DBD-SQLite2

 view release on metacpan or  search on metacpan

btree.c  view on Meta::CPAN

** that extra information.
*/
#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))

/*
** Everything we need to know about an open database
*/
struct Btree {
  BtOps *pOps;          /* Function table */
  Pager *pPager;        /* The page cache */
  BtCursor *pCursor;    /* A list of all open cursors */
  PageOne *page1;       /* First page of the database */
  u8 inTrans;           /* True if a transaction is in progress */
  u8 inCkpt;            /* True if there is a checkpoint on the transaction */
  u8 readOnly;          /* True if the underlying file is readonly */
  u8 needSwab;          /* Need to byte-swapping */
};
typedef Btree Bt;

/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
  BtCursorOps *pOps;        /* Function table */
  Btree *pBt;               /* The Btree to which this cursor belongs */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  BtCursor *pShared;        /* Loop of cursors with the same root page */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->apCell[] */
  u8 wrFlag;                /* True if writable */
  u8 eSkip;                 /* Determines if next step operation is a no-op */
  u8 iMatch;                /* compare result from last sqliteBtreeMoveto() */
};

/*
** Legal values for BtCursor.eSkip.
*/
#define SKIP_NONE     0   /* Always step the cursor */
#define SKIP_NEXT     1   /* The next sqliteBtreeNext() is a no-op */
#define SKIP_PREV     2   /* The next sqliteBtreePrevious() is a no-op */
#define SKIP_INVALID  3   /* Calls to Next() and Previous() are invalid */

/* Forward declarations */
static int fileBtreeCloseCursor(BtCursor *pCur);

/*
** Routines for byte swapping.
*/

btree.c  view on Meta::CPAN

  sqlitepager_set_destructor(pBt->pPager, pageDestructor);
  pBt->pCursor = 0;
  pBt->page1 = 0;
  pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
  pBt->pOps = &sqliteBtreeOps;
  *ppBtree = pBt;
  return SQLITE_OK;
}

/*
** Close an open database and invalidate all cursors.
*/
static int fileBtreeClose(Btree *pBt){
  while( pBt->pCursor ){
    fileBtreeCloseCursor(pBt->pCursor);
  }
  sqlitepager_close(pBt->pPager);
  sqliteFree(pBt);
  return SQLITE_OK;
}

btree.c  view on Meta::CPAN

  }
  return rc;

page1_init_failed:
  sqlitepager_unref(pBt->page1);
  pBt->page1 = 0;
  return rc;
}

/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which 
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(Btree *pBt){
  if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
    sqlitepager_unref(pBt->page1);
    pBt->page1 = 0;
    pBt->inTrans = 0;
    pBt->inCkpt = 0;
  }

btree.c  view on Meta::CPAN

  }else{
    unlockBtreeIfUnused(pBt);
  }
  return rc;
}

/*
** Commit the transaction currently in progress.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeCommit(Btree *pBt){
  int rc;
  rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
  pBt->inTrans = 0;
  pBt->inCkpt = 0;
  unlockBtreeIfUnused(pBt);
  return rc;
}

/*
** Rollback the transaction in progress.  All cursors will be
** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeRollback(Btree *pBt){
  int rc;
  BtCursor *pCur;
  if( pBt->inTrans==0 ) return SQLITE_OK;
  pBt->inTrans = 0;
  pBt->inCkpt = 0;
  rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pPage && pCur->pPage->isInit==0 ){

btree.c  view on Meta::CPAN

    rc = SQLITE_OK;
  }
  pBt->inCkpt = 0;
  return rc;
}

/*
** Rollback the checkpoint to the current transaction.  If there
** is no active checkpoint or transaction, this routine is a no-op.
**
** All cursors will be invalided by this operation.  Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
static int fileBtreeRollbackCkpt(Btree *pBt){
  int rc;
  BtCursor *pCur;
  if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
  rc = sqlitepager_ckpt_rollback(pBt->pPager);
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pPage && pCur->pPage->isInit==0 ){
      sqlitepager_unref(pCur->pPage);
      pCur->pPage = 0;
    }
  }
  pBt->inCkpt = 0;
  return rc;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable.  The act of acquiring a cursor gets a read lock on 
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met.  These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1:  The cursor must have been opened with wrFlag==1
**
** 2:  No other cursors may be open with wrFlag==0 on the same table
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** Condition 2 warrants further discussion.  If any cursor is opened
** on a table with wrFlag==0, that prevents all other cursors from
** writing to that table.  This is a kind of "read-lock".  When a cursor
** is opened with wrFlag==0 it is guaranteed that the table will not
** change as long as the cursor is open.  This allows the cursor to
** do a sequential scan of the table without having to worry about
** entries being inserted or deleted during the scan.  Cursors should
** be opened with wrFlag==0 only if this read-lock property is needed.
** That is to say, cursors should be opened with wrFlag==0 only if they
** intend to use the sqliteBtreeNext() system call.  All other cursors
** should be opened with wrFlag==1 even if they never really intend
** to write.
** 
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
*/
static 
int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
  int rc;
  BtCursor *pCur, *pRing;

  if( pBt->readOnly && wrFlag ){
    *ppCur = 0;
    return SQLITE_READONLY;

btree.c  view on Meta::CPAN

  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ){
      *ppCur = 0;
      return rc;
    }
  }
  pCur = sqliteMalloc( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  pCur->pOps = &sqliteBtreeCursorOps;
  pCur->pBt = pBt;
  pCur->wrFlag = wrFlag;
  pCur->idx = 0;
  pCur->eSkip = SKIP_INVALID;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }

btree.c  view on Meta::CPAN

  if( pRing ){
    pCur->pShared = pRing->pShared;
    pRing->pShared = pCur;
  }else{
    pCur->pShared = pCur;
  }
  pBt->pCursor = pCur;
  *ppCur = pCur;
  return SQLITE_OK;

create_cursor_exception:
  *ppCur = 0;
  if( pCur ){
    if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
    sqliteFree(pCur);
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
static int fileBtreeCloseCursor(BtCursor *pCur){
  Btree *pBt = pCur->pBt;
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;

btree.c  view on Meta::CPAN

    BtCursor *pRing = pCur->pShared;
    while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
    pRing->pShared = pCur->pShared;
  }
  unlockBtreeIfUnused(pBt);
  sqliteFree(pCur);
  return SQLITE_OK;
}

/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  if( pTempCur->pPage ){
    sqlitepager_ref(pTempCur->pPage);
  }
}

/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
static void releaseTempCursor(BtCursor *pCur){
  if( pCur->pPage ){
    sqlitepager_unref(pCur->pPage);
  }
}

/*
** Set *pSize to the number of bytes of key in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *pSize = NKEY(pCur->pBt, pCell->h);
  }
  return SQLITE_OK;
}

/*
** Read payload information from the entry that the pCur cursor is
** pointing to.  Begin reading the payload at "offset" and read
** a total of "amt" bytes.  Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
  char *aPayload;
  Pgno nextPage;
  int rc;

btree.c  view on Meta::CPAN

    }
    sqlitepager_unref(pOvfl);
  }
  if( amt>0 ){
    return SQLITE_CORRUPT;
  }
  return SQLITE_OK;
}

/*
** Read part of the key associated with cursor pCur.  A maximum
** of "amt" bytes will be transfered into zBuf[].  The transfer
** begins at "offset".  The number of bytes actually read is
** returned. 
**
** Change:  It used to be that the amount returned will be smaller
** than the amount requested if there are not enough bytes in the key
** to satisfy the request.  But now, it must be the case that there
** is enough data available to satisfy the request.  If not, an exception
** is raised.  The change was made in an effort to boost performance
** by eliminating unneeded tests.

btree.c  view on Meta::CPAN

  if( pCur->idx >= pPage->nCell ){
    return 0;
  }
  assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
  getPayload(pCur, offset, amt, zBuf);
  return amt;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *pSize = NDATA(pCur->pBt, pCell->h);
  }
  return SQLITE_OK;
}

/*
** Read part of the data associated with cursor pCur.  A maximum
** of "amt" bytes will be transfered into zBuf[].  The transfer
** begins at "offset".  The number of bytes actually read is
** returned.  The amount returned will be smaller than the
** amount requested if there are not enough bytes in the data
** to satisfy the request.
*/
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
  Cell *pCell;
  MemPage *pPage;

btree.c  view on Meta::CPAN

    zKey += n;
  }
  if( c==0 ){
    c = nLocal - nKey;
  }
  *pResult = c;
  return SQLITE_OK;
}

/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page in the byte order of the disk image.
*/
static int moveToChild(BtCursor *pCur, int newPgno){
  int rc;
  MemPage *pNewPage;
  Btree *pBt = pCur->pBt;

  newPgno = SWAB32(pBt, newPgno);
  rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
  if( rc ) return rc;

btree.c  view on Meta::CPAN

  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNewPage;
  pCur->idx = 0;
  if( pNewPage->nCell<1 ){
    return SQLITE_CORRUPT;
  }
  return SQLITE_OK;
}

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  Pgno oldPgno;
  MemPage *pParent;
  MemPage *pPage;

btree.c  view on Meta::CPAN

    for(i=0; i<pParent->nCell; i++){
      if( pParent->apCell[i]->h.leftChild==oldPgno ){
        pCur->idx = i;
        break;
      }
    }
  }
}

/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pNew;
  int rc;
  Btree *pBt = pCur->pBt;

  rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
  if( rc ) return rc;
  rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
  if( rc ) return rc;
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc;

  while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  return SQLITE_OK;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing.  Notice the difference
** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc;

  while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
    pCur->idx = pCur->pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->idx = pCur->pPage->nCell - 1;
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeFirst(BtCursor *pCur, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( pCur->pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  *pRes = 0;
  rc = moveToLeftmost(pCur);
  pCur->eSkip = SKIP_NONE;
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeLast(BtCursor *pCur, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  assert( pCur->pPage->isInit );
  if( pCur->pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  *pRes = 0;
  rc = moveToRightmost(pCur);
  pCur->eSkip = SKIP_NONE;
  return rc;
}

