AI-FANN-Evolving
view release on metacpan - search on metacpan
view release on metacpan or search on metacpan
lib/AI/FANN/Evolving/TrainData.pm
LICENSE
Makefile.PL
MANIFEST This list of files
MYMETA.json
MYMETA.yml
README.md
script/aivolver
t/00-load.t
t/01-run.t
t/02-data.t
t/03-fann-wrapper.t
t/perl-critic.t
t/perlcriticrc
t/pod-coverage.t
t/pod.t
META.yml Module YAML meta-data (added by MakeMaker)
META.json Module JSON meta-data (added by MakeMaker)
lib/AI/FANN/Evolving.pm view on Meta::CPAN
=head1 NAME
AI::FANN::Evolving - artificial neural network that evolves
=head1 METHODS
=over
=item new
Constructor requires 'file', or 'data' and 'neurons' arguments. Optionally takes
'connection_rate' argument for sparse topologies. Returns a wrapper around L<AI::FANN>.
=cut
sub new {
my $class = shift;
my %args = @_;
my $self = {};
bless $self, $class;
$self->_init(%args);
# de-serialize from a file
if ( my $file = $args{'file'} ) {
$self->{'ann'} = AI::FANN->new_from_file($file);
$log->debug("instantiating from file $file");
return $self;
}
# build new topology from input data
elsif ( my $data = $args{'data'} ) {
$log->debug("instantiating from data $data");
$data = $data->to_fann if $data->isa('AI::FANN::Evolving::TrainData');
# prepare arguments
my $neurons = $args{'neurons'} || ( $data->num_inputs + 1 );
my @sizes = (
$data->num_inputs,
$neurons,
$data->num_outputs
);
# build topology
if ( $args{'connection_rate'} ) {
$self->{'ann'} = AI::FANN->new_sparse( $args{'connection_rate'}, @sizes );
}
else {
$self->{'ann'} = AI::FANN->new_standard( @sizes );
}
lib/AI/FANN/Evolving/Experiment.pm view on Meta::CPAN
my $value = shift;
$log->info("assigning new workdir $value");
$self->{'workdir'} = $value;
}
else {
$log->debug("retrieving workdir");
}
return $self->{'workdir'};
}
=item traindata
Getter/setter for the L<AI::FANN::TrainData> object.
=cut
sub traindata {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->info("assigning new traindata $value");
$self->{'traindata'} = $value;
}
else {
$log->debug("retrieving traindata");
}
return $self->{'traindata'};
}
=item run
Runs the experiment!
=cut
sub run {
my $self = shift;
lib/AI/FANN/Evolving/Factory.pm view on Meta::CPAN
use strict;
use Algorithm::Genetic::Diploid;
use base 'Algorithm::Genetic::Diploid::Factory';
our $AUTOLOAD;
my %defaults = (
'experiment' => 'AI::FANN::Evolving::Experiment',
'chromosome' => 'AI::FANN::Evolving::Chromosome',
'gene' => 'AI::FANN::Evolving::Gene',
'traindata' => 'AI::FANN::Evolving::TrainData',
);
=head1 NAME
AI::FANN::Evolving::Factory - creator of objects
=head1 METHODS
=over
=item new
Constructor takes named arguments. Key is a short name (e.g. 'traindata'), value is a
fully qualified package name (e.g. L<AI::FANN::TrainData>) from which to instantiate
objects identified by the short name.
=back
=cut
sub new { shift->SUPER::new(%defaults,@_) }
1;
lib/AI/FANN/Evolving/Gene.pm view on Meta::CPAN
Constructor is passed named arguments. Instantiates a trained L<AI::FANN::Evolving> ANN
=cut
sub new {
# initialize self up the inheritance tree
my $self = shift->SUPER::new(@_);
# instantiate and train the FANN object
my $traindata = $self->experiment->traindata;
$self->ann( AI::FANN::Evolving->new( 'data' => $traindata ) );
return $self;
}
=item ann
Getter/setter for an L<AI::FANN::Evolving> ANN
=cut
sub ann {
}
return '';
});
# set quieter and quicker to give up
AI::FANN::Evolving->defaults( 'epoch_printfreq' => 0, 'epochs' => 200 );
# instantiate factory
my $fac = new_ok('AI::FANN::Evolving::Factory');
# prepare data
my $data = AI::FANN::Evolving::TrainData->new(
'file' => "$Bin/../examples/Cochlopetalum.tsv",
'ignore' => [ 'image' ],
'dependent' => [ 'C1', 'C2', 'C3', 'C4', 'C5' ],
);
my ( $test, $train ) = $data->partition_data( 0.5 );
# create the experiment
my $exp = $fac->create_experiment(
'workdir' => tempdir( 'CLEANUP' => 1 ),
'traindata' => $train->to_fann,
'factory' => $fac,
'env' => $test->to_fann,
'mutation_rate' => 0.1,
'ngens' => 2,
);
isa_ok( $exp, 'Algorithm::Genetic::Diploid::Experiment' );
# initialize the experiment
ok( $exp->initialize( 'individual_count' => 2 ), "initialized" );
t/02-data.t view on Meta::CPAN
use FindBin qw($Bin);
use Test::More 'no_plan';
use AI::FANN::Evolving::TrainData;
use Algorithm::Genetic::Diploid::Logger ':levels';
use Data::Dumper;
# instantiate a data object
my $file = "$Bin/../examples/merged.tsv";
my $data = AI::FANN::Evolving::TrainData->new(
'file' => $file,
'ignore' => [ 'image' ],
'dependent' => [ 'C1', 'C2', 'C3', 'C4' ],
);
ok( $data, "instantiate" );
# partition the data
my ( $d1, $d2 ) = $data->partition_data(0.2);
ok( $data->size == $d1->size + $d2->size, "partition" );
# pack data as FANN struct
ok( $d1->to_fann, "packed d1" );
ok( $d2->to_fann, "packed d2" );
t/03-fann-wrapper.t view on Meta::CPAN
use strict;
use warnings;
use Test::More 'no_plan';
BEGIN {
use_ok('AI::FANN::Evolving');
use_ok('AI::FANN::Evolving::TrainData');
}
##########################################################################################
# create a trivial data object:
my $data = AI::FANN::Evolving::TrainData->new(
'header' => {
'ID' => 0, # simple integer id for the records
's1' => 1, # state 1
's2' => 2, # state 2
'CLASS' => 3, # dependent 'xor' state
},
# this is the xor example from:
# http://search.cpan.org/~salva/AI-FANN-0.10/lib/AI/FANN.pm
'table' => [
[ 1, -1, -1, -1 ],
[ 2, -1, +1, +1 ],
[ 3, +1, -1, +1 ],
[ 4, +1, +1, -1 ],
],
);
ok( $data->size == 4, "instantiate data correctly" );
##########################################################################################
# train the FANN object on trivial data
my $ann = AI::FANN::Evolving->new( 'data' => $data, 'epoch_printfreq' => 0 );
$ann->train($data->to_fann);
# run the network
# this is the xor example from:
# http://search.cpan.org/~salva/AI-FANN-0.10/lib/AI/FANN.pm
my @result = ( -1, +1, +1, -1 );
my @input = ( [ -1, -1 ], [ -1, +1 ], [ +1, -1 ], [ +1, +1 ] );
for my $i ( 0 .. $#input ) {
my $output = $ann->run($input[$i]);
ok( ! ( $result[$i] < 0 xor $output->[0] < 0 ), "observed and expected signs match" );
}
view all matches for this distributionview release on metacpan - search on metacpan
( run in 1.634 second using v1.00-cache-2.02-grep-82fe00e-cpan-4673cadbf75 )