNFlex/Hopfield.pm  view on Meta::CPAN

	return \@array;
}

########################################################
# AI::NNFlex::Hopfield::learn
########################################################
sub learn
{
	my $network = shift;

	my $dataset = shift;

	# calculate the weights
	# turn the dataset into a matrix
	my @matrix;
	foreach (@{$dataset->{'data'}})
	{
		push @matrix,$_;
	}
	my $patternmatrix = Math::Matrix->new(@matrix);

	my $inversepattern = $patternmatrix->transpose;

	my @minusmatrix;

	for (my $rows=0;$rows <(scalar @{$network->{'nodes'}});$rows++)
	{
		my @temparray;
		for (my $cols=0;$cols <(scalar	@{$network->{'nodes'}});$cols++)
		{
			if ($rows == $cols)
			{
				my $numpats = scalar @{$dataset->{'data'}};
				push @temparray,$numpats;	
			}
			else
			{
				push @temparray,0;
			}
		}
		push @minusmatrix,\@temparray;
	}

	my $minus = Math::Matrix->new(@minusmatrix);

	my $product = $inversepattern->multiply($patternmatrix);

	my $weights = $product->subtract($minus);

	my @element = ('1');
	my @truearray;
	for (1..scalar @{$dataset->{'data'}}){push @truearray,"1"}
	
	my $truematrix = Math::Matrix->new(\@truearray);

	my $thresholds = $truematrix->multiply($patternmatrix);
	#$thresholds = $thresholds->transpose();

	my $counter=0;
	foreach (@{$network->{'nodes'}})
	{
		my @slice;

lib/AI/NNFlex/Hopfield.pm  view on Meta::CPAN

 my $network = AI::NNFlex::Hopfield->new(config parameter=>value);

 $network->add_layer(nodes=>x);

 $network->init(); 



 use AI::NNFlex::Dataset;

 my $dataset = AI::NNFlex::Dataset->new([
			[INPUTARRAY],
			[INPUTARRAY]]);

 $network->learn($dataset);

 my $outputsRef = $dataset->run($network);

 my $outputsRef = $network->output();

=head1 DESCRIPTION

AI::NNFlex::Hopfield is a Hopfield network simulator derived from the AI::NNFlex class. THIS IS THE FIRST ALPHA CUT OF THIS MODULE! Any problems, let me know and I'll fix them.

Hopfield networks differ from feedforward networks in that they are effectively a single layer, with all nodes connected to all other nodes (except themselves), and are trained in a single operation. They are particularly useful for recognising corru...

Full documentation for AI::NNFlex::Dataset can be found in the modules own perldoc. It's documented here for convenience only.

lib/AI/NNFlex/Hopfield.pm  view on Meta::CPAN

=head2 init

 Syntax:

 $network->init();

Initialises connections between nodes.

=head2 run

 $network->run($dataset)

Runs the dataset through the network and returns a reference to an array of output patterns.

=head1 EXAMPLES

See the code in ./examples.


=head1 PREREQs

Math::Matrix

lib/AI/NNFlex/Reinforce.pm  view on Meta::CPAN

 my $network = AI::NNFlex::Reinforce->new(config parameter=>value);

 $network->add_layer(nodes=>x,activationfunction=>'function');

 $network->init(); 



 use AI::NNFlex::Dataset;

 my $dataset = AI::NNFlex::Dataset->new([
			[INPUTARRAY],[TARGETOUTPUT],
			[INPUTARRAY],[TARGETOUTPUT]]);

 my $sqrError = 10;

 for (1..100)

 {

	 $dataset->learn($network);

 }

 $network->lesion({'nodes'=>PROBABILITY,'connections'=>PROBABILITY});

 $network->dump_state(filename=>'badgers.wts');

 $network->load_state(filename=>'badgers.wts');

 my $outputsRef = $dataset->run($network);

 my $outputsRef = $network->output(layer=>2,round=>1);

=head1 DESCRIPTION

Reinforce is a very simple NN module. It's mainly included in this distribution to provide an example of how to subclass AI::NNFlex to write your own NN modules. The training method strengthens any connections that are active during the run pass.

=head1 CONSTRUCTOR 

=head2 AI::NNFlex::Reinforce

lib/AI/NNFlex/Reinforce.pm  view on Meta::CPAN

B<PROBABILITY>

A value between 0 and 1, denoting the probability of a given node or connection being damaged.

Note: this method may be called on a per network, per node or per layer basis using the appropriate object.