/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is left pointing is stored in pCur->iMatch.  The same
** value is also written to *pRes if pRes!=NULL.  The meaning of
** this value is as follows:
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than pKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches pKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than pKey.
*/
static
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  pCur->eSkip = SKIP_NONE;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  for(;;){

btree.c  view on Meta::CPAN

      return SQLITE_OK;
    }
    pCur->idx = lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) return rc;
  }
  /* NOT REACHED */
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage = pCur->pPage;
  assert( pRes!=0 );
  if( pPage==0 ){
    *pRes = 1;
    return SQLITE_ABORT;

btree.c  view on Meta::CPAN

  }
  *pRes = 0;
  if( pPage->u.hdr.rightChild==0 ){
    return SQLITE_OK;
  }
  rc = moveToLeftmost(pCur);
  return rc;
}

/*
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;
  pPage = pCur->pPage;
  if( pPage==0 ){
    *pRes = 1;

btree.c  view on Meta::CPAN

static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
  MemPage *pParent;            /* The parent of pPage */
  int nCell;                   /* Number of cells in apCell[] */
  int nOld;                    /* Number of pages in apOld[] */
  int nNew;                    /* Number of pages in apNew[] */
  int nDiv;                    /* Number of cells in apDiv[] */
  int i, j, k;                 /* Loop counters */
  int idx;                     /* Index of pPage in pParent->apCell[] */
  int nxDiv;                   /* Next divider slot in pParent->apCell[] */
  int rc;                      /* The return code */
  int iCur;                    /* apCell[iCur] is the cell of the cursor */
  MemPage *pOldCurPage;        /* The cursor originally points to this page */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  MemPage *extraUnref = 0;     /* A page that needs to be unref-ed */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  MemPage *apNew[NB+1];        /* pPage and up to NB siblings after balancing */
  Pgno pgnoNew[NB+1];          /* Page numbers for each page in apNew[] */
  int idxDiv[NB];              /* Indices of divider cells in pParent */
  Cell *apDiv[NB];             /* Divider cells in pParent */
  Cell aTemp[NB];              /* Temporary holding area for apDiv[] */
  int cntNew[NB+1];            /* Index in apCell[] of cell after i-th page */

btree.c  view on Meta::CPAN

    }
    rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
    if( rc ) goto balance_cleanup;
    rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
    if( rc ) goto balance_cleanup;
    apOld[i]->idxParent = k;
    nOld++;
  }

  /*
  ** Set iCur to be the index in apCell[] of the cell that the cursor
  ** is pointing to.  We will need this later on in order to keep the
  ** cursor pointing at the same cell.  If pCur points to a page that
  ** has no involvement with this rebalancing, then set iCur to a large
  ** number so that the iCur==j tests always fail in the main cell
  ** distribution loop below.
  */
  if( pCur ){
    iCur = 0;
    for(i=0; i<nOld; i++){
      if( pCur->pPage==apOld[i] ){
        iCur += pCur->idx;
        break;

btree.c  view on Meta::CPAN

  if( pCur && pCur->pPage==0 ){
    pCur->pPage = pParent;
    pCur->idx = 0;
  }else{
    sqlitepager_unref(pParent);
  }
  return rc;
}

/*
** This routine checks all cursors that point to the same table
** as pCur points to.  If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED.  If all
** cursors point to the same table were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock 
** means a cursor opened with wrFlag==0) this routine also moves
** all cursors other than pCur so that they are pointing to the 
** first Cell on root page.  This is necessary because an insert 
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors 
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(BtCursor *pCur){
  BtCursor *p;
  assert( pCur->wrFlag );
  for(p=pCur->pShared; p!=pCur; p=p->pShared){
    assert( p );
    assert( p->pgnoRoot==pCur->pgnoRoot );
    if( p->wrFlag==0 ) return SQLITE_LOCKED;
    if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
      moveToRoot(p);
    }
  }
  return SQLITE_OK;
}

/*
** Insert a new record into the BTree.  The key is given by (pKey,nKey)
** and the data is given by (pData,nData).  The cursor is used only to
** define what database the record should be inserted into.  The cursor
** is left pointing at the new record.
*/
static int fileBtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, int nKey,    /* The key of the new record */
  const void *pData, int nData   /* The data of the new record */
){
  Cell newCell;
  int rc;
  int loc;
  int szNew;
  MemPage *pPage;
  Btree *pBt = pCur->pBt;

  if( pCur->pPage==0 ){
    return SQLITE_ABORT;  /* A rollback destroyed this cursor */
  }
  if( !pBt->inTrans || nKey+nData==0 ){
    /* Must start a transaction before doing an insert */
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pCur) ){

btree.c  view on Meta::CPAN

  }
  insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
  rc = balance(pCur->pBt, pPage, pCur);
  /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
  /* fflush(stdout); */
  pCur->eSkip = SKIP_INVALID;
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.
**
** The cursor is left pointing at either the next or the previous
** entry.  If the cursor is left pointing to the next entry, then 
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to 
** sqliteBtreeNext() to be a no-op.  That way, you can always call
** sqliteBtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry.  Similarly,
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
** the entry prior to the deleted entry so that a subsequent call to
** sqliteBtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
static int fileBtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  Cell *pCell;
  int rc;
  Pgno pgnoChild;
  Btree *pBt = pCur->pBt;

  assert( pPage->isInit );
  if( pCur->pPage==0 ){
    return SQLITE_ABORT;  /* A rollback destroyed this cursor */
  }
  if( !pBt->inTrans ){
    /* Must start a transaction before doing a delete */
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  assert( !pBt->readOnly );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  pCell = pPage->apCell[pCur->idx];
  pgnoChild = SWAB32(pBt, pCell->h.leftChild);
  clearCell(pBt, pCell);
  if( pgnoChild ){

btree.c  view on Meta::CPAN

*/
static int fileBtreeDropTable(Btree *pBt, int iTable){
  int rc;
  MemPage *pPage;
  BtCursor *pCur;
  if( !pBt->inTrans ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pgnoRoot==(Pgno)iTable ){
      return SQLITE_LOCKED;  /* Cannot drop a table that has a cursor */
    }
  }
  rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
  if( rc ) return rc;
  rc = fileBtreeClearTable(pBt, iTable);
  if( rc ) return rc;
  if( iTable>2 ){
    rc = freePage(pBt, pPage, iTable);
  }else{
    zeroPage(pBt, pPage);

btree.c  view on Meta::CPAN

    fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
  }
  sqlitepager_unref(pPage);
  return SQLITE_OK;
}
#endif

#ifdef SQLITE_TEST
/*
** Fill aResult[] with information about the entry and page that the
** cursor is pointing to.
** 
**   aResult[0] =  The page number
**   aResult[1] =  The entry number
**   aResult[2] =  Total number of entries on this page
**   aResult[3] =  Size of this entry
**   aResult[4] =  Number of free bytes on this page
**   aResult[5] =  Number of free blocks on the page
**   aResult[6] =  Page number of the left child of this entry
**   aResult[7] =  Page number of the right child for the whole page
**

btree.h  view on Meta::CPAN

    const char *(*GetFilename)(Btree*);
    int (*Copyfile)(Btree*,Btree*);
    struct Pager *(*Pager)(Btree*);
#ifdef SQLITE_TEST
    int (*PageDump)(Btree*, int, int);
#endif
};

/*
** An instance of this structure defines all of the methods that can
** be executed against a cursor.
*/
struct BtCursorOps {
    int (*Moveto)(BtCursor*, const void *pKey, int nKey, int *pRes);
    int (*Delete)(BtCursor*);
    int (*Insert)(BtCursor*, const void *pKey, int nKey,
                             const void *pData, int nData);
    int (*First)(BtCursor*, int *pRes);
    int (*Last)(BtCursor*, int *pRes);
    int (*Next)(BtCursor*, int *pRes);
    int (*Previous)(BtCursor*, int *pRes);

btree_rb.c  view on Meta::CPAN

#define TRANS_INCHECKPOINT   2  /* A checkpoint is in progress  */
#define TRANS_ROLLBACK       3  /* We are currently rolling back a checkpoint or
                                 * transaction. */

struct RbtCursor {
  BtCursorOps *pOps;        /* Function table */
  Rbtree    *pRbtree;
  BtRbTree *pTree;
  int       iTree;          /* Index of pTree in pRbtree */
  BtRbNode *pNode;
  RbtCursor *pShared;       /* List of all cursors on the same Rbtree */
  u8 eSkip;                 /* Determines if next step operation is a no-op */
  u8 wrFlag;                /* True if this cursor is open for writing */
};

/*
** Legal values for RbtCursor.eSkip.
*/
#define SKIP_NONE     0   /* Always step the cursor */
#define SKIP_NEXT     1   /* The next sqliteRbtreeNext() is a no-op */
#define SKIP_PREV     2   /* The next sqliteRbtreePrevious() is a no-op */
#define SKIP_INVALID  3   /* Calls to Next() and Previous() are invalid */

struct BtRbTree {
  RbtCursor *pCursors;     /* All cursors pointing to this tree */
  BtRbNode *pHead;         /* Head of the tree, or NULL */
};

struct BtRbNode {
  int nKey;
  void *pKey;
  int nData;
  void *pData;
  u8 isBlack;        /* true for a black node, 0 for a red node */
  BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */

btree_rb.c  view on Meta::CPAN

  int nKey,
  int *pRes
);
static int memRbtreeClearTable(Rbtree* tree, int n);
static int memRbtreeNext(RbtCursor* pCur, int *pRes);
static int memRbtreeLast(RbtCursor* pCur, int *pRes);
static int memRbtreePrevious(RbtCursor* pCur, int *pRes);


/*
** This routine checks all cursors that point to the same table
** as pCur points to.  If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED.  If all
** cursors point to the same table were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock 
** means a cursor opened with wrFlag==0) this routine also NULLs
** out the pNode field of all other cursors.
** This is necessary because an insert 
** or delete might change erase the node out from under
** another cursor.
*/
static int checkReadLocks(RbtCursor *pCur){
  RbtCursor *p;
  assert( pCur->wrFlag );
  for(p=pCur->pTree->pCursors; p; p=p->pShared){
    if( p!=pCur ){
      if( p->wrFlag==0 ) return SQLITE_LOCKED;
      p->pNode = 0;
    }
  }

btree_rb.c  view on Meta::CPAN

      *pRes = -1;
    }else{
      *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, 
          pKey, nKey);
    }
  }
  return SQLITE_OK;
}

/*
 * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
 * parameter indicates that the cursor is open for writing.
 *
 * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
 */
static int memRbtreeCursor(
  Rbtree* tree,
  int iTable,
  int wrFlag,
  RbtCursor **ppCur
){
  RbtCursor *pCur;

btree_rb.c  view on Meta::CPAN

  pCur->wrFlag = wrFlag;
  pCur->pShared = pCur->pTree->pCursors;
  pCur->pTree->pCursors = pCur;

  assert( (*ppCur)->pTree );
  return SQLITE_OK;
}

/*
 * Insert a new record into the Rbtree.  The key is given by (pKey,nKey)
 * and the data is given by (pData,nData).  The cursor is used only to
 * define what database the record should be inserted into.  The cursor
 * is left pointing at the new record.
 *
 * If the key exists already in the tree, just replace the data. 
 */
static int memRbtreeInsert(
  RbtCursor* pCur,
  const void *pKey,
  int nKey,
  const void *pDataInput,
  int nData
){
  void * pData;
  int match;

  /* It is illegal to call sqliteRbtreeInsert() if we are
  ** not in a transaction */
  assert( pCur->pRbtree->eTransState != TRANS_NONE );

  /* Make sure some other cursor isn't trying to read this same table */
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Take a copy of the input data now, in case we need it for the 
   * replace case */
  pData = sqliteMallocRaw(nData);
  if( sqlite_malloc_failed ) return SQLITE_NOMEM;
  memcpy(pData, pDataInput, nData);

  /* Move the cursor to a node near the key to be inserted. If the key already
   * exists in the table, then (match == 0). In this case we can just replace
   * the data associated with the entry, we don't need to manipulate the tree.
   * 
   * If there is no exact match, then the cursor points at what would be either
   * the predecessor (match == -1) or successor (match == 1) of the
   * searched-for key, were it to be inserted. The new node becomes a child of
   * this node.
   * 
   * The new node is initially red.
   */
  memRbtreeMoveto( pCur, pKey, nKey, &match);
  if( match ){
    BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
    if( pNode==0 ) return SQLITE_NOMEM;

btree_rb.c  view on Meta::CPAN

          pNode->pParent = pCur->pNode;
          pCur->pNode->pLeft = pNode;
          break;
        default:
          assert(0);
      }
    }else{
      pCur->pTree->pHead = pNode;
    }

    /* Point the cursor at the node just inserted, as per SQLite requirements */
    pCur->pNode = pNode;

    /* A new node has just been inserted, so run the balancing code */
    do_insert_balancing(pCur->pTree, pNode);

    /* Set up a rollback-op in case we have to roll this operation back */
    if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
      BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
      if( pOp==0 ) return SQLITE_NOMEM;
      pOp->eOp = ROLLBACK_DELETE;

btree_rb.c  view on Meta::CPAN

    }

    /* Actually clobber the nodes data */
    pCur->pNode->pData = pData;
    pCur->pNode->nData = nData;
  }

  return SQLITE_OK;
}

/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than pKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches pKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than pKey.
*/
static int memRbtreeMoveto(
  RbtCursor* pCur,
  const void *pKey,
  int nKey,
  int *pRes
){
  BtRbNode *pTmp = 0;

  pCur->pNode = pCur->pTree->pHead;
  *pRes = -1;
  while( pCur->pNode && *pRes ) {
    *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
    pTmp = pCur->pNode;
    switch( *pRes ){
      case 1:    /* cursor > key */
        pCur->pNode = pCur->pNode->pLeft;
        break;
      case -1:   /* cursor < key */
        pCur->pNode = pCur->pNode->pRight;
        break;
    }
  } 

  /* If (pCur->pNode == NULL), then we have failed to find a match. Set
   * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
   * last node traversed in the search. In either case the relation ship
   * between pTmp and the searched for key is already stored in *pRes. pTmp is
   * either the successor or predecessor of the key we tried to move to. */
  if( !pCur->pNode ) pCur->pNode = pTmp;
  pCur->eSkip = SKIP_NONE;

  return SQLITE_OK;
}


/*
** Delete the entry that the cursor is pointing to.
**
** The cursor is left pointing at either the next or the previous
** entry.  If the cursor is left pointing to the next entry, then 
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to 
** sqliteRbtreeNext() to be a no-op.  That way, you can always call
** sqliteRbtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry.  Similarly,
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
** the entry prior to the deleted entry so that a subsequent call to
** sqliteRbtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
static int memRbtreeDelete(RbtCursor* pCur)
{
  BtRbNode *pZ;      /* The one being deleted */
  BtRbNode *pChild;  /* The child of the spliced out node */

  /* It is illegal to call sqliteRbtreeDelete() if we are
  ** not in a transaction */
  assert( pCur->pRbtree->eTransState != TRANS_NONE );

  /* Make sure some other cursor isn't trying to read this same table */
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  pZ = pCur->pNode;
  if( !pZ ){
    return SQLITE_OK;
  }

  /* If we are not currently doing a rollback, set up a rollback op for this 

btree_rb.c  view on Meta::CPAN

  if( pCur->pNode ){
    *pRes = 0;
  }else{
    *pRes = 1;
  }
  pCur->eSkip = SKIP_NONE;
  return SQLITE_OK;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int memRbtreeNext(RbtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
    if( pCur->pNode->pRight ){
      pCur->pNode = pCur->pNode->pRight;
      while( pCur->pNode->pLeft )
        pCur->pNode = pCur->pNode->pLeft;

build.c  view on Meta::CPAN

char *sqliteTableNameFromToken(Token *pName){
  char *zName = sqliteStrNDup(pName->z, pName->n);
  sqliteDequote(zName);
  return zName;
}

/*
** Generate code to open the appropriate master table.  The table
** opened will be SQLITE_MASTER for persistent tables and 
** SQLITE_TEMP_MASTER for temporary tables.  The table is opened
** on cursor 0.
*/
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
  sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
  sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
}

/*
** Begin constructing a new table representation in memory.  This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement.  In particular, this routine is called

build.c  view on Meta::CPAN

    }else{
      sqliteDequote(*pz);
    }
  }
  pList->a[pList->nSrc].iCursor = -1;
  pList->nSrc++;
  return pList;
}

/*
** Assign cursors to all tables in a SrcList
*/
void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
  int i;
  for(i=0; i<pList->nSrc; i++){
    if( pList->a[i].iCursor<0 ){
      pList->a[i].iCursor = pParse->nTab++;
    }
  }
}

delete.c  view on Meta::CPAN

  if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
    goto delete_from_cleanup;
  }

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
    goto delete_from_cleanup;
  }

  /* Allocate a cursor used to store the old.* data for a trigger.
  */
  if( row_triggers_exist ){ 
    oldIdx = pParse->nTab++;
  }

  /* Resolve the column names in all the expressions.
  */
  assert( pTabList->nSrc==1 );
  iCur = pTabList->a[0].iCursor = pParse->nTab++;
  if( pWhere ){

delete.c  view on Meta::CPAN

      if( !isView ){
        sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      }

      sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1, 
          oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
	  addr);
    }

    if( !isView ){
      /* Open cursors for the table we are deleting from and all its
      ** indices.  If there are row triggers, this happens inside the
      ** OP_ListRead loop because the cursor have to all be closed
      ** before the trigger fires.  If there are no row triggers, the
      ** cursors are opened only once on the outside the loop.
      */
      pParse->nTab = iCur + 1;
      sqliteOpenTableAndIndices(pParse, pTab, iCur);

      /* This is the beginning of the delete loop when there are no
      ** row triggers */
      if( !row_triggers_exist ){ 
        addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
      }

      /* Delete the row */
      sqliteGenerateRowDelete(db, v, pTab, iCur, pParse->trigStack==0);
    }

    /* If there are row triggers, close all cursors then invoke
    ** the AFTER triggers
    */
    if( row_triggers_exist ){
      if( !isView ){
        for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
          sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
        }
        sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      }
      sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1, 
          oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
	  addr);
    }

    /* End of the delete loop */
    sqliteVdbeAddOp(v, OP_Goto, 0, addr);
    sqliteVdbeResolveLabel(v, end);
    sqliteVdbeAddOp(v, OP_ListReset, 0, 0);