=head2 AN::NNFlex::Dataset

=head3 learn

 $dataset->learn($network)

'Teaches' the network the dataset using the networks defined learning algorithm. Returns sqrError;

=head3 run

 $dataset->run($network)

Runs the dataset through the network and returns a reference to an array of output patterns.

=head1 EXAMPLES

See the code in ./examples. For any given version of NNFlex, xor.pl will contain the latest functionality.


=head1 PREREQs

None. NNFlex::Reinforce should run OK on any version of Perl 5 >. 

t/Backprop.t  view on Meta::CPAN


# test connect node
$result = $network->connect(fromnode=>'1,0',tonode=>'1,1');
ok($result);






# test create dataset
my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[1,1],
			[0,1],[1,0],
			[1,0],[0,1],
			[1,1],[0,0]]);
ok ($dataset); #test 4
##


# Test a learning pass
my $err = $dataset->learn($network);
ok($err); #test 5
##


# Test a run pass
$result = $dataset->run($network);
ok($result); #test 8
##

# test saving weights
$result = $network->dump_state(filename=>'state.wts',activations=>1);
ok($result);

# test loading weights
$result = $network->load_state(filename=>'state.wts');
ok($result);

t/Dataset.t  view on Meta::CPAN

use Test;
use AI::NNFlex::Backprop;
use AI::NNFlex::Dataset;

BEGIN{
	plan tests=>12}




# we need a basic network  in place to test the dataset functionality against
# test create network
my $network = AI::NNFlex::Backprop->new(randomconnections=>0,
				randomweights=>1,
				learningrate=>.1,
				debug=>[],bias=>1,
				momentum=>0.6);

ok($network); #test 1
##

t/Dataset.t  view on Meta::CPAN

			activationfunction=>"tanh",
			randomweights=>1);
ok($result); #test 2
##

# Test initialise network
$result = $network->init();
ok($result); #test 3
##

# test create dataset
my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[1,1],
			[0,1],[1,0],
			[1,0],[0,1],
			[1,1],[0,0]]);
ok ($dataset); #test 4
##

# test adding an entry
$result = $dataset->add([[1,1],[0,1]]);
ok($result);

# test save
$result = $dataset->save(filename=>'test.pat');
ok ($result);

# test empty dataset
my $dataset2 = AI::NNFlex::Dataset->new();
ok($dataset);

# test load
$result = $dataset2->load(filename=>'test.pat');
ok($result);

#  compare original & loaded dataset
my $comparison;
if (scalar @{$dataset->{'data'}} == scalar @{$dataset2->{'data'}}){$comparison=1}
ok($comparison);

# delete a pair from the dataset
$result = $dataset->delete([4,5]);
ok($result);

# Test a learning pass
my $err = $dataset->learn($network);
ok($err); #test 5
##


# Test a run pass
$result = $dataset->run($network);
ok($result); #test 8
##

t/Hopfield.t  view on Meta::CPAN


skip($matrixabsent,$network);


$network->add_layer(nodes=>2);
$network->add_layer(nodes=>2);

my $result = $network->init();
skip($matrixabsent,$result);

my $dataset = AI::NNFlex::Dataset->new();

$dataset->add([-1, 1, -1, 1]);
$dataset->add([-1, -1, 1, 1]);

skip($matrixabsent,$dataset);

$network->learn($dataset);

my $outputref = $network->run([1,-1,1,1]);

skip($matrixabsent,$outputref);

t/backprop.t  view on Meta::CPAN


# test connect node
$result = $network->connect(fromnode=>'1,0',tonode=>'1,1');
ok($result);






# test create dataset
my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[1,1],
			[0,1],[1,0],
			[1,0],[0,1],
			[1,1],[0,0]]);
ok ($dataset); #test 4
##


# Test a learning pass
my $err = $dataset->learn($network);
ok($err); #test 5
##


# Test a run pass
$result = $dataset->run($network);
ok($result); #test 8
##

t/reinforce.t  view on Meta::CPAN

			activationfunction=>"tanh",
			randomweights=>1);
ok($result); #test 2
##

# Test initialise network
$result = $network->init();
ok($result); #test 3
##

# test create dataset
my $dataset = AI::NNFlex::Dataset->new([
			[0,0],[1,1],
			[0,1],[1,0],
			[1,0],[0,1],
			[1,1],[0,0]]);
ok ($dataset); #test 4
##

# Test a run pass
$result = $dataset->run($network);
ok($result); #test 5
##



( run in 1.056 second using v1.01-cache-2.11-cpan-8d75d55dd25 )