    /* Close the cursors after the loop if there are no row triggers */
    if( !row_triggers_exist ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      pParse->nTab = iCur;
    }
  }
  sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
  sqliteEndWriteOperation(pParse);

delete.c  view on Meta::CPAN

  return;
}

/*
** This routine generates VDBE code that causes a single row of a
** single table to be deleted.
**
** The VDBE must be in a particular state when this routine is called.
** These are the requirements:
**
**   1.  A read/write cursor pointing to pTab, the table containing the row
**       to be deleted, must be opened as cursor number "base".
**
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number base+i for the i-th index.
**
**   3.  The record number of the row to be deleted must be on the top
**       of the stack.
**
** This routine pops the top of the stack to remove the record number
** and then generates code to remove both the table record and all index
** entries that point to that record.
*/
void sqliteGenerateRowDelete(
  sqlite *db,        /* The database containing the index */

delete.c  view on Meta::CPAN

  sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
}

/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.
**
** The VDBE must be in a particular state when this routine is called.
** These are the requirements:
**
**   1.  A read/write cursor pointing to pTab, the table containing the row
**       to be deleted, must be opened as cursor number "iCur".
**
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number iCur+i for the i-th index.
**
**   3.  The "iCur" cursor must be pointing to the row that is to be
**       deleted.
*/
void sqliteGenerateRowIndexDelete(
  sqlite *db,        /* The database containing the index */
  Vdbe *v,           /* Generate code into this VDBE */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  char *aIdxUsed     /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
){
  int i;

expr.c  view on Meta::CPAN

}

/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database holding
**                         the table.
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->dataType      Set to the appropriate data type for the column.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The pDbToken is the name of the database (the "X").  This value may be
** NULL meaning that name is of the form Y.Z or Z.  Any available database
** can be used.  The pTableToken is the name of the table (the "Y").  This

expr.c  view on Meta::CPAN

  return cnt!=1;
}

/*
** This routine walks an expression tree and resolves references to
** table columns.  Nodes of the form ID.ID or ID resolve into an
** index to the table in the table list and a column offset.  The 
** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
** value is changed to the index of the referenced table in pTabList
** plus the "base" value.  The base value will ultimately become the
** VDBE cursor number for a cursor that is pointing into the referenced
** table.  The Expr.iColumn value is changed to the index of the column 
** of the referenced table.  The Expr.iColumn value for the special
** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
** alias for ROWID.
**
** We also check for instances of the IN operator.  IN comes in two
** forms:
**
**           expr IN (exprlist)
** and

expr.c  view on Meta::CPAN

    case TK_IN: {
      Vdbe *v = sqliteGetVdbe(pParse);
      if( v==0 ) return 1;
      if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
        return 1;
      }
      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into a temporary
        ** table.  The cursor number of the temporary table has already
        ** been put in iTable by sqliteExprResolveInSelect().
        */
        pExpr->iTable = pParse->nTab++;
        sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
        sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
      }else if( pExpr->pList ){
        /* Case 2:     expr IN (exprlist)
        **
        ** Create a set to put the exprlist values in.  The Set id is stored
        ** in iTable.

insert.c  view on Meta::CPAN

**
** The pList parameter holds EXPRLIST in the first form of the INSERT
** statement above, and pSelect is NULL.  For the second form, pList is
** NULL and pSelect is a pointer to the select statement used to generate
** data for the insert.
**
** The code generated follows one of three templates.  For a simple
** select with data coming from a VALUES clause, the code executes
** once straight down through.  The template looks like this:
**
**         open write cursor to <table> and its indices
**         puts VALUES clause expressions onto the stack
**         write the resulting record into <table>
**         cleanup
**
** If the statement is of the form
**
**   INSERT INTO <table> SELECT ...
**
** And the SELECT clause does not read from <table> at any time, then
** the generated code follows this template:
**
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           gosub C
**         end loop
**         cleanup after the SELECT
**         goto D
**      B: open write cursor to <table> and its indices
**         goto A
**      C: insert the select result into <table>
**         return
**      D: cleanup
**
** The third template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT.  In the third form,
** we have to use a intermediate table to store the results of
** the select.  The template is like this:
**
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           gosub C
**         end loop
**         cleanup after the SELECT
**         goto D
**      C: insert the select result into the intermediate table
**         return
**      B: open a cursor to an intermediate table
**         goto A
**      D: open write cursor to <table> and its indices
**         loop over the intermediate table
**           transfer values form intermediate table into <table>
**         end the loop
**         cleanup
*/
void sqliteInsert(
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  ExprList *pList,      /* List of values to be inserted */
  Select *pSelect,      /* A SELECT statement to use as the data source */

insert.c  view on Meta::CPAN

  int i, j, idx;        /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */
  int base;             /* VDBE Cursor number for pTab */
  int iCont, iBreak;    /* Beginning and end of the loop over srcTab */
  sqlite *db;           /* The main database structure */
  int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable;     /* Store SELECT results in intermediate table */
  int srcTab;           /* Data comes from this temporary cursor if >=0 */
  int iSelectLoop;      /* Address of code that implements the SELECT */
  int iCleanup;         /* Address of the cleanup code */
  int iInsertBlock;     /* Address of the subroutine used to insert data */
  int iCntMem;          /* Memory cell used for the row counter */
  int isView;           /* True if attempting to insert into a view */

  int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
  int before_triggers;        /* True if there are BEFORE triggers */
  int after_triggers;         /* True if there are AFTER triggers */
  int newIdx = -1;            /* Cursor for the NEW table */

insert.c  view on Meta::CPAN

**  UNIQUE           REPLACE      The other row that conflicts with the row
**                                being inserted is removed.
**
**  CHECK            REPLACE      Illegal.  The results in an exception.
**
** Which action to take is determined by the overrideError parameter.
** Or if overrideError==OE_Default, then the pParse->onError parameter
** is used.  Or if pParse->onError==OE_Default then the onError value
** for the constraint is used.
**
** The calling routine must open a read/write cursor for pTab with
** cursor number "base".  All indices of pTab must also have open
** read/write cursors with cursor number base+i for the i-th cursor.
** Except, if there is no possibility of a REPLACE action then
** cursors do not need to be open for indices where aIdxUsed[i]==0.
**
** If the isUpdate flag is true, it means that the "base" cursor is
** initially pointing to an entry that is being updated.  The isUpdate
** flag causes extra code to be generated so that the "base" cursor
** is still pointing at the same entry after the routine returns.
** Without the isUpdate flag, the "base" cursor might be moved.
*/
void sqliteGenerateConstraintChecks(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int base,           /* Index of a read/write cursor pointing at pTab */
  char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
  int recnoChng,      /* True if the record number will change */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int overrideError,  /* Override onError to this if not OE_Default */
  int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
){
  int i;
  Vdbe *v;
  int nCol;
  int onError;

insert.c  view on Meta::CPAN

** The stack must contain keys for all active indices followed by data
** and the recno for the new entry.  This routine creates the new
** entries in all indices and in the main table.
**
** The arguments to this routine should be the same as the first six
** arguments to sqliteGenerateConstraintChecks.
*/
void sqliteCompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int base,           /* Index of a read/write cursor pointing at pTab */
  char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
  int recnoChng,      /* True if the record number will change */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int newIdx          /* Index of NEW table for triggers.  -1 if none */
){
  int i;
  Vdbe *v;
  int nIdx;
  Index *pIdx;

insert.c  view on Meta::CPAN

  }
  sqliteVdbeAddOp(v, OP_PutIntKey, base,
    (pParse->trigStack?0:OPFLAG_NCHANGE) |
    (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
  if( isUpdate && recnoChng ){
    sqliteVdbeAddOp(v, OP_Pop, 1, 0);
  }
}

/*
** Generate code that will open write cursors for a table and for all
** indices of that table.  The "base" parameter is the cursor number used
** for the table.  Indices are opened on subsequent cursors.
**
** Return the total number of cursors opened.  This is always at least
** 1 (for the main table) plus more for each cursor.
*/
int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
  int i;
  Index *pIdx;
  Vdbe *v = sqliteGetVdbe(pParse);
  assert( v!=0 );
  sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);

main.c  view on Meta::CPAN

  initData.pzErrMsg = pzErrMsg;
  sqliteInitCallback(&initData, 5, (char **)azArg, 0);
  pTab = sqliteFindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->readOnly = 1;
  }else{
    return SQLITE_NOMEM;
  }
  sqliteSafetyOn(db);

  /* Create a cursor to hold the database open
  */
  if( db->aDb[iDb].pBt==0 ) return SQLITE_OK;
  rc = sqliteBtreeCursor(db->aDb[iDb].pBt, 2, 0, &curMain);
  if( rc ){
    sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
    return rc;
  }

  /* Get the database meta information
  */

select.c  view on Meta::CPAN

}

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine make the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
  if( pExpr==0 ) return;
  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;

select.c  view on Meta::CPAN

  Parse *pParse,       /* The parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg,           /* True if outer SELECT uses aggregate functions */
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
){
  Select *pSub;       /* The inner query or "subquery" */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int i;
  Expr *pWhere;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
  if( p==0 ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  pSub = pSrc->a[iFrom].pSelect;
  assert( pSub!=0 );

select.c  view on Meta::CPAN

      && pSub->pWhere!=0 ){
    return 0;
  }

  /* If we reach this point, it means flattening is permitted for the
  ** iFrom-th entry of the FROM clause in the outer query.
  */

  /* Move all of the FROM elements of the subquery into the
  ** the FROM clause of the outer query.  Before doing this, remember
  ** the cursor number for the original outer query FROM element in
  ** iParent.  The iParent cursor will never be used.  Subsequent code
  ** will scan expressions looking for iParent references and replace
  ** those references with expressions that resolve to the subquery FROM
  ** elements we are now copying in.
  */
  iParent = pSrc->a[iFrom].iCursor;
  {
    int nSubSrc = pSubSrc->nSrc;
    int jointype = pSrc->a[iFrom].jointype;

    if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){

select.c  view on Meta::CPAN

**
** The results are distributed in various ways depending on the
** value of eDest and iParm.
**
**     eDest Value       Result
**     ------------    -------------------------------------------
**     SRT_Callback    Invoke the callback for each row of the result.
**
**     SRT_Mem         Store first result in memory cell iParm
**
**     SRT_Set         Store results as keys of a table with cursor iParm
**
**     SRT_Union       Store results as a key in a temporary table iParm
**
**     SRT_Except      Remove results from the temporary table iParm.
**
**     SRT_Table       Store results in temporary table iParm
**
** The table above is incomplete.  Additional eDist value have be added
** since this comment was written.  See the selectInnerLoop() function for
** a complete listing of the allowed values of eDest and their meanings.

select.c  view on Meta::CPAN


  /* Make local copies of the parameters for this query.
  */
  pTabList = p->pSrc;
  pWhere = p->pWhere;
  pOrderBy = p->pOrderBy;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  isDistinct = p->isDistinct;

  /* Allocate VDBE cursors for each table in the FROM clause
  */
  sqliteSrcListAssignCursors(pParse, pTabList);

  /* 
  ** Do not even attempt to generate any code if we have already seen
  ** errors before this routine starts.
  */
  if( pParse->nErr>0 ) goto select_end;

  /* Expand any "*" terms in the result set.  (For example the "*" in

select.c  view on Meta::CPAN

  switch( eDest ){
    case SRT_Union:
    case SRT_Except:
    case SRT_Discard:
      pOrderBy = 0;
      break;
    default:
      break;
  }

  /* At this point, we should have allocated all the cursors that we
  ** need to handle subquerys and temporary tables.  
  **
  ** Resolve the column names and do a semantics check on all the expressions.
  */
  for(i=0; i<pEList->nExpr; i++){
    if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
      goto select_end;
    }
    if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
      goto select_end;

sqliteInt.h  view on Meta::CPAN

** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table.  Table.hasPrimKey is true if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file.  If Table.iDb is the index of the database table backend
** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
** holds temporary tables and indices.  If Table.isTransient
** is true, then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed.  In this case Table.tnum 
** refers VDBE cursor number that holds the table open, not to the root
** page number.  Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause 
** of a SELECT statement.
*/
struct Table {
  char *zName;     /* Name of the table */
  int nCol;        /* Number of columns in this table */
  Column *aCol;    /* Information about each column */
  int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
  Index *pIndex;   /* List of SQL indexes on this table. */

sqliteInt.h  view on Meta::CPAN

** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
** of argument if the expression is a function.
**
** Expr.token is the operator token for this node.  For some expressions
** that have subexpressions, Expr.token can be the complete text that gave
** rise to the Expr.  In the latter case, the token is marked as being
** a compound token.
**
** An expression of the form ID or ID.ID refers to a column in a table.
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
** the integer cursor number of a VDBE cursor pointing to that table and
** Expr.iColumn is the column number for the specific column.  If the
** expression is used as a result in an aggregate SELECT, then the
** value is also stored in the Expr.iAgg column in the aggregate so that
** it can be accessed after all aggregates are computed.
**
** If the expression is a function, the Expr.iTable is an integer code
** representing which function.  If the expression is an unbound variable
** marker (a question mark character '?' in the original SQL) then the
** Expr.iTable holds the index number for that variable.
**

sqliteInt.h  view on Meta::CPAN

struct SrcList {
  i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
  i16 nAlloc;      /* Number of entries allocated in a[] below */
  struct SrcList_item {
    char *zDatabase;  /* Name of database holding this table */
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
    int jointype;     /* Type of join between this table and the next */
    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
  } a[1];             /* One entry for each identifier on the list */
};

/*
** Permitted values of the SrcList.a.jointype field
*/
#define JT_INNER     0x0001    /* Any kind of inner or cross join */
#define JT_NATURAL   0x0002    /* True for a "natural" join */

sqliteInt.h  view on Meta::CPAN

  Token sLastToken;    /* The last token parsed */
  const char *zTail;   /* All SQL text past the last semicolon parsed */
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  u8 nameClash;        /* A permanent table name clashes with temp table name */
  u8 useAgg;           /* If true, extract field values from the aggregator
                       ** while generating expressions.  Normally false */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  int nAgg;            /* Number of aggregate expressions */
  int nVar;            /* Number of '?' variables seen in the SQL so far */
  AggExpr *aAgg;       /* An array of aggregate expressions */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  TriggerStack *trigStack;  /* Trigger actions being coded */
};

sqliteInt.h  view on Meta::CPAN

  TriggerStep * pNext; /* Next in the link-list */
};

/*
 * An instance of struct TriggerStack stores information required during code
 * generation of a single trigger program. While the trigger program is being
 * coded, its associated TriggerStack instance is pointed to by the
 * "pTriggerStack" member of the Parse structure.
 *
 * The pTab member points to the table that triggers are being coded on. The 
 * newIdx member contains the index of the vdbe cursor that points at the temp
 * table that stores the new.* references. If new.* references are not valid
 * for the trigger being coded (for example an ON DELETE trigger), then newIdx
 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
 *
 * The ON CONFLICT policy to be used for the trigger program steps is stored 
 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 
 * specified for individual triggers steps is used.
 *
 * struct TriggerStack has a "pNext" member, to allow linked lists to be
 * constructed. When coding nested triggers (triggers fired by other triggers)

sqliteInt.h  view on Meta::CPAN

 * pointer. Once the nested trigger has been coded, the pNext value is restored
 * to the pTriggerStack member of the Parse stucture and coding of the parent
 * trigger continues.
 *
 * Before a nested trigger is coded, the linked list pointed to by the 
 * pTriggerStack is scanned to ensure that the trigger is not about to be coded
 * recursively. If this condition is detected, the nested trigger is not coded.
 */
struct TriggerStack {
  Table *pTab;         /* Table that triggers are currently being coded on */
  int newIdx;          /* Index of vdbe cursor to "new" temp table */
  int oldIdx;          /* Index of vdbe cursor to "old" temp table */
  int orconf;          /* Current orconf policy */
  int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
  Trigger *pTrigger;   /* The trigger currently being coded */
  TriggerStack *pNext; /* Next trigger down on the trigger stack */
};

/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.  

t/30insertfetch.t  view on Meta::CPAN

    #   Insert a row into the test table.......
    #
    Test($state or $dbh->do("INSERT INTO $table"
			    . " VALUES(1, 'Alligator Descartes', 1111,"
			    . " 'Some Text')"), 'insert')
	or DbiError($dbh->err, $dbh->errstr);

    #
    #   Now, try SELECT'ing the row out. 
    #
    Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"
					   . " WHERE id = 1"),
	 'prepare select')
	or DbiError($dbh->err, $dbh->errstr);
    
    Test($state or $cursor->execute, 'execute select')
	or DbiError($cursor->err, $cursor->errstr);
    
    my ($row, $errstr);
    Test($state or (defined($row = $cursor->fetchrow_arrayref)  &&
		    !($cursor->errstr)), 'fetch select')
	or DbiError($cursor->err, $cursor->errstr);
    
    Test($state or ($row->[0] == 1 &&
                    $row->[1] eq 'Alligator Descartes' &&    
                    $row->[2] == 1111 &&    
                    $row->[3] eq 'Some Text'), 'compare select')
	or DbiError($cursor->err, $cursor->errstr);
    
    Test($state or $cursor->finish, 'finish select')
	or DbiError($cursor->err, $cursor->errstr);
    
    Test($state or undef $cursor || 1, 'undef select');
    
    #
    #   ...and delete it........
    #
    Test($state or $dbh->do("DELETE FROM $table WHERE id = 1"), 'delete')
	or DbiError($dbh->err, $dbh->errstr);

    #
    #   Now, try SELECT'ing the row out. This should fail.
    #
    Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"
					   . " WHERE id = 1"),
	 'prepare select deleted')
	or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute, 'execute select deleted')
	or DbiError($cursor->err, $cursor->errstr);

    Test($state or (!defined($row = $cursor->fetchrow_arrayref)  &&
		    (!defined($errstr = $cursor->errstr) ||
		     $cursor->errstr eq '')), 'fetch select deleted')
	or DbiError($cursor->err, $cursor->errstr);

    Test($state or $cursor->finish, 'finish select deleted')
	or DbiError($cursor->err, $cursor->errstr);

    Test($state or undef $cursor || 1, 'undef select deleted');


    #
    #   Finally drop the test table.
    #
    Test($state or $dbh->do("DROP TABLE $table"), 'drop')
	or DbiError($dbh->err, $dbh->errstr);

}

t/40bindparam.t  view on Meta::CPAN

    #
    #   Create a new table; EDIT THIS!
    #
    Test($state or ($def = TableDefinition($table,
					   ["id",   "INTEGER",  4, 0],
					   ["name", "CHAR",    64, $COL_NULLABLE]) and
		    $dbh->do($def)), 'create', $def)
	or DbiError($dbh->err, $dbh->errstr);


    Test($state or $cursor = $dbh->prepare("INSERT INTO $table"
	                                   . " VALUES (?, ?)"), 'prepare')
	or DbiError($dbh->err, $dbh->errstr);

    #
    #   Insert some rows
    #

    my $konig = "Andreas K\xf6nig";
    # warn("Konig: $konig\n");

    # Automatic type detection
    my $numericVal = 1;
    my $charVal = "Alligator Descartes";
    Test($state or $cursor->execute($numericVal, $charVal), 'execute insert 1')
	or DbiError($dbh->err, $dbh->errstr);

    # Does the driver remember the automatically detected type?
    Test($state or $cursor->execute("3", "Jochen Wiedmann"),
	 'execute insert num as string')
	or DbiError($dbh->err, $dbh->errstr);
    $numericVal = 2;
    $charVal = "Tim Bunce";
    Test($state or $cursor->execute($numericVal, $charVal), 'execute insert 2')
	or DbiError($dbh->err, $dbh->errstr);

    # Now try the explicit type settings
    Test($state or $cursor->bind_param(1, " 4", SQL_INTEGER()), 'bind 1')
	or DbiError($dbh->err, $dbh->errstr);
    Test($state or $cursor->bind_param(2, $konig), 'bind 2')
	or DbiError($dbh->err, $dbh->errstr);
    Test($state or $cursor->execute, 'execute binds')
	or DbiError($dbh->err, $dbh->errstr);

    # Works undef -> NULL?
    Test($state or $cursor->bind_param(1, 5, SQL_INTEGER()))
	or DbiError($dbh->err, $dbh->errstr);
    Test($state or $cursor->bind_param(2, undef))
	or DbiError($dbh->err, $dbh->errstr);
    Test($state or $cursor->execute)
 	or DbiError($dbh->err, $dbh->errstr);


    Test($state or $cursor -> finish, 'finish');

    Test($state or undef $cursor  ||  1, 'undef cursor');

    Test($state or $dbh -> disconnect, 'disconnect');

    Test($state or undef $dbh  ||  1, 'undef dbh');

    #
    #   And now retreive the rows using bind_columns
    #
    #
    #   Connect to the database
    #
    Test($state or $dbh = DBI->connect($test_dsn, $test_user, $test_password),
	 'connect for read')
	or ServerError();

    # $dbh->{NoUTF8Flag} = 1 if $] > 5.007;

    Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"
					   . " ORDER BY id"))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->bind_columns(undef, \$id, \$name))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($ref = $cursor->fetch)  &&  $id == 1  &&
	 $name eq 'Alligator Descartes')
	or printf("Query returned id = %s, name = %s, ref = %s, %d\n",
		  $id, $name, $ref, scalar(@$ref));

    Test($state or (($ref = $cursor->fetch)  &&  $id == 2  &&
		    $name eq 'Tim Bunce'))
	or printf("Query returned id = %s, name = %s, ref = %s, %d\n",
		  $id, $name, $ref, scalar(@$ref));

    Test($state or (($ref = $cursor->fetch)  &&  $id == 3  &&
		    $name eq 'Jochen Wiedmann'))
	or printf("Query returned id = %s, name = %s, ref = %s, %d\n",
		  $id, $name, $ref, scalar(@$ref));

    # warn("Konig: $konig\n");
    Test($state or (($ref = $cursor->fetch)  &&  $id == 4 &&
                   $name eq $konig))
	or printf("Query returned id = %s, name = %s, ref = %s, %d\n",
		  $id, $name, $ref, scalar(@$ref));

    # warn("$konig == $name ?\n");
    Test($state or (($ref = $cursor->fetch)  &&  $id == 5  &&
		    !defined($name)))
	or printf("Query returned id = %s, name = %s, ref = %s, %d\n",
		  $id, $name, $ref, scalar(@$ref));

    Test($state or undef $cursor  or  1);

    #
    #   Finally drop the test table.
    #
    Test($state or $dbh->do("DROP TABLE $table"))
	   or DbiError($dbh->err, $dbh->errstr);
}

t/40blobs.t  view on Meta::CPAN

		print OUT $query, "\n";
		close(OUT);
	    }
	}
        Test($state or $dbh->do($query,undef,$blob))
           or DbiError($dbh->err, $dbh->errstr);

	#
	#   Now, try SELECT'ing the row out.
	#
	Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"
					       . " WHERE id = 1"))
	       or DbiError($dbh->err, $dbh->errstr);

	Test($state or $cursor->execute)
	       or DbiError($dbh->err, $dbh->errstr);

	Test($state or (defined($row = $cursor->fetchrow_arrayref)))
	    or DbiError($cursor->err, $cursor->errstr);

	Test($state or (@$row == 2  &&  $$row[0] == 1  &&  $$row[1] eq $blob))
	    or (ShowBlob($blob),
		ShowBlob(defined($$row[1]) ? $$row[1] : ""));

	Test($state or $cursor->finish)
	    or DbiError($cursor->err, $cursor->errstr);

	Test($state or undef $cursor || 1)
	    or DbiError($cursor->err, $cursor->errstr);

	#
	#   Finally drop the test table.
	#
	Test($state or $dbh->do("DROP TABLE $table"))
	    or DbiError($dbh->err, $dbh->errstr);
    }
}

t/40listfields.t  view on Meta::CPAN

	   or DbiError($dbh->err, $dbh->errstr);

    #
    #   Create a new table
    #
    Test($state or ($def = TableDefinition($table, @table_def),
		    $dbh->do($def)))
	   or DbiError($dbh->err, $dbh->errstr);


    Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
	   or DbiError($cursor->err, $cursor->errstr);

    my $res;
    Test($state or (($res = $cursor->{'NUM_OF_FIELDS'}) == @table_def))
	   or DbiError($cursor->err, $cursor->errstr);
    if (!$state && $verbose) {
	printf("Number of fields: %s\n", defined($res) ? $res : "undef");
    }

    Test($state or ($ref = $cursor->{'NAME'})  &&  @$ref == @table_def
	            &&  (lc $$ref[0]) eq $table_def[0][0]
		    &&  (lc $$ref[1]) eq $table_def[1][0])
	   or DbiError($cursor->err, $cursor->errstr);
    if (!$state && $verbose) {
	print "Names:\n";
	for ($i = 0;  $i < @$ref;  $i++) {
	    print "    ", $$ref[$i], "\n";
	}
    }

    Test($state  or  ($dbdriver eq 'CSV') or ($dbdriver eq 'ConfFile')
        or ($dbdriver eq 'SQLite2')
	 or ($ref = $cursor->{'NULLABLE'})  &&  @$ref == @table_def
	     &&  !($$ref[0] xor ($table_def[0][3] & $COL_NULLABLE))
	     &&  !($$ref[1] xor ($table_def[1][3] & $COL_NULLABLE)))
	   or DbiError($cursor->err, $cursor->errstr);
    if (!$state && $verbose) {
	print "Nullable:\n";
	for ($i = 0;  $i < @$ref;  $i++) {
	    print "    ", ($$ref[$i] & $COL_NULLABLE) ? "yes" : "no", "\n";
	}
    }

    Test($state or undef $cursor  ||  1);


    #
    #  Drop the test table
    #
    Test($state or ($cursor = $dbh->prepare("DROP TABLE $table")))
	or DbiError($dbh->err, $dbh->errstr);
    Test($state or $cursor->execute)
	or DbiError($cursor->err, $cursor->errstr);

    #  NUM_OF_FIELDS should be zero (Non-Select)
    Test($state or ($cursor->{'NUM_OF_FIELDS'} == 0))
	or !$verbose or printf("NUM_OF_FIELDS is %s, not zero.\n",
			       $cursor->{'NUM_OF_FIELDS'});
    Test($state or (undef $cursor) or 1);
}

t/40nulls.t  view on Meta::CPAN



    #
    #   Test whether or not a field containing a NULL is returned correctly
    #   as undef, or something much more bizarre
    #
    Test($state or $dbh->do("INSERT INTO $table VALUES"
	                    . " ( NULL, 'NULL-valued id' )"))
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor = $dbh->prepare("SELECT * FROM $table"
	                                   . " WHERE " . IsNull("id")))
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($rv = $cursor->fetchrow_arrayref) or $dbdriver eq 'CSV'
	 or $dbdriver eq 'ConfFile')
	or DbiError($dbh->err, $dbh->errstr);

    Test($state or (!defined($$rv[0])  and  defined($$rv[1])) or
	 $dbdriver eq 'CSV' or $dbdriver eq 'ConfFile')
	or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->finish)
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or undef $cursor  ||  1);


    #
    #   Finally drop the test table.
    #
    Test($state or $dbh->do("DROP TABLE $table"))
	   or DbiError($dbh->err, $dbh->errstr);

}

t/40numrows.t  view on Meta::CPAN

    #   This section should exercise the sth->rows
    #   method by preparing a statement, then finding the
    #   number of rows within it.
    #   Prior to execution, this should fail. After execution, the
    #   number of rows affected by the statement will be returned.
    #
    Test($state or $dbh->do("INSERT INTO $table"
			    . " VALUES( 1, 'Alligator Descartes' )"))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($cursor = $dbh->prepare("SELECT * FROM $table"
					   . " WHERE id = 1")))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($numrows = TrueRows($cursor)) == 1)
        	or ErrMsgF("Expected to fetch 1 rows, got %s.\n", $numrows);

    Test($state or $cursor->finish)
           or DbiError($dbh->err, $dbh->errstr);

    Test($state or undef $cursor or 1);

    Test($state or $dbh->do("INSERT INTO $table"
			    . " VALUES( 2, 'Jochen Wiedmann' )"))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($cursor = $dbh->prepare("SELECT * FROM $table"
					    . " WHERE id >= 1")))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($numrows = TrueRows($cursor)) == 2)
        	or ErrMsgF("Expected to fetch 2 rows, got %s.\n", $numrows);

    Test($state or $cursor->finish)
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or undef $cursor or 1);

    Test($state or $dbh->do("INSERT INTO $table"
			    . " VALUES(3, 'Tim Bunce')"))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($cursor = $dbh->prepare("SELECT * FROM $table"
					    . " WHERE id >= 2")))
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or $cursor->execute)
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or ($numrows = TrueRows($cursor)) == 2)
	       or ErrMsgF("Expected to fetch 2 rows, got %s.\n", $numrows);

    # RT #16451 fetchrow() is called again after it has returned an
    #  empty list
    Test($state or !TrueRows($cursor))
	       or ErrMsgF("Expected to fetch 0 rows\n");

    Test($state or $cursor->finish)
	   or DbiError($dbh->err, $dbh->errstr);

    Test($state or undef $cursor or 1);

    #
    #   Finally drop the test table.
    #
    Test($state or $dbh->do("DROP TABLE $table"))
	   or DbiError($dbh->err, $dbh->errstr);

}

trigger.c  view on Meta::CPAN


  return 0;
}

/*
** This is called to code FOR EACH ROW triggers.
**
** When the code that this function generates is executed, the following 
** must be true:
**
** 1. No cursors may be open in the main database.  (But newIdx and oldIdx
**    can be indices of cursors in temporary tables.  See below.)
**
** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
**    a temporary vdbe cursor (index newIdx) must be open and pointing at
**    a row containing values to be substituted for new.* expressions in the
**    trigger program(s).
**
** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
**    a temporary vdbe cursor (index oldIdx) must be open and pointing at
**    a row containing values to be substituted for old.* expressions in the
**    trigger program(s).
**
*/
int sqliteCodeRowTrigger(
  Parse *pParse,       /* Parse context */
  int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
  ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
  int tr_tm,           /* One of TK_BEFORE, TK_AFTER */
  Table *pTab,         /* The table to code triggers from */

update.c  view on Meta::CPAN

  }
  if( isView ){
    if( sqliteViewGetColumnNames(pParse, pTab) ){
      goto update_cleanup;
    }
  }
  aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
  if( aXRef==0 ) goto update_cleanup;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

  /* If there are FOR EACH ROW triggers, allocate cursors for the
  ** special OLD and NEW tables
  */
  if( row_triggers_exist ){
    newIdx = pParse->nTab++;
    oldIdx = pParse->nTab++;
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }

  /* Resolve the column names in all the expressions of the
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each

update.c  view on Meta::CPAN

    /* The top of the update loop for when there are triggers.
    */
    sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
    sqliteVdbeAddOp(v, OP_StackDepth, 0, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iStackDepth, 1);
    loopStart = sqliteVdbeAddOp(v, OP_MemLoad, iStackDepth, 0);
    sqliteVdbeAddOp(v, OP_StackReset, 0, 0);
    jumpInst = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);

    /* Open a cursor and make it point to the record that is
    ** being updated.
    */
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
    }
    sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);

    /* Generate the OLD table

update.c  view on Meta::CPAN

        sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entires.
    ** So make the cursor point at the old record.
    */
    if( !row_triggers_exist ){
      sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
      jumpInst = loopStart = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    }
    sqliteVdbeAddOp(v, OP_NotExists, iCur, loopStart);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently

update.c  view on Meta::CPAN

    */
    sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( row_triggers_exist ){
    if( !isView ){
      for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
        if( openAll || aIdxUsed[i] )
          sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
      }
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      pParse->nTab = iCur;

vdbe.c  view on Meta::CPAN

** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_MoveTo or the OP_Next opcode.  The test
** procedures use this information to make sure that indices are
** working correctly.  This variable has no function other than to
** help verify the correct operation of the library.
*/
int sqlite_search_count = 0;

/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE.  When reaches zero, the SQLITE_Interrupt

vdbe.c  view on Meta::CPAN

      i++;
      break;
    }
  }
  zBuf[i]  = 0;
  return i>0 ? zBuf : 0;
}

/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors.  If there is not currently enough space, then
** allocate more.
**
** If a memory allocation error occurs, return 1.  Return 0 if
** everything works.
*/
static int expandCursorArraySize(Vdbe *p, int mxCursor){
  if( mxCursor>=p->nCursor ){
    Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
    if( aCsr==0 ) return 1;
    p->aCsr = aCsr;

vdbe.c  view on Meta::CPAN

    p->rc = SQLITE_INTERNAL;
    return SQLITE_ERROR;
  }
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 *
**
** Exit immediately.  All open cursors, Lists, Sorts, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite_exec().  For a normal
** halt, this should be SQLITE_OK (0).  For errors, it can be some
** other value.  If P1!=0 then P2 will determine whether or not to
** rollback the current transaction.  Do not rollback if P2==OE_Fail.
** Do the rollback if P2==OE_Rollback.  If P2==OE_Abort, then back
** out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**

vdbe.c  view on Meta::CPAN

  p->undoTransOnError = 1;
  break;
}

/* Opcode: Commit * * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to actually take effect.  No additional modifications
** are allowed until another transaction is started.  The Commit instruction
** deletes the journal file and releases the write lock on the database.
** A read lock continues to be held if there are still cursors open.
*/
case OP_Commit: {
  int i;
  if( db->xCommitCallback!=0 ){
    if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
    if( db->xCommitCallback(db->pCommitArg)!=0 ){
      rc = SQLITE_CONSTRAINT;
    }
    if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  }

vdbe.c  view on Meta::CPAN

**
** Cause all modifications to the database that have been made since the
** last Transaction to be undone. The database is restored to its state
** before the Transaction opcode was executed.  No additional modifications
** are allowed until another transaction is started.
**
** P1 is the index of the database file that is committed.  An index of 0
** is used for the main database and an index of 1 is used for the file used
** to hold temporary tables.
**
** This instruction automatically closes all cursors and releases both
** the read and write locks on the indicated database.
*/
case OP_Rollback: {
  sqliteRollbackAll(db);
  break;
}

/* Opcode: ReadCookie P1 P2 *
**
** Read cookie number P2 from database P1 and push it onto the stack.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( db->aDb[pOp->p1].pBt!=0 );
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  pTos++;
  pTos->i = aMeta[1+pOp->p2];

vdbe.c  view on Meta::CPAN

  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
    sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
    rc = SQLITE_SCHEMA;
  }
  break;
}

/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by an 
** integer from the top of the stack.  0 means the main database and
** 1 means the database used for temporary tables.  Give the new 
** cursor an identifier of P1.  The P1 values need not be contiguous
** but all P1 values should be small integers.  It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int busy = 0;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;

vdbe.c  view on Meta::CPAN

      default: {
        goto abort_due_to_error;
      }
    }
  }while( busy );
  break;
}

/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if 
** the main database is read-only.  The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P2==0 and to a BTree index
** if P2==1.  A BTree table must have an integer key and can have arbitrary
** data.  A BTree index has no data but can have an arbitrary key.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
*/

vdbe.c  view on Meta::CPAN

      }
    }else{
      rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
    }
  }
  break;
}

/* Opcode: OpenPseudo P1 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = &p->aCsr[i];
  sqliteVdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  break;
}

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
  int i = pOp->p1;
  if( i>=0 && i<p->nCursor ){
    sqliteVdbeCleanupCursor(&p->aCsr[i]);
  }
  break;
}

/* Opcode: MoveTo P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to an entry with a matching key.  If
** the table contains no record with a matching key, then the cursor
** is left pointing at the first record that is greater than the key.
** If there are no records greater than the key and P2 is not zero,
** then an immediate jump to P2 is made.
**
** See also: Found, NotFound, Distinct, MoveLt
*/
/* Opcode: MoveLt P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the entry with the largest key that is
** less than the key popped from the stack.
** If there are no records less than than the key and P2
** is not zero then an immediate jump to P2 is made.
**
** See also: MoveTo
*/
case OP_MoveLt:
case OP_MoveTo: {
  int i = pOp->p1;
  Cursor *pC;

vdbe.c  view on Meta::CPAN

    }
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key does
** not exist in the table of cursor P1, then jump to P2.  If the record
** does already exist, then fall thru.  The cursor is left pointing
** at the record if it exists. The key is not popped from the stack.
**
** This operation is similar to NotFound except that this operation
** does not pop the key from the stack.
**
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: Found P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key
** does exist in table of P1, then jump to P2.  If the record
** does not exist, then fall thru.  The cursor is left pointing
** to the record if it exists.  The key is popped from the stack.
**
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {

vdbe.c  view on Meta::CPAN

    pTos->i = v;
    pTos->flags = MEM_Int;
  }
  break;
}

/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
  int i = pOp->p1;

vdbe.c  view on Meta::CPAN

  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: NewRecno P1 * *
**
** Get a new integer record number used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is pushed 
** onto the stack.
*/
case OP_NewRecno: {
  int i = pOp->p1;
  int v = 0;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  if( (pC = &p->aCsr[i])->pCursor==0 ){
    v = 0;
  }else{

vdbe.c  view on Meta::CPAN

    pC->deferredMoveto = 0;
  }
  pTos++;
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be an integer.  The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
** stored for subsequent return by the sqlite_last_insert_rowid() function
** (otherwise it's unmodified).
*/
/* Opcode: PutStrKey P1 * *
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be a string.  The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
  Mem *pNos = &pTos[-1];

vdbe.c  view on Meta::CPAN

    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
  }
  popStack(&pTos, 2);
  break;
}

/* Opcode: Delete P1 P2 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/

vdbe.c  view on Meta::CPAN

** and resets csChange (current statement change count) to 0.
*/
case OP_SetCounts: {
  db->lsChange=db->csChange;
  db->csChange=0;
  break;
}

/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data.  This is used for
** processing compound selects.
*/
case OP_KeyAsData: {
  int i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  p->aCsr[i].keyAsData = pOp->p2;
  break;
}

/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
/* Opcode: RowKey P1 * *
**
** Push onto the stack the complete row key for cursor P1.
** There is no interpretation of the key.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
  int i = pOp->p1;
  Cursor *pC;
  int n;

  pTos++;
  assert( i>=0 && i<p->nCursor );

vdbe.c  view on Meta::CPAN

    pTos->z = pC->pData;
    pTos->flags = MEM_Str|MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
** a structure built using the MakeRecord instruction.
** (See the MakeRecord opcode for additional information about
** the format of the data.)
** Push onto the stack the value of the P2-th column contained
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
**
** If P1 is negative, then the record is stored on the stack rather
** than in a table.  For P1==-1, the top of the stack is used.
** For P1==-2, the next on the stack is used.  And so forth.  The
** value pushed is always just a pointer into the record which is
** stored further down on the stack.  The column value is not copied.
*/
case OP_Column: {

vdbe.c  view on Meta::CPAN

    sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
    v = keyToInt(v);
  }
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
**
** Compare this opcode to Recno.  The Recno opcode extracts the first
** 4 bytes of the key and pushes those bytes onto the stack as an
** integer.  This instruction pushes the entire key as a string.
**
** This opcode may not be used on a pseudo-table.
*/
case OP_FullKey: {
  int i = pOp->p1;

vdbe.c  view on Meta::CPAN

    }
    sqliteBtreeKey(pCrsr, 0, amt, z);
    pTos->z = z;
    pTos->n = amt;
  }
  break;
}

/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always push 
** a NULL onto the stack.
*/
case OP_NullRow: {
  int i = pOp->p1;

  assert( i>=0 && i<p->nCursor );
  p->aCsr[i].nullRow = 1;
  p->aCsr[i].recnoIsValid = 0;
  break;
}

vdbe.c  view on Meta::CPAN

      pc = pOp->p2 - 1;
    }
  }else{
    pC->nullRow = 0;
  }
  break;
}

/* Opcode: Next P1 P2 *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:
case OP_Next: {
  Cursor *pC;
  BtCursor *pCrsr;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = &p->aCsr[pOp->p1];

vdbe.c  view on Meta::CPAN

    }
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is greater than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is greater than or equal to 
** the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxLT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is less than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
  int i= pOp->p1;
  BtCursor *pCrsr;

vdbeInt.h  view on Meta::CPAN

** of the following structure.
*/
typedef struct VdbeOp Op;

/*
** Boolean values
*/
typedef unsigned char Bool;

/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree.  You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
** 
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
**
** If the Cursor.isTriggerRow flag is set it means that this cursor is
** really a single row that represents the NEW or OLD pseudo-table of
** a row trigger.  The data for the row is stored in Cursor.pData and
** the rowid is in Cursor.iKey.
*/
struct Cursor {
  BtCursor *pCursor;    /* The cursor structure of the backend */
  int lastRecno;        /* Last recno from a Next or NextIdx operation */
  int nextRowid;        /* Next rowid returned by OP_NewRowid */
  Bool recnoIsValid;    /* True if lastRecno is valid */
  Bool keyAsData;       /* The OP_Column command works on key instead of data */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool nextRowidValid;  /* True if the nextRowid field is valid */
  Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
  Bool deferredMoveto;  /* A call to sqliteBtreeMoveto() is needed */

vdbeInt.h  view on Meta::CPAN

  int nOpAlloc;       /* Number of slots allocated for aOp[] */
  Op *aOp;            /* Space to hold the virtual machine's program */
  int nLabel;         /* Number of labels used */
  int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
  int *aLabel;        /* Space to hold the labels */
  Mem *aStack;        /* The operand stack, except string values */
  Mem *pTos;          /* Top entry in the operand stack */
  char **zArgv;       /* Text values used by the callback */
  char **azColName;   /* Becomes the 4th parameter to callbacks */
  int nCursor;        /* Number of slots in aCsr[] */
  Cursor *aCsr;       /* One element of this array for each open cursor */
  Sorter *pSort;      /* A linked list of objects to be sorted */
  FILE *pFile;        /* At most one open file handler */
  int nField;         /* Number of file fields */
  char **azField;     /* Data for each file field */
  int nVar;           /* Number of entries in azVariable[] */
  char **azVar;       /* Values for the OP_Variable opcode */
  int *anVar;         /* Length of each value in azVariable[] */
  u8 *abVar;          /* TRUE if azVariable[i] needs to be sqliteFree()ed */
  char *zLine;            /* A single line from the input file */
  int nLineAlloc;         /* Number of spaces allocated for zLine */

vdbeaux.c  view on Meta::CPAN

*/
void sqliteVdbeKeylistFree(Keylist *p){
  while( p ){
    Keylist *pNext = p->pNext;
    sqliteFree(p);
    p = pNext;
  }
}

/*
** Close a cursor and release all the resources that cursor happens
** to hold.
*/
void sqliteVdbeCleanupCursor(Cursor *pCx){
  if( pCx->pCursor ){
    sqliteBtreeCloseCursor(pCx->pCursor);
  }
  if( pCx->pBt ){
    sqliteBtreeClose(pCx->pBt);
  }
  sqliteFree(pCx->pData);
  memset(pCx, 0, sizeof(Cursor));
}

/*
** Close all cursors
*/
static void closeAllCursors(Vdbe *p){
  int i;
  for(i=0; i<p->nCursor; i++){
    sqliteVdbeCleanupCursor(&p->aCsr[i]);
  }
  sqliteFree(p->aCsr);
  p->aCsr = 0;
  p->nCursor = 0;
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the azVariable[] array.
*/
static void Cleanup(Vdbe *p){
  int i;
  if( p->aStack ){
    Mem *pTos = p->pTos;
    while( pTos>=p->aStack ){
      if( pTos->flags & MEM_Dyn ){
        sqliteFree(pTos->z);

vdbeaux.c  view on Meta::CPAN

     int i;
  } ux;
  ux.zBuf[3] = x&0xff;
  ux.zBuf[2] = (x>>8)&0xff;
  ux.zBuf[1] = (x>>16)&0xff;
  ux.zBuf[0] = (x>>24)&0xff;
  return ux.i;
}

/*
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now.  Return an error code.  If no MoveTo is pending, this
** routine does nothing and returns SQLITE_OK.
*/
int sqliteVdbeCursorMoveto(Cursor *p){
  if( p->deferredMoveto ){
    int res;
    extern int sqlite_search_count;
    sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
    p->lastRecno = keyToInt(p->movetoTarget);
    p->recnoIsValid = res==0;

where.c  view on Meta::CPAN

                          ** p->pLeft is not the column of any table */
  short int idxRight;     /* p->pRight is a column in this table number. -1 if
                          ** p->pRight is not the column of any table */
  unsigned prereqLeft;    /* Bitmask of tables referenced by p->pLeft */
  unsigned prereqRight;   /* Bitmask of tables referenced by p->pRight */
  unsigned prereqAll;     /* Bitmask of tables referenced by p */
};

/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bitmasks.  The VDBE cursor numbers
** are small integers contained in SrcList_item.iCursor and Expr.iTable
** fields.  For any given WHERE clause, we want to track which cursors
** are being used, so we assign a single bit in a 32-bit word to track
** that cursor.  Then a 32-bit integer is able to show the set of all
** cursors being used.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
  int n;          /* Number of assigned cursor values */
  int ix[31];     /* Cursor assigned to each bit */
};

/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))

/*
** This routine is used to divide the WHERE expression into subexpressions

where.c  view on Meta::CPAN

  }
  return cnt;
}

/*
** Initialize an expression mask set
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))

/*
** Return the bitmask for the given cursor.  Assign a new bitmask
** if this is the first time the cursor has been seen.
*/
static int getMask(ExprMaskSet *pMaskSet, int iCursor){
  int i;
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ) return 1<<i;
  }
  if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
    pMaskSet->n++;
    pMaskSet->ix[i] = iCursor;
    return 1<<i;

where.c  view on Meta::CPAN

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqliteExprResolveIds() on the expression.  See
** the header comment on that routine for additional information.
** The sqliteExprResolveIds() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.
*/
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
  unsigned int mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
    mask = getMask(pMaskSet, p->iTable);
    if( mask==0 ) mask = -1;
    return mask;
  }
  if( p->pRight ){

where.c  view on Meta::CPAN

    if( pExpr->pLeft->op==TK_COLUMN ){
      pInfo->idxLeft = pExpr->pLeft->iTable;
      pInfo->indexable = 1;
    }
  }
}

/*
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base".
**
** This routine attempts to find an index for pTab that generates the
** correct record sequence for the given ORDER BY clause.  The return value
** is a pointer to an index that does the job.  NULL is returned if the
** table has no index that will generate the correct sort order.
**
** If there are two or more indices that generate the correct sort order
** and pPreferredIdx is one of those indices, then return pPreferredIdx.
**
** nEqCol is the number of columns of pPreferredIdx that are used as

where.c  view on Meta::CPAN

** Then the code generated is conceptually like the following:
**
**      foreach row1 in t1 do       \    Code generated
**        foreach row2 in t2 do      |-- by sqliteWhereBegin()
**          foreach row3 in t3 do   /
**            ...
**          end                     \    Code generated
**        end                        |-- by sqliteWhereEnd()
**      end                         /
**
** There are Btree cursors associated with each table.  t1 uses cursor
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
** And so forth.  This routine generates code to open those VDBE cursors
** and sqliteWhereEnd() generates the code to close them.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster.  Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually

where.c  view on Meta::CPAN

** An outer join of tables t1 and t2 is conceptally coded as follows:
**
**    foreach row1 in t1 do
**      flag = 0
**      foreach row2 in t2 do
**        start:
**          ...
**          flag = 1
**      end
**      if flag==0 then
**        move the row2 cursor to a null row
**        goto start
**      fi
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**

where.c  view on Meta::CPAN

  ** index which requires reading an index first to get the rowid then
  ** doing a second read of the actual database table.
  **
  ** Actually, if there are more than 32 tables in the join, only the
  ** first 32 tables are candidates for indices.  This is (again) due
  ** to the limit of 32 bits in an integer bitmask.
  */
  loopMask = 0;
  for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
    int j;
    int iCur = pTabList->a[i].iCursor;    /* The cursor for this table */
    int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */
    Table *pTab = pTabList->a[i].pTab;
    Index *pIdx;
    Index *pBestIdx = 0;
    int bestScore = 0;

    /* Check to see if there is an expression that uses only the
    ** ROWID field of this table.  For terms of the form ROWID==expr
    ** set iDirectEq[i] to the index of the term.  For terms of the
    ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.

where.c  view on Meta::CPAN

  for(i=0; i<pTabList->nSrc; i++){
    Table *pTab = pTabList->a[i].pTab;
    assert( pTab!=0 );
    if( pTab->isTransient || pTab->pSelect ) continue;
    pLevel = &pWInfo->a[i];
    sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
    if( pLevel->pIdx!=0 ){
      sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
    }
  }
#if 0  /* Never reuse a cursor */
  if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
    pWInfo->pParse->nTab = pWInfo->savedNTab;
  }
#endif
  sqliteFree(pWInfo);
  return;
}



( run in 0.444 second using v1.01-cache-2.11-cpan-4d50c553e7e